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Abstract: Urban blue-green space cooling island effect (BGCI) is effective in improving the thermal
comfort of residents. However, there is little knowledge regarding the diurnal variation of BGCIs
and the influencing factors. Therefore, we selected Beijing as the study area and used ECOSTRESS
LST data and the inflection–maximum perspective method to explore the diurnal variation of BGCIs.
Additionally, we investigated diurnal variations in the relative influence of the characteristics of
the blue-green space itself, as well as the surrounding 2D and 3D landscape metrics using boosted
regression tree model. The results indicated that BGCIs displayed distinct diurnal patterns. BGCIs
progressively increased from sunrise to midday, decreased thereafter to sunset, reached its peak
around midday, and diminished to a relatively low level and constant intensity at night. BGCIs
of water bodies exhibited a significantly higher intensity compared to vegetation during the day,
particularly around midday, with a difference in mean cooling intensity (CI) of 1.06 ◦C and mean
cooling distance (CD) of 63.27 m, while the differences were minimal at night with a difference in
mean CI of 0.02 ◦C and mean CD of 9.64 m. The features of vegetation had a more significant impact
on BGCIs during the day, particularly around midday (CI: 32.30% around midday and 13.86% at
night), while the 3D metrics influenced BGCIs more at night (CI: 26.40% around midday and 35.81%
at night). The features of water bodies had a greater impact during the midday (52.87% around
midday and 10.46% at night), with the landscape metrics of surrounding water bodies playing a
more important role at night (15.56% around midday and 38.28% at night). The effect of tree height,
shape index of vegetation, and surrounding building coverage ratio of water bodies on BGCIs
exhibited opposite trends around midday and at night. Optimizing the landscape surrounding
blue-green spaces is more cost-effective than the blue-green spaces themselves for nighttime
thermal comfort, especially in 3D urban landscapes. These findings emphasize the imperative and
essentiality of exploring diurnal variations in BGCIs, providing valuable information for mitigating
UHI effects.

Keywords: cool islands; blue-green spaces; urban landscape metrics; diurnal variations; UHI

1. Introduction

Under the dual impacts of persistent climate change and urbanization, the urban
heat island (UHI) effect [1] will further exacerbate extreme precipitation [2,3] and air
pollution [4,5], increase energy consumption [6,7], raise heat stress risks [8,9], increase risks
of infectious diseases and allergic reactions [10,11], and even contribute to increased mor-
tality rates [12,13]. These impacts significantly inconvenience the lives of urban residents,
who make up more than half of the world’s population [14,15]. Additionally, both daytime
and nighttime UHI patches are expanding [16]. Nocturnal heatwaves have a dramatic
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impact on human health and energy consumption [17]. Mortality due to heat at night
is expected to be higher than that due to average daily temperatures [18,19]. There is
a discernible increase in the intensity, frequency, and duration of nighttime heatwaves
and heat stress [20,21]. Therefore, it is urgent to alleviate UHI both during the daytime
and nighttime.

Researchers have found that urban blue-green spaces represent the most cost-
effective, environmentally friendly, and politically acceptable strategies for mitigating
UHI [22–24]. The land surface temperature (LST) of urban blue-green spaces is observed
to be lower than that of the surrounding areas, a phenomenon known as the urban
blue-green space “cooling islands effect” (BGCI) [25,26]. Nevertheless, the unrestricted
expansion of urban blue-green spaces is not feasible due to the lack of available urban
land resources and the associated costs of management [27]. Therefore, investigating the
BGCIs, along with their spatiotemporal patterns, heterogeneity, and influencing factors,
holds significant meaning for cost-effectively mitigating UHI and enhancing thermal
comfort for urban residents. In addition, previous studies have shown that water bodies
exhibit a stronger cold island effect compared to vegetation [28]. However, most of these
studies have only focused on the differences between vegetation and water bodies during
the daytime, with a lack of research on the nighttime and diurnal variations of BGCIs and
differences [29]. Currently, there have been a few studies conducted on the nighttime and
diurnal variations of BGCIs using field measurements and numerical modeling [30–33].
It has been found that nighttime BGCIs can also enhance urban thermal comfort. For
example, urban vegetation in London can cool up to 440 m, reducing air temperatures
by up to 4 ◦C at night [34]. The simulations show that at night, canopy and grass areas
are linearly and positively correlated with cooling distance and nonlinearly with cooling
intensity [35]. Qian et al. (2024) found that both vegetation and water bodies exhibited
diurnal variations in their effects on the 3D thermal environment via UAVs [36].

Field measurements can only study a small number of blue-green spaces, and nu-
merical modeling is lacking in the study of complex cities [37]. The application of remote
sensing technology represents a promising avenue for addressing these challenges [38].
However, few remote sensing techniques have been used to study the diurnal variation
of BGCIs and the differences in diurnal variation between vegetation and water bod-
ies. To comprehensively explore the diurnal variation of BGCIs through remote sensing
methods, it is necessary to use LST data characterized by both high temporal and spatial
resolutions. However, conventional sources of LST data have been inadequate for this
purpose. For instance, Landsat LST data are limited by a fixed observation time within
each area. Similarly, ASTER LST data, while possessing a spatial resolution of 90 m,
suffer from a lack of images available for individual urban centers [39]. Although widely
used, MODIS LST data have a spatial resolution of only 1 km and offer merely two
fixed-time observations per day per location, limiting the temporal variability captured
for a day. Furthermore, while some LST data are provided on an hourly scale, this often
results in a compromise of spatial detail. For instance, platforms such as GOES-R, MSG,
and FY provide a resolution of 2–5 km. Addressing these limitations, the ECOSTRESS
launched in June 2018 stands out as a pivotal advancement. Providing LST data at a
spatial resolution of 70 m, with variable observation times and temporal repetition cycles
of 3–5 days, ECOSTRESS greatly enhances our capacity to understand diurnal variations
of BGCIs within urban areas [40,41]. Therefore, ECOSTRESS was selected for this study
to explore the diurnal variation of BGCIs.

A multitude of factors at the urban landscape scale exert influence on BGCIs [42–44].
Previous research has highlighted that the area of urban blue-green spaces plays a pre-
dominant role in determining BGCI effect [45], which has a nonlinear positive correlation
with BGCIs [46–49]. Nevertheless, in constrained regions, blue-green spaces may fail to
generate BGCI effect [50] and could even potentially exacerbate the UHI [51]. Chen et al.
(2012) observed that when the vegetation area of a park was less than approximately 1
ha, it might not trigger a BGCI effect on the surrounding environment [52]. Meanwhile,
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the shape of blue-green spaces and urban land use influence BGCIs [53,54]. Furthermore,
it has been found that 2D urban landscape indicators surrounding blue-green spaces
could also significantly impact BGCIs [55,56]. For instance, Du et al. (2022) discov-
ered that parks that interact with their surroundings had a broader cooling range [57].
Liu et al. (2023) and Yang et al. (2024) found that the presence of a water body in the
surroundings would have an enhanced effect on the cooling effect [58,59]. Han et al.
(2023) found that indicators of surrounding vegetation were essential indicators of the
cooling efficiency of parks [60]. Additionally, investigations have demonstrated that
3D urban landscape metrics, including building height, tree height, building volume,
sky view factor, etc., also play a significant role in shaping the urban thermal environ-
ment [61–64]. Zhang et al. (2022) discovered significant correlations between building
density and floor area ratio around vegetation and BGCIs [65]. Han et al. (2023) observed
substantial influences of surrounding 2D and 3D landscapes on the BGCIs of the park,
noting nonlinear relationships between primary surrounding landscape indicators and
cooling efficiency [60]. Jia et al. (2024) found that building height and vegetation volume
had the most significant effect on ambient temperature change [66]. Li et al. (2024) found
that in relation to the BGCIs of vegetation, building density and floor area ratio are
negatively correlated, while the average building height and the standard deviation of
building height are positively correlated [67]. However, similar to studies on BGCIs,
most of the previous studies on influencing factors have focused on a single point in time
during the day. There have been no studies on diurnal variations in the contribution of
2D and 3D landscapes.

In this study, the diurnal variation and influencing factors of BGCIs in blue-green
spaces within the urban area of Beijing were analyzed based on the ECOSTRESS LST data
and boosted regression tree (BRT) model. The aims were (1) to investigate the patterns
and differences of diurnal variation in cooling islands of urban vegetation and water
bodies using the inflection point–maximum perspective method; (2) to analyze the diurnal
variation of the relative influences of the characteristics of the blue-green space itself and
the surrounding 2D and 3D urban landscape metrics on BGCIs; and (3) to analyze changes
in the marginal effects of key landscape indicators over the course of a day. This study
tries to comprehensively analyze the diurnal variations and influencing factors of the
BGCIs of blue-green spaces, providing valuable references for mitigating the urban thermal
environment by optimizing urban blue-green spaces at the city scale.

2. Materials and Methods
2.1. Study Area

This study focuses on the area within the Fifth Ring Road (116.2◦–116.5◦ E,
39.7◦–40.0◦ N) of Beijing (Figure 1), which encompasses approximately 666 km2, with
elevations primarily between 30 and 65 m. As one of China’s megacities, Beijing has
a particularly high level of urbanization, especially within the Fifth Ring Road, which
stands as one of the most densely populated and urbanized regions. In addition, the
UHI within this area is pronounced [68,69]. Notably, government efforts have led to the
creation of numerous blue-green spaces within this region. Beijing is not only represen-
tative of compact cities currently, but it may also provide insight into future trends in
the development of smaller cities. Therefore, studying the BGCIs in compact cities like
Beijing holds significant implications for mitigating the UHI and facilitating accurate
urban planning and management [59].
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(c) The land use map of the study area. 
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data, this dataset not only offers a higher spatial resolution but also provides a flexible 
temporal resolution, enabling for the acquisition of data at various time intervals. This 
dataset provides LST data with a spatial resolution of 70 m and derives LST values from 
five thermal infrared (TIR) bands ranging from 8 to 12.5 µm, using the physically based 
Temperature Emissivity Separation (TES) method [40]. This product demonstrated a con-
sistent and reliable performance, with a root mean square error of 1.07 K, a mean absolute 
error of 0.40 K, and an R2 > 0.988 [41]. Furthermore, this study conducted de-clouding and 
geo-correction processes using cloud mask products and geolocation products 
(ECO2CLOUD, ECO1BGEO, https://lpdaac.usgs.gov/ (accessed on 16 March 2023)). This 
study selected 9 images under clear atmospheric conditions (few clouds) from June to 
September 2020 (the hottest months of the year with stable green cover). Table 1 presents 
the ECOSTRESS acquisition time, LST-related information, and meteorological conditions 
of the ECOSTRESS images. The meteorological data (https://rp5.ru/ (accessed on 22 March 
2023)) were obtained from the weather station of Beijing (Station ID 54511). In this study, 
the time 22:32 represents the first half of the night, while the times 01:19, 02:37, and 04:11 
represent the second half of the night. Together, these times make up the night. The time 
07:20 represents the sunrise, while 10:42, 13:49, and 14:13 represent the time around mid-
day. The time 18:45 represents the sunset, and these times collectively form the day. 

Table 1. Related information of ECOSTRESS images. 

ECOSTRESS Acquisition 
Time (Beijing Time) 

LST Range Average LST 
Atmospheric 

Temperature (°C) 
Relative Humidity (%) Wind Direction Wind Speed (m/s) 

01:19 on 04 September 10.0–22.7 °C 17.0 °C 17.2 °C 79% North–northeast Soft wind (1 m/s) 
02:37 on 19 July 8.5–24.9 °C 20.2 °C 22.3 °C 90% Northeastern Soft wind (1 m/s) 
04:11 on 15 July 18.1–26.2 °C 21.7 °C 22.3 °C 92% Windless Windless 
07:20 on 07 July 19.7–30.9 °C 24.4 °C 26.5 °C 56% North Light wind (3 m/s) 

10:42 on 11 August 28.5–51.1 °C 38.5 °C 31.8 °C 49% North Light wind (2 m/s) 
13:49 on 03 August 27.4–59.5 °C 45.2 °C 36.5 °C 35% West–southwest Light wind (2 m/s) 

Figure 1. The geographic location of the study area. (a) The location of Beijing within China. (b) The
elevations within the administrative boundaries of Beijing and the extent of the study area in Beijing.
(c) The land use map of the study area.

2.2. Datasets and Pre-Processing
2.2.1. LST Data

The ECOSTRESS Level 2 product ECO2LSTE (NASA-LPDAAC, https://lpdaac.usgs.gov/
(accessed on 15 March 2023)) was used to investigate the variation of the BGCIs at different times
throughout the day and night. Compared to other LST data, this dataset not only offers a higher
spatial resolution but also provides a flexible temporal resolution, enabling for the acquisition
of data at various time intervals. This dataset provides LST data with a spatial resolution of
70 m and derives LST values from five thermal infrared (TIR) bands ranging from 8 to 12.5 µm,
using the physically based Temperature Emissivity Separation (TES) method [40]. This product
demonstrated a consistent and reliable performance, with a root mean square error of 1.07 K,
a mean absolute error of 0.40 K, and an R2 > 0.988 [41]. Furthermore, this study conducted
de-clouding and geo-correction processes using cloud mask products and geolocation products
(ECO2CLOUD, ECO1BGEO, https://lpdaac.usgs.gov/ (accessed on 16 March 2023)). This study
selected 9 images under clear atmospheric conditions (few clouds) from June to September 2020
(the hottest months of the year with stable green cover). Table 1 presents the ECOSTRESS
acquisition time, LST-related information, and meteorological conditions of the ECOSTRESS
images. The meteorological data (https://rp5.ru/ (accessed on 22 March 2023)) were obtained
from the weather station of Beijing (Station ID 54511). In this study, the time 22:32 represents
the first half of the night, while the times 01:19, 02:37, and 04:11 represent the second half of the
night. Together, these times make up the night. The time 07:20 represents the sunrise, while
10:42, 13:49, and 14:13 represent the time around midday. The time 18:45 represents the sunset,
and these times collectively form the day.

Table 1. Related information of ECOSTRESS images.

ECOSTRESS Acquisition
Time (Beijing Time) LST Range Average LST Atmospheric

Temperature (◦C)
Relative

Humidity (%) Wind Direction Wind Speed (m/s)

01:19 on 04 September 10.0–22.7 ◦C 17.0 ◦C 17.2 ◦C 79% North–northeast Soft wind (1 m/s)
02:37 on 19 July 8.5–24.9 ◦C 20.2 ◦C 22.3 ◦C 90% Northeastern Soft wind (1 m/s)
04:11 on 15 July 18.1–26.2 ◦C 21.7 ◦C 22.3 ◦C 92% Windless Windless
07:20 on 07 July 19.7–30.9 ◦C 24.4 ◦C 26.5 ◦C 56% North Light wind (3 m/s)

10:42 on 11 August 28.5–51.1 ◦C 38.5 ◦C 31.8 ◦C 49% North Light wind (2 m/s)
13:49 on 03 August 27.4–59.5 ◦C 45.2 ◦C 36.5 ◦C 35% West–southwest Light wind (2 m/s)

14:13 on 02 June 24.9–52.0 ◦C 40.4 ◦C 31.2 ◦C 32% South Light wind (3 m/s)
18:45 on 07 August 15.5–35.3 ◦C 28.1 ◦C 29.9 ◦C 51% East–southeast Light wind (2 m/s)

22:32 on 27 September 10.4–20.5 ◦C 16.83 ◦C 20.2 ◦C 72% South Light wind (2 m/s)

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
https://rp5.ru/
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2.2.2. Blue-Green Spaces and Land Cover Data

Landsat images from 2020 were used to classify land use in the study area on the
Google Earth Engine (GEE, https://earthengine.google.com/ (accessed on 14 April 2023))
platform in this study. Specifically, the Normalized Difference Vegetation Index (NDVI)
for the annual maximum and the Modified Normalized Difference Water Index (MNDWI)
for the annual mean were initially computed. Subsequently, a triple moving average
method was used to reconstruct the NDVI and MNDWI data, aiming to mitigate noise
interference [70]. Lastly, the threshold classification method was applied to extract the blue-
green spaces (the NDVI and MNDWI thresholds were 0.45 and 0.25, respectively) [71,72].
The overall classification accuracy of 86.05% was assessed based on high-spatial-resolution
Google Earth images [73]. The study area was delineated into three categories: impervious
surfaces (ISs), vegetation, and water bodies (Figure 1). These land use types were used to
calculate the 2D urban landscape metrics. Furthermore, our analysis exclusively focused
on blue-green spaces exceeding 1 ha in area, as small blue-green spaces were found to have
minimal influences on BGCIs [74]. A total of 1399 vegetation patches and 155 water bodies
patches were obtained.

2.2.3. Other Data

The building data were obtained from the Polygonal Features of Single Buildings
dataset (https://map.baidu.com (accessed 1 April 2023)), which includes the footprint
of each building and its height. The building footprint in this dataset aligns accurately
with the actual buildings, with a total deviation of 1.02 m and an accuracy of 86.78% [75].
Tree height data for this study were extracted from the 2019 Global Forest Canopy Height
(GFCH, https://glad.umd.edu/dataset/gedi/ (accessed 3 April 2023)) at a 30 m spatial
resolution, with an RMSE of 9.07 m and R2 of 0.61 based on available airborne LiDAR
data [76]. Furthermore, the 2020 population distribution data were obtained from World
Pop (https://hub.worldpop.org/ (accessed 4 April 2023)). These data have a resolution of
3 arcs (equivalent to 100 m at the equator) and were derived from the 2020 census/projected
estimates based on 2020, using output from the Built Settlement Growth Model (BSGM)
developed by Jeremiah J. Nieves et al. [77].

2.3. Methods
2.3.1. Quantifying the BGCI Effect

Previous research has demonstrated that the inflection point–maximum perspective
method is currently one of the most effective ways to quantify the BGCI effect [78,79].
However, different BGCI indicators suggest varying degrees of significance, and using
only one indicator is not comprehensive enough to quantify BGCIs. Therefore, this study
calculates five BGCI indicators: cooling distance (CD), cooling intensity (CI), cooling rate
(CR), cooling efficiency (CE), and cooling service (CS). All five indicators are important
for reflecting the influence of vegetation and water bodies on the urban microclimate.
Subsequently, to assess the BGCIs more comprehensively, the comprehensive cooling
effect (CCE) index of blue-green spaces was proposed based on these five normalized
BGCI indicators.

Taking into consideration the Landsat spatial resolution of 30 m and drawing on
previous related studies [48,80], this study created 20 buffer zones starting from the edge of
each blue-green space at fixed intervals of 30 m. We then extracted the average LST of each
buffer zone. A polynomial was fitted to the LST–distance plot, and the first-order derivative
was used to identify the curve’s first turning point in the rising process (Figure 2). The
horizontal coordinate of this turning point indicates the furthest distance that the BGCIs can
reach in the blue-green spaces, referred to as the cooling distance in the blue-green spaces.
The detailed calculations and description of BGCI indicators can be found in Table 2.

https://earthengine.google.com/
https://map.baidu.com
https://glad.umd.edu/dataset/gedi/
https://hub.worldpop.org/
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Table 2. The formula and description of the BGCI indicators used in the study.

BGCI Indicator Abbreviation Formula Description

Cooling distance CD CD = d The furthest distance that BGCIs can reach; unit: m.

Cooling intensity CI CI = ∆T = Td − T0 The maximum LST reduction that can be achieved; unit: ◦C.

Cooling rate/gradient CR CR = ∆T
d Used to indicate the speed of cooling; unit: ◦C/m.

Cooling efficiency CE CE = BGCA
BGA

The area of cooling per unit area of blue-green space. It indicates
whether BGCIs are economical and effective; unit: none.

Cooling service CS CS = BGCA ∗ ∆T The maximum service degree of BGCIs; unit: ◦C ha.

Comprehensive cooling effect CCE CCE = CDn+CIn+CRn+CEn+CSn
5 An indicator to quantify BGCIs in an integrated manner; unit: none.

d represents the furthest cooling distance; Td represents the LST of the furthest cooling distance; T0 represents the
average LST of the blue-green space; BGCA represents the cooling area of blue-green space, i.e., the total area of
the buffer within the cooling distance; BGA represents the area of the blue-green space; CDn, CIn, CRn, CEn, and
CSn represent normalized CD, CI, CR, CE, and CS, respectively.

2.3.2. Calculation of 2D and 3D Landscape Metrics

In this study, 16 landscape indicators were selected to comprehensively quantify the 2D
and 3D urban landscape of the study area. In addition, anthropogenic factors (expressed as
population in this paper) also affect the urban thermal environment [81,82]. The indicators
are categorized into six categories: the 2D features of the blue-green spaces inherent
(Feature), the 2D landscape metrics of the surrounding water body (Sur_WAT), the 2D
landscape metrics of the surrounding vegetation (Sur_VEG), the 2D landscape metrics of the
surrounding impervious surfaces (Sur_lSs), the distribution of the surrounding population
(Sur_PEP), and 3D landscape features (3D metrics). The surrounding landscape refers to
the buffer zone area within the cooling distance. The 2D feature metrics of blue-green
spaces included patch area (AREA) and shape index (LSI). The surrounding landscape
(water bodies, vegetation, and ISs) metrics included the proportion of landscape patch
area (PLAND), shape index (LSI), spatial aggregation index (AI), proportion of landscape
area occupied by the largest patch (LPI), patch connectivity index (NECT), edge density
(ED), number of patches (NP), and patch density (PD). For example, the aggregation
index of surrounding water bodies is abbreviated as Sur_WAT_AI. The 2D landscape
metrics were calculated on a 1 × 1 km grid to provide a comprehensive description of the
surrounding 2D urban landscape from multiple perspectives: quantitative, features, spatial
agglomeration, and spatial connectivity. The 3D urban metrics, including tree height (TH),
building coverage ratio (BCR), building height (BH), building volume (BV), architecture
height standard deviation (AHSD), and floor area ratio (FAR), not only quantify the urban
landscape but also indirectly reflect human activities around the blue-green spaces. Table 3
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presents detailed information on these metrics. This study does not consider the impact of
water velocity and elevation metrics on BGCIs due to the scarcity of rivers in the study area
and the absence of elevation changes. Meanwhile, this study does not take wind direction
and speed into consideration as the wind speed is small, ranging from 0 to 3 m/s.

Table 3. Descriptions of 2D and 3D urban landscape metrics in the study.

Types Subcategory Indicator Abbreviations Descriptions

2D Feature Patch area AREA The area of the patch; unit: ha.

Landscape shape index LSI Assessing the complexity of the shape of vegetation or water
bodies; unit: none.

Sur_ISs Percent of landscape PLAND The proportion of area occupied by various land types; unit: %.

Landscape shape index LSI Assessing the complexity of the shape of certain types of
patches; unit: none.

Largest path index LPI The ratio of the maximum patch area to landscape area, to
determine the dominant patch type in the landscape; unit: %.

Edge density ED
The ratio of the sum of the lengths of all edge segments of a
given type of patch to the area of the landscape, assessing the
density of edges in the landscape; unit: m/ha.

Aggregation index AI
To assess the degree of aggregation of different types of patches
in the landscape, in terms of distance, number, and area of
neighboring patches of the same type; unit: none.

Connectance Index NECT
To assess the degree of connectivity between patches, reflecting
the spatial connectivity between patches of the same land
category; unit: none.

Number of patches NP The number of landscape patches in each category; unit: pcs.

Patch density PD The density of patches of a given land category in the landscape.
It reflects the degree of fragmentation; unit: #/100 ha.

Sur_VEG Same as Sur_ISs

Sur_WAT Same as Sur_ISs

Sur_PEP Population PEP The number of populations.

3D 3D metrics Building coverage ratio BCR
The extent of building coverage in the study area can be
calculated as the ratio of the roof area of the building to the total
statistical area; unit: %.

Building height BH The height of buildings; unit: m.

Building volume BV The volume of buildings; unit: m3.

Floor area ratio FAR
The ratio of the sum of the gross floor area to the statistical unit
area. It reflects the extent to which the building is utilized on the
statistical unit area; unit: %.

Architecture height
standard AHSD The extent of change in building heights in the region; unit: m.

Tree height TH The tree height of the vegetation; unit: m.

Tree height of the
surrounding area Sur_TH The tree height of surroundings; unit: m.

2.3.3. Statistical Analysis Methods

Kruskal–Wallis analysis, multiple stepwise regression, and BRT model were combined
to analyze the diurnal variations, the relative influences, and the marginal effects of BGCIs.
Kruskal–Wallis analysis was used to analyze the diurnal variations in the BGCIs and to
reveal the differences in the BGCIs of vegetation and water bodies at different time points
by testing whether multiple groups of samples at different time points come from the
same distribution. Multiple stepwise regression analysis was used to obtain the combined
explanatory rate of the variables entering the model. The BRT model was used to analyze
the relative importance and marginal effect of 2D and 3D urban landscape metrics on
BGCIs at different time points. The BRT combines the strengths of regression trees and
enhancement algorithms to estimate the single best predictor variable. Unlike traditional
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linear regression models that use regression coefficients to analyze the degree of influence,
the BRT model allows for the construction of multiple regression trees to predict the complex
nonlinear relationship between independent and dependent variables. The BRT visualizes
the marginal effect curve of the dependent variable in relation to a specific independent
variable. This visualization helps analyze the correlation of the respective variable with the
dependent variable and identify the threshold point of its influential effect. The BRT model
uses recursive binary splitting to eliminate interactions between influencing factors and
can be used without considering interactions between independent variables [83,84]. BRT
outperforms Random Forests and Support Vector Machines in handling data with complex
nonlinear relationships and has been widely used in urban thermal environments [61].

3. Results
3.1. Diurnal Variation Characteristics of BGCIs

The spatial distribution of CCE in blue-green spaces in the study area was not uniform
(Figure 3). The CCE between the Fourth and Fifth Ring Roads was consistently higher than
that of other areas throughout the day. Among them, during the day and the first half of the
night, the CCE in the northwest between the Fourth and Fifth Ring Roads was consistently
relatively high. Furthermore, at night, the CCE in this region continued to decrease until
04:11, when it reached its lowest point. Additionally, at 04:11, the spatial heterogeneity of
CCE was at its minimum in the entire study area.
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BGCIs exhibited a distinct pattern of diurnal variations (Figure 4). From sunrise to
midday, BGCIs continued to rise and peaked around midday, then declined until sunset,
with relatively low and insignificant changes at night. In addition, there is little change
in the BGCIs around midday. The CI, CR, and CS values exhibited similar characteris-
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tics (Figure 4b,c,e), with the values being significantly larger around midday than at night
and at sunrise, with sunset occurring in the middle, showing a clear day–night difference.
For example, the average CI of vegetation was 0.33 ◦C at sunrise, 1.48 ◦C around midday,
0.75 ◦C at sunset, and 0.31 ◦C at night. Among them, the average CI at 13:49 was the
highest (1.78 ◦C), reaching up to about 20.54 ◦C. This was followed by 10:42 (1.46 ◦C)
and 14:13 (1.21 ◦C). The maximum reached 1.93 ◦C during the night. For water bodies,
it was 0.24 ◦C, 2.54 ◦C, 1.05 ◦C, and 0.33 ◦C, respectively. Among them, the average CI
at 13:49 was the highest (2.81 ◦C), reaching up to about 8.42 ◦C. This was followed by
14:13 (2.39 ◦C) and 10:42 (2.15◦C). The mean CI difference between the time points around
noon was 0.5 ◦C. It reached a maximum of 2.25 ◦C during the night. However, CD, CE, and
CCE were similar (Figure 4a,d,f), and although they are all larger around midday than at
night, there is little difference in the values at each time point relative to the other three
indicators. For example, the average CD of vegetation was 239.41 m at sunrise, 275.88 m
around midday, 255.40 at sunset, and 211.24 m at night. For water bodies, it was 185.32 m,
339.15 m, 282.21 m, and 220.88 m, respectively. Additionally, the CD, CE, and CCE of the
water bodies exhibited a gradual increase at night, particularly during the second half of
the night. Conversely, the CD, CE, and CCE of the vegetation exhibited a gradual decline.
Combined with the results of Kruskal–Wallis analyses (Figure 5), the differences between
water bodies and vegetation showed that the CEE was greater for water bodies than for
vegetation during the day, while the CEE was greater for vegetation than for water bodies
at night. The CD for water bodies was overall greater than vegetation during the day and
night. CI, CR, CE, and CS were all significantly greater for water bodies than vegetation
during the day, while the difference was not significant at night. This resulted in a gradual
increase in the BGCI differences between water bodies and vegetation during the second
half of the night.
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Figure 4. Diurnal variations of BGCI indicators. (a) Cooling distance (CD); (b) cooling intensity (CI);
(c) cooling rate (CR); (d) cooling efficiency (CE); (e) cooling service (CS); (f) comprehensive cooling
effect (CCE). The light gray background represents night, while the white background represents day.
The boxes represent the 25th and 75th percentiles, the horizontal black lines in the boxes represent
the median, and the forks represent averages.
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Figure 5. Temporal differences in CCE of vegetation (VEG) and water bodies (WAT). The darker blue
represented a greater degree of differentiation, whereas the darker pink represented a greater degree
of similarity.

3.2. Overall Impacts of Landscape Metrics on BGCIs

In the results of the multiple stepwise regression analyses, the larger the coefficients of
determination (R2) value, the greater the explanatory power of the 2D and 3D landscape
metrics on the BGCI indicators. In this study, the total determination coefficient of all
landscape metrics on CCE was 0.42, indicating that the 2D and 3D landscape metrics
we selected could explain 42% of BGCI changes. Regarding the differences in the BGCI
indicators, the R2 for CS of vegetation was found to be higher than the other indicators
(Figure 6), indicating that the landscape metrics had greater explanatory power for the
heterogeneity of CS of vegetation. In contrast, the R2 for water bodies was not found
to be significantly different across all BGCI indicators. Moreover, the R2 value of water
bodies (0.57) exceeded that of vegetation (0.26), indicating that the BGCIs of vegetation
were more susceptible to various factors. The factors influencing the BGCIs of vegetation
were intricate and could be influenced by factors such as type, configuration structure, and
soil composition. The R2 values for BGCIs of vegetation and water bodies exhibited no
significant discrepancy between day (0.23, 0.52) and night (0.22, 0.53), although R2 varied at
different times. These findings implied that the overall urban landscape had a comparable
impact on the diurnal BGCIs of blue-green spaces.
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3.3. Relative Influences and Marginal Effects of 2D and 3D Landscape Metrics
3.3.1. Relative Influences of Landscape Metrics

This study divided the influence factors into six categories and explored the relative
influences of each category on the six cooling indicators using the BRT model (Figure 7). The
influence factors on the BGCIs of blue-green spaces in descending order were 3D metrics
(23.82%), Feature (23.51%), Sur_WAT (23.40%), Sur_VEG (13.58%), Sur_ISs (11.03%), and
Sur_PEP (4.66%). The dominant factors for most BGCI indicators related to vegetation were
3D metrics and Feature. However, for water bodies, the dominant factors were Sur_WAT,
3D metrics, and Feature.
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There was indeed a diurnal variation in the relative influences on BGCIs (Figure 8).
During the day, especially around midday, the relative influences of blue-green spaces were
distributed similarly. Likewise, the distribution at night also showed some similarity but
differed from day patterns. There were variations in the sensitivity of different metrics
to different influences. For the CI, CS, and CR of vegetation, the diurnal variation in the
composition of influences was more pronounced. Specifically, the relative influences of
Feature around midday (32.30%, 80.22%, 44.07%) were more significant compared to night
(13.86%, 58.24%, 12.77%), whereas the influences from 3D metrics were more pronounced
at night (35.81%, 12.54%, 28.34%) than around midday (26.40%, 5.50%, 16.88%). Diurnal
differences in influences on all BGCI metrics in water bodies were significant. Specifically,
Features had a significantly higher influence around midday (average 52.87%) than at night
(average 10.46%), while Sur_WAT had a higher influence at night (average 38.28%) than
around midday (average 15.56%). For CD of water bodies, the influences of 3D metrics
were stronger around midday (29.37%) than at night (25.42%). On the contrary, for CI, CE,
CS, and CR of water bodies, the influences of 3D metrics were stronger at night (average
20.63%) than around midday (average 9.46%). This indicated that the CD of water bodies
is more susceptible to 3D metrics during the day in comparison to other BGCI metrics,
as different 3D metrics possess varying ventilation properties. Overall, the Feature of
vegetation had a more significant influence on BGCIs during the day, while 3D metrics
influenced BGCIs more at night. Both Feature and 3D metrics of water bodies had a greater
influence on BGCIs during the day, with Sur_WAT playing a more important role at night.
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3.3.2. Marginal Effects of Dominant Metrics

The marginal effect plot can capture the nonlinear relationship between a single
independent variable and the target variable. The slope of the line indicates the strength
of this impact. A positive slope indicates a positive correlation between the independent
and dependent variables, while a negative slope signifies a negative correlation. In this
study, five points in time and six different dominant metrics were selected to analyze
the diurnal variation of the marginal effects on CCE of blue-green spaces (Figure 9). The
vertical coordinate of the graph was the value of the fitted function of the response variable
minus the mean of that function. The marginal effect curves for AREA, Sur_ISs_PLAND of
vegetation and AREA, Sur_WAT_NECT, and AHSD of water bodies were steeper around
midday, indicating a stronger influence than at night. Conversely, the marginal effect curve
of Sur_WAT_NECT of water bodies was steeper at night, indicating a stronger influence
than during the day. Moreover, the marginal effect of TH and LSI of vegetation and
BCR of water bodies exhibited contrasting trends during midday and at night, displaying
significant diurnal variations. In particular, the correlation between the LSI of vegetation
and CCE during midday initially declined to approximately three, then rose with an overall
upward trend. However, at night, CCE and vegetation LSI were negatively correlated. The
marginal benefits of LSI for water bodies presented more intricate results, possibly due to
the limited sample size.
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4. Discussion
4.1. The Temporal Heterogeneity of BGCIs

Many previous studies revealed the differences between day and night BGCI effect in
blue-green spaces through field investigations and numerical simulations [85–87]. However,
few researchers have previously conducted diurnal variations of BGCIs at different times
of day on a large scale, primarily due to data limitations. Data acquisition from satellites
like Landsat and MODIS occurs at specific and single times. The spatial resolution of data
from satellites like GOES-R and MSG is not detailed enough to study urban blue-green
spaces. This study revealed the diurnal temporal heterogeneity of the BGCIs using 70 m
ECOSTRESS LST data with flexible acquisition times and found that the BGCIs exhibit a
distinct pattern of diurnal variations. The BGCIs rose steadily from sunrise, peaked around
midday, and then declined until sunset, with relatively low and insignificant changes at
night. Notably, the BGCIs were higher at sunset than at sunrise. The CI was strongest
at 13:49, followed by 14:13 and 10:42, with an average difference of 0.5 ◦C in mean CI.
Therefore, there may be some limitations in using Landsat and MODIS data at a single
point in time to represent BGCIs for urban planning. The LST data obtained from different
regions may be from different time points within the diurnal cycle, and the comparison
of BGCIs using them is also subject to a certain “time error”. Other studies on diurnal
variation have also demonstrated varying cooling effects at different time points [29,88].

Vegetation can facilitate cooling through transpiration and the provision of shade [89–91].
The cooling effect of shade is generally consistent with the diurnal variations of solar
radiation, with transpiration also occurring at its strongest around midday [92,93]. Further-
more, Wang et al. (2018) found that the contribution of shade to total cooling (60%–75%)
is higher than that of transpiration (25%–40%) [94]. Water bodies can evaporate to cool,
and evaporation is strongest around midday [95]. Water bodies possess a high specific
heat capacity, enabling them to absorb and store heat efficiently, i.e., water bodies per unit
mass absorb more heat than ISs to make a change in temperature. In addition, ISs absorb
more heat during the day, making the temperature difference between water bodies and
ISs greater around midday. The differences in BGCIs were related to air temperature [96].
Accordingly, BGCIs are most effective around midday, least effective at night, and most
effective in the morning and evening. This is consistent with the findings of the field
study [97,98]. Wu et al. (2024) also found that the cooling efficiency of vegetation showed
a pattern of being strongest at noon and weakest at night [29]. Furthermore, previous
studies have indicated that during the daytime, the BGCIs of water bodies were greater
than vegetation from the LST perspective [28,99]. This study found that the difference in
BGCIs between water bodies and vegetation was significantly smaller at night than during
the day. Additionally, the water bodies did not always exhibit stronger BGCIs.

4.2. The Influencing Factors of Diurnal Variation in BGCIs

Previous researchers have examined the influencing factors of BGCIs at a given time
during the day and found that the features of blue-green spaces and the surrounding
2D and 3D urban metrics play important roles [100–102]. Our results showed significant
temporal variation in influencing factors, indicating the importance of studying diurnal
variations in influencing factors. Zhao et al. (2024) also found that factors influencing LST
vary between the daytime and nighttime [103]. The influence of Feature on BGCIs was
weaker at night than during the day. Wu et al. (2024) suggested that the rise in the relative
importance of 3D metrics may be attributed to the increased visibility of tree shadows at
13:38 [29]. Some researchers discovered a negative correlation between the LSI of blue-green
spaces and BGCI intensity and efficiency [104–106]. However, other researchers presented
the opposite results [107,108]. Yang et al. (2020) discovered that blue-green spaces with a
simple LSI were more effective in reducing LST when the area was limited. However, when
the area of blue-green spaces exceeds a critical value, blue-green spaces with a complex
shape are more effective in reducing summer LST [74]. This study found that BGCIs
decreased when the LSI of vegetation was slightly more complex around midday. When
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the LSI reached the critical value, BGCIs were stronger as the LSI was further complicated.
However, during sunset and night, BGCIs weakened with the complexity of the LSI. In
addition, the influence of most of the surrounding 2D metrics on the BGCIs of blue-green
spaces is more significant at night than during the day.

Previous studies have found that 2D metrics are more closely correlated to LST than
3D metrics [61,109,110]. However, Cao et al. (2021) observed that during the day, 3D
metrics exhibited a stronger correlation with the urban environment than 2D metrics [111].
Tian et al. (2019) found that 3D metrics were better than 2D metrics in predicting night
and day air temperatures in residential areas [112]. Han et al. (2024) [36] reported that the
3D features exhibited a greater impact on diurnal LST compared with 2D features. Our
study found that 3D metrics had the greatest influence on the BGCIs of vegetation at night,
indicating that 3D metrics highly influenced the process of releasing heat. Wu et al. (2024)
also found that the influence of 2D metrics peaked around noon, whereas the influence
of 3D metrics peaked at night [29]. This is because a higher aspect ratio of the building
and a smaller sky view factor weaken turbulent heat transfer, hindering air circulation
and heat release [113–115]. This study also revealed that for vegetation throughout all
day and water bodies at night, BCR showed a positive correlation with BGCIs. Previous
studies concluded that a higher BCR creates more shadows, which favors heat dissipation
and thus increases BGCIs [60,116–118]. However, this study indicated that this is only
one of the reasons, since at night, buildings are unable to create shadows. Another reason
for this phenomenon may be that the high BCR results in a large temperature difference
between the building and the blue-green spaces, with a consequent increase in sensible
heat exchange [119]. However, the relationship between BCR and BGCIs in water bodies
during the day showed a tendency to increase and then decrease. When the BCR reaches a
certain level, it affects the ventilation which in turn affects BGCIs. Furthermore, the effect
of AHSD on BGCIs of water bodies was stronger during the day than at night. Both results
indicate that favorable ventilation conditions are more necessary for the BGCIs of water
bodies during the day. Other studies have also shown that smooth aerodynamics promote
health and thermal comfort [120–123]. TH was positively correlated with BGCIs during the
day, but the opposite is true in the sunset and at night. This opposite phenomenon might
be due to the same reason why forests have a warming effect at night [124,125].

4.3. Advantages and Uncertainties

Previous studies on BGCIs have mainly focused on a single time point [126,127]. The
70 m spatial resolution and variable observation time provided by ECOSTRESS form the
foundation for in-depth analyses of fluctuations in BGCIs. Our study results demonstrated
the critical importance of monitoring fluctuations in BGCIs and the factors that influence
them throughout the day. Furthermore, this study quantifies BGCIs using five different
indicators, and the multi-indicator approach ensures a holistic assessment of the cooling
benefits provided by blue-green spaces, making the findings robust and comprehensive.

However, this study has some uncertainties. Firstly, the LST variation in the ECOSTRESS
data includes both diurnal and daily variation. Although the nine ECOSTRESS images were
acquired on sunny days in the same summer year, they were acquired on different days, which
increases the uncertainty in the diurnal variation of the results. Secondly, the use of static
population data might not reflect dynamic changes in population density and activity patterns
throughout the day, which may lead to uncertainty about the impact of population on the
dynamics of BGCIs. Subsequently, due to the relatively flat topography of the study area, the
study did not consider the effects of wind direction, wind speed, or elevation changes. These
unconsidered factors may also contribute to the uncertainty of the results. Furthermore, there
are relatively fewer water bodies in the study area. Therefore, there may also be uncertainty in
the BGCIs for water bodies relative to vegetation.
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5. Conclusions

This study explored the diurnal variation of the BGCIs in blue-green spaces and the
2D and 3D influence factors within the Fifth Ring Road of Beijing using ECOSTRESS
data and the BRT model. The results indicated that BGCIs displayed distinct diurnal
patterns. BGCIs progressively increased from sunrise to midday, decreased thereafter to
sunset, reached their peak around midday, and diminished to a relatively low level and
constant intensity at night. BGCIs of water bodies exhibited a significantly higher intensity
compared to vegetation during the day, particularly around midday, while the differences
were minimal at night. Moreover, the differences in BGCIs between water bodies and
vegetation increased gradually during the second half of the night. Using BRT, this study
found that the main factors affecting BGCIs in blue-green spaces were 3D metrics (23.82%),
Features (23.51%), and Sur_WAT (23.40%), followed by Sur_VEG (13.58%) and Sur_ISs
(11.03%). The influencing factors also vary considerably at different moments in the diurnal
variations. The feature of vegetation had a more significant impact on BGCIs during the day,
particularly around midday, while the 3D metrics influenced BGCIs more at night. Both the
features and surrounding 3D metrics of water bodies had a greater impact around midday,
with Sur_WAT playing a more important role at night. The effects of Sur_ISs_PLAND
of vegetation, Sur_WAT_PLAND, and AHSD of water bodies were significantly greater
around midday than at night. Conversely, Sur_WAT_NECT of water bodies had a more
pronounced impact at night than around midday. Additionally, the effects of TH, LSI
of vegetation, and BCR of water bodies on the BGCIs exhibited opposite trends around
midday and at night. The effect of Sur_PEP of vegetation and water bodies on CI was
significantly greater at 18:45 than at other time points. BGCIs cannot simply be considered
at a fixed point in time when undertaking urban planning. There is a disparity around
midday, but this is not significant in comparison to the morning and evening. Among them,
the disparity is strongest at around 13:49. The disparity is even smaller at night, and one
point in time during the night can be chosen to represent the whole night.

The findings of this study can provide insights into thermal comfort for urban planning.
Regions with high daytime population density, such as roads, can appropriately increase
AREA, TH, and LSI; however, regions with high nighttime population density can be left
alone for AREA, TH, and LSI. To enhance thermal comfort, it is essential to consider not
only the blue-green space itself but also the surrounding landscape, particularly in regions
where nighttime thermal comfort is a greater priority. If possible, water bodies can be added
around the blue-green space to improve the cooling effect. However, the connectivity of
water bodies must be limited in regions with high population density at night.

In regions where there is a greater emphasis on daytime or night-time thermal comfort,
it would be beneficial to enhance ventilation in urban areas by reducing BV and increasing
AHSD, among other strategies. The exploration of the intraday variations of BGCIs and
their influencing factors can assist urban planners in creating more scientific urban planning
and development management strategies, which could help mitigate the various aspects
brought about by the ever-growing UHI effect.

In future studies, we will use ENVI-met to map microclimate variables and set up
different scenarios. This will help us assess whether optimizing landscape environments or
implementing blue-green spaces with different characteristics can improve urban thermal
comfort. Additionally, we aim to demonstrate to policy makers the specific effects and the
efficiency of these optimization strategies, including the extent and intensity that can be
affected and the changes in impacts over the course of a day.
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