Diurnal Variation Reveals the Characteristics and Influencing Factors of Cool Island Effects in Urban Blue-Green Spaces
<p>The geographic location of the study area. (<b>a</b>) The location of Beijing within China. (<b>b</b>) The elevations within the administrative boundaries of Beijing and the extent of the study area in Beijing. (<b>c</b>) The land use map of the study area.</p> "> Figure 2
<p>The schematic diagram for calculating BGCIs. (<b>a</b>) The buffer zone of vegetation, with dark green representing the maximum cooling range. (<b>b</b>) The LST–distance fitting curve.</p> "> Figure 3
<p>Spatial distribution of comprehensive cooling effect (CCE) at different time points.</p> "> Figure 4
<p>Diurnal variations of BGCI indicators. (<b>a</b>) Cooling distance (CD); (<b>b</b>) cooling intensity (CI); (<b>c</b>) cooling rate (CR); (<b>d</b>) cooling efficiency (CE); (<b>e</b>) cooling service (CS); (<b>f</b>) comprehensive cooling effect (CCE). The light gray background represents night, while the white background represents day. The boxes represent the 25th and 75th percentiles, the horizontal black lines in the boxes represent the median, and the forks represent averages.</p> "> Figure 5
<p>Temporal differences in CCE of vegetation (VEG) and water bodies (WAT). The darker blue represented a greater degree of differentiation, whereas the darker pink represented a greater degree of similarity.</p> "> Figure 6
<p>Coefficients of determination of landscape metrics on BGCIs indicators at different times.</p> "> Figure 7
<p>Relative influences of landscape metrics on BGCI indicators throughout the day. (<b>a</b>) Vegetation; (<b>b</b>) water bodies.</p> "> Figure 8
<p>Diurnal variations in the relative influences of 2D and 3D landscape metrics on BGCIs.</p> "> Figure 9
<p>Marginal effects of dominant landscape metrics on CCE.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Pre-Processing
2.2.1. LST Data
2.2.2. Blue-Green Spaces and Land Cover Data
2.2.3. Other Data
2.3. Methods
2.3.1. Quantifying the BGCI Effect
2.3.2. Calculation of 2D and 3D Landscape Metrics
2.3.3. Statistical Analysis Methods
3. Results
3.1. Diurnal Variation Characteristics of BGCIs
3.2. Overall Impacts of Landscape Metrics on BGCIs
3.3. Relative Influences and Marginal Effects of 2D and 3D Landscape Metrics
3.3.1. Relative Influences of Landscape Metrics
3.3.2. Marginal Effects of Dominant Metrics
4. Discussion
4.1. The Temporal Heterogeneity of BGCIs
4.2. The Influencing Factors of Diurnal Variation in BGCIs
4.3. Advantages and Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorolog. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Liao, W.; He, G.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Ma, W.; Huang, C.; et al. Anthropogenic Emissions and Urbanization Increase Risk of Compound Hot Extremes in Cities. Nat. Clim. Chang. 2021, 11, 1084–1089. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Tett, S.F.B.; Yan, Z.; Zhai, P.; Feng, J.; Xia, J. Anthropogenically-Driven Increases in the Risks of Summertime Compound Hot Extremes. Nat. Commun. 2020, 11, 528. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.; Mall, R.K. Urban Ecology and Human Health: Implications of Urban Heat Island, Air Pollution and Climate Change Nexus. In Urban Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 317–334. ISBN 978-0-12-820730-7. [Google Scholar]
- Ulpiani, G. On the Linkage between Urban Heat Island and Urban Pollution Island: Three-Decade Literature Review towards a Conceptual Framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef]
- Tian, L.; Lu, J.; Li, Y.; Bu, D.; Liao, Y.; Wang, J. Temporal Characteristics of Urban Heat Island and Its Response to Heat Waves and Energy Consumption in the Mountainous Chongqing, China. Sustain. Cities Soc. 2021, 75, 103260. [Google Scholar] [CrossRef]
- Santamouris, M. Recent Progress on Urban Overheating and Heat Island Research. Integrated Assessment of the Energy, Environmental, Vulnerability and Health Impact. Synergies with the Global Climate Change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Chen, B.; Xie, M.; Feng, Q.; Li, Z.; Chu, L.; Liu, Q. Heat Risk of Residents in Different Types of Communities from Urban Heat-Exposed Areas. Sci. Total Environ. 2021, 768, 145052. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N. Increasing Human-Perceived Heat Stress Risks Exacerbated by Urbanization in China: A Comparative Study Based on Multiple Metrics. Earth’s Future 2021, 9, e2020EF001848. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The Emergence of Heat and Humidity Too Severe for Human Tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Chen, Z. Heatwave and Mental Health. J. Environ. Manag. 2023, 332, 117385. [Google Scholar] [CrossRef]
- Lo, Y.T.E.; Mitchell, D.M.; Gasparrini, A.; Vicedo-Cabrera, A.M.; Ebi, K.L.; Frumhoff, P.C.; Millar, R.J.; Roberts, W.; Sera, F.; Sparrow, S.; et al. Increasing Mitigation Ambition to Meet the Paris Agreement’s Temperature Goal Avoids Substantial Heat-Related Mortality in U.S. Cities. Sci. Adv. 2019, 5, eaau4373. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, C.; Zhang, S.; Bai, Y.; Callaghan, M.; Chang, N.; Chen, B.; Chen, H.; Cheng, L.; Cui, X.; et al. The 2022 China Report of the Lancet Countdown on Health and Climate Change: Leveraging Climate Actions for Healthy Ageing. Lancet Public Health 2022, S2468266722002249. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-0-521-84950-0. [Google Scholar]
- Ouyang, Z.; Sciusco, P.; Jiao, T.; Feron, S.; Lei, C.; Li, F.; John, R.; Fan, P.; Li, X.; Williams, C.A.; et al. Albedo Changes Caused by Future Urbanization Contribute to Global Warming. Nat. Commun. 2022, 13, 3800. [Google Scholar] [CrossRef]
- Qiao, Z.; Lu, Y.; He, T.; Wu, F.; Xu, X.; Liu, L.; Wang, F.; Sun, Z.; Han, D. Spatial Expansion Paths of Urban Heat Islands in Chinese Cities: Analysis from a Dynamic Topological Perspective for the Improvement of Climate Resilience. Resour. Conserv. Recycl. 2023, 188, 106680. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, X.; Jia, G. Urbanization Magnified Nighttime Heat Waves in China. Geophys. Res. Lett. 2021, 48, e2021GL093603. [Google Scholar] [CrossRef]
- He, C.; Kim, H.; Hashizume, M.; Lee, W.; Honda, Y.; Kim, S.E.; Kinney, P.L.; Schneider, A.; Zhang, Y.; Zhu, Y.; et al. The Effects of Night-Time Warming on Mortality Burden under Future Climate Change Scenarios: A Modelling Study. Lancet Planet. Health 2022, 6, e648–e657. [Google Scholar] [CrossRef]
- Royé, D.; Sera, F.; Tobías, A.; Lowe, R.; Gasparrini, A.; Pascal, M.; de’Donato, F.; Nunes, B.; Teixeira, J.P. Effects of Hot Nights on Mortality in Southern Europe. Epidemiology 2021, 32, 487–498. [Google Scholar] [CrossRef]
- Sarangi, C.; Qian, Y.; Li, J.; Leung, L.R.; Chakraborty, T.C.; Liu, Y. Urbanization Amplifies Nighttime Heat Stress on Warmer Days Over the US. Geophys. Res. Lett. 2021, 48, e2021GL095678. [Google Scholar] [CrossRef]
- Huang, K.; Lee, X.; Stone, B.; Knievel, J.; Bell, M.L.; Seto, K.C. Persistent Increases in Nighttime Heat Stress from Urban Expansion Despite Heat Island Mitigation. JGR Atmos. 2021, 126, e2020JD033831. [Google Scholar] [CrossRef]
- Carvalho, D.; Martins, H.; Marta-Almeida, M.; Rocha, A.; Borrego, C. Urban Resilience to Future Urban Heat Waves under a Climate Change Scenario: A Case Study for Porto Urban Area (Portugal). Urban Clim. 2017, 19, 1–27. [Google Scholar] [CrossRef]
- Venter, Z.S.; Chakraborty, T.; Lee, X. Crowdsourced Air Temperatures Contrast Satellite Measures of the Urban Heat Island and Its Mechanisms. Sci. Adv. 2021, 7, eabb9569. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of Urban Green Patterns on Surface Urban Cool Islands and Its Seasonal Variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Martins, T.A.L.; Adolphe, L.; Bonhomme, M.; Bonneaud, F.; Faraut, S.; Ginestet, S.; Michel, C.; Guyard, W. Impact of Urban Cool Island Measures on Outdoor Climate and Pedestrian Comfort: Simulations for a New District of Toulouse, France. Sustain. Cities Soc. 2016, 26, 9–26. [Google Scholar] [CrossRef]
- Qian, W.; Li, X. A Cold Island Connectivity and Network Perspective to Mitigate the Urban Heat Island Effect. Sustain. Cities Soc. 2023, 94, 104525. [Google Scholar] [CrossRef]
- Tan, X.; Sun, X.; Huang, C.; Yuan, Y.; Hou, D. Comparison of Cooling Effect between Green Space and Water Body. Sustain. Cities Soc. 2021, 67, 102711. [Google Scholar] [CrossRef]
- Wu, W.; Guo, F.; Elze, S.; Knopp, J.; Banzhaf, E. Deciphering the Effects of 2D/3D Urban Morphology on Diurnal Cooling Efficiency of Urban Green Space. Build. Environ. 2024, 266, 112047. [Google Scholar] [CrossRef]
- Pan, H.; Luo, Y.; Zeng, L.; Shi, Y.; Hang, J.; Zhang, X.; Hua, J.; Zhao, B.; Gu, Z.; Buccolieri, R. Outdoor Thermal Environment Regulation of Urban Green and Blue Infrastructure on Various Types of Pedestrian Walkways. Atmosphere 2023, 14, 1037. [Google Scholar] [CrossRef]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of Vegetation and Building Geometry on the Spatial Variations of Air Temperature and Cooling Rates in a High-latitude City. Int. J. Climatol. 2016, 36, 2379–2395. [Google Scholar] [CrossRef]
- Yan, M.; Chen, L.; Leng, S.; Sun, R. Effects of Local Background Climate on Urban Vegetation Cooling and Humidification: Variations and Thresholds. Urban For. Urban Green. 2023, 80, 127840. [Google Scholar] [CrossRef]
- Jacobs, S.J.; Gallant, A.J.E.; Tapper, N.J.; Li, D. Use of Cool Roofs and Vegetation to Mitigate Urban Heat and Improve Human Thermal Stress in Melbourne, Australia. J. Appl. Meteorol. Clim. 2018, 57, 1747–1764. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The Role of One Large Greenspace in Mitigating London’s Nocturnal Urban Heat Island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Vaz Monteiro, M.; Doick, K.J.; Handley, P.; Peace, A. The Impact of Greenspace Size on the Extent of Local Nocturnal Air Temperature Cooling in London. Urban For. Urban Green. 2016, 16, 160–169. [Google Scholar] [CrossRef]
- Qian, F.; Hu, Y.; Wu, R.; Yan, H.; Wang, D.; Xiang, Z.; Zhao, K.; Han, Q.; Shao, F.; Bao, Z. Assessing the Spatial-Temporal Impacts of Underlying Surfaces on 3D Thermal Environment: A Field Study Based on UAV Vertical Measurements. Build. Environ. 2024, 265, 111985. [Google Scholar] [CrossRef]
- Ossola, A.; Jenerette, G.D.; McGrath, A.; Chow, W.; Hughes, L.; Leishman, M.R. Small Vegetated Patches Greatly Reduce Urban Surface Temperature during a Summer Heatwave in Adelaide, Australia. Landsc. Urban Plan. 2021, 209, 104046. [Google Scholar] [CrossRef]
- Galalizadeh, S.; Morrison-Saunders, A.; Horwitz, P.; Silberstein, R.; Blake, D. The Cooling Impact of Urban Greening: A Systematic Review of Methodologies and Data Sources. Urban For. Urban Green. 2024, 95, 128157. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring Diurnal Thermal Variations in Urban Local Climate Zones with ECOSTRESS Land Surface Temperature Data. Remote Sens. Environ. 2021, 263, 112544. [Google Scholar] [CrossRef]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef]
- Hulley, G.C.; Göttsche, F.M.; Rivera, G.; Hook, S.J.; Freepartner, R.J.; Martin, M.A.; Cawse-Nicholson, K.; Johnson, W.R. Validation and Quality Assessment of the ECOSTRESS Level-2 Land Surface Temperature and Emissivity Product. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–23. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.-Y.; Zuo, S.-D.; Song, X.-D.; Liao, Y.-L.; Xu, C.-D.; Chen, Q.; Hua, L.-Z.; Li, Z.-W. Quantifying the Influences of Various Ecological Factors on Land Surface Temperature of Urban Forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Nimish, G.; Bharath, H.A.; Lalitha, A. Exploring Temperature Indices by Deriving Relationship between Land Surface Temperature and Urban Landscape. Remote Sens. Appl. Soc. Environ. 2020, 18, 100299. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. A Quantitative Framework for Analysing Long Term Spatial Clustering and Vegetation Fragmentation in an Urban Landscape Using Multi-Temporal Landsat Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102057. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The Influence of Local Background Climate on the Dominant Factors and Threshold-Size of the Cooling Effect of Urban Parks. Sci. Total Environ. 2022, 823, 153806. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, Q.; Xu, Z.; Lyu, D.; Du, Y.; Qiao, R.; Wu, J. How to Effectively Mitigate Urban Heat Island Effect? A Perspective of Waterbody Patch Size Threshold. Landsc. Urban Plan. 2020, 202, 103873. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Jørgensen, G.; Vejre, H. How Can Urban Green Spaces Be Planned for Climate Adaptation in Subtropical Cities? Ecol. Indic. 2017, 82, 152–162. [Google Scholar] [CrossRef]
- Fan, H.; Yu, Z.; Yang, G.; Liu, T.Y.; Liu, T.Y.; Hung, C.H.; Vejre, H. How to Cool Hot-Humid (Asian) Cities with Urban Trees? An Optimal Landscape Size Perspective. Agric. For. Meteorol. 2019, 265, 338–348. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the Cool Island Intensity of Urban Parks Using ASTER and IKONOS Data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Chen, M.; Jia, W.; Yan, L.; Du, C.; Wang, K. Quantification and Mapping Cooling Effect and Its Accessibility of Urban Parks in an Extreme Heat Event in a Megacity. J. Clean. Prod. 2022, 334, 130252. [Google Scholar] [CrossRef]
- Xiao, X.D.; Dong, L.; Yan, H.; Yang, N.; Xiong, Y. The Influence of the Spatial Characteristics of Urban Green Space on the Urban Heat Island Effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Li, D.; Huang, G.; Chen, W.; Chen, S. Study on the Cooling Effects of Urban Parks on Surrounding Environments Using Landsat TM Data: A Case Study in Guangzhou, Southern China. Int. J. Remote Sens. 2012, 33, 5889–5914. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How Can Urban Water Bodies Be Designed for Climate Adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W. Optimizing Urban Greenspace Spatial Pattern to Mitigate Urban Heat Island Effects: Extending Understanding from Local to the City Scale. Urban For. Urban Green. 2019, 41, 255–263. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The Roles of Landscape Both inside the Park and the Surroundings in Park Cooling Effect. Sustain. Cities Soc. 2020, 52, 101864. [Google Scholar] [CrossRef]
- Ruiz, M.A.; Colli, M.F.; Martinez, C.F.; Correa-Cantaloube, E.N. Park Cool Island and Built Environment. A Ten-Year Evaluation in Parque Central, Mendoza-Argentina. Sustain. Cities Soc. 2022, 79, 103681. [Google Scholar] [CrossRef]
- Du, C.; Jia, W.; Chen, M.; Yan, L.; Wang, K. How Can Urban Parks Be Planned to Maximize Cooling Effect in Hot Extremes? Linking Maximum and Accumulative Perspectives. J. Environ. Manag. 2022, 317, 115346. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, L.; Wu, C.; Zhang, Z.; Zhang, Z.; Lin, X.; Li, X.; Hu, Y.; Ge, H. Spatialized Importance of Key Factors Affecting Park Cooling Intensity Based on the Park Scale. Sustain. Cities Soc. 2023, 99, 104952. [Google Scholar] [CrossRef]
- Yang, F.; Yang, D.; Zhang, Y.; Guo, R.; Li, J.; Wang, H. Evaluating the Multi-Seasonal Impacts of Urban Blue-Green Space Combination Models on Cooling and Carbon-Saving Capacities. Build. Environ. 2024, 266, 112045. [Google Scholar] [CrossRef]
- Han, D.; Xu, X.; Qiao, Z.; Wang, F.; Cai, H.; An, H.; Jia, K.; Liu, Y.; Sun, Z.; Wang, S.; et al. The Roles of Surrounding 2D/3D Landscapes in Park Cooling Effect: Analysis from Extreme Hot and Normal Weather Perspectives. Build. Environ. 2023, 231, 110053. [Google Scholar] [CrossRef]
- Wu, W.-B.; Yu, Z.-W.; Ma, J.; Zhao, B. Quantifying the Influence of 2D and 3D Urban Morphology on the Thermal Environment across Climatic Zones. Landsc. Urban Plan 2022, 226, 104499. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Hu, Y.; Li, S.; Kong, R.; Zhang, Z. Quantifying the Effects of 2D/3D Urban Landscape Patterns on Land Surface Temperature: A Perspective from Cities of Different Sizes. Build. Environ. 2023, 233, 110085. [Google Scholar] [CrossRef]
- Qiao, Z.; Jia, R.; Liu, J.; Gao, H.; Wei, Q. Remote Sensing-Based Analysis of Urban Heat Island Driving Factors: A Local Climate Zone Perspective. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 1–12. [Google Scholar] [CrossRef]
- Han, D.; An, H.; Wang, F.; Xu, X.; Qiao, Z.; Wang, M.; Sui, X.; Liang, S.; Hou, X.; Cai, H.; et al. Understanding Seasonal Contributions of Urban Morphology to Thermal Environment Based on Boosted Regression Tree Approach. Build. Environ. 2022, 226, 109770. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Xu, D.; Rogora, A. Correlation between Cooling Effect of Green Space and Surrounding Urban Spatial Form: Evidence from 36 Urban Green Spaces. Build. Environ. 2022, 222, 109375. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Y.; Liang, T.C.; Weng, Q.; Yoo, C.; Chen, W.; Ding, X. Multiscale Estimation of the Cooling Effect of Urban Greenspace in Subtropical and Tropical Cities. Urban For. Urban Green. 2024, 98, 128390. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Cai, X.; Liu, S.; Lai, W.; Chang, Y.; Qi, J.; Zhu, G.; Zhang, C.; Liu, Y. Quantifying Urban Spatial Morphology Indicators on the Green Areas Cooling Effect: The Case of Changsha, China, a Subtropical City. Land 2024, 13, 757. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, D.; Hong, T.; Ma, J. Temporal and Spatial Characteristics of the Urban Heat Island in Beijing and the Impact on Building Design and Energy Performance. Energy 2017, 130, 286–297. [Google Scholar] [CrossRef]
- Qiao, Z.; Chen, J.-Y.; Wang, N.; Lu, Y.-S.; He, T.; Sun, Z.-Y.; Xu, X.-L.; Yang, H.; Li, Y.; Wang, F. Spatial Network of Urban Heat Environment in Beijing-Tianjin-Hebei Urban Agglomeration Based on MSPA and Circuit Theory. Huan Jing Ke Xue 2023, 44, 3034–3042. [Google Scholar] [CrossRef]
- Song, C.; Yu, Q.; Xing, S.; Wu, Z.; Su, Y.; Ren, Z.; Liu, Y.S. Climate Effects on NDVI Change of Upland Meadow in Dahaituo Nature Reserve over 30 Years. Acta Ecol. Sin. 2018, 38, 2547–2556. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Mapping and Classifying Green Infrastructure Typologies for Climate-Related Studies Based on Remote Sensing Data. Urban For. Urban Green. 2019, 37, 154–167. [Google Scholar] [CrossRef]
- Han-qiu, X. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). Natl. Remote Sens. Bull. 2005, 5, 589–595. [Google Scholar] [CrossRef]
- Li, K.; Li, C.; Liu, M.; Hu, Y.; Wang, H.; Wu, W. Multiscale Analysis of the Effects of Urban Green Infrastructure Landscape Patterns on PM2.5 Concentrations in an Area of Rapid Urbanization. J. Clean. Prod. 2021, 325, 129324. [Google Scholar] [CrossRef]
- Yang, G.; Yu, Z.; Jørgensen, G.; Vejre, H. How Can Urban Blue-Green Space Be Planned for Climate Adaption in High-Latitude Cities? A Seasonal Perspective. Sustain. Cities Soc. 2020, 53, 101932. [Google Scholar] [CrossRef]
- Liu, M.; Ma, J.; Zhou, R.; Li, C.; Li, D.; Hu, Y. High-Resolution Mapping of Mainland China’s Urban Floor Area. Landsc. Urban Plan. 2021, 214, 104187. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Nieves, J.J.; Sorichetta, A.; Linard, C.; Bondarenko, M.; Steele, J.E.; Stevens, F.R.; Gaughan, A.E.; Carioli, A.; Clarke, D.J.; Esch, T.; et al. Annually Modelling Built-Settlements between Remotely-Sensed Observations Using Relative Changes in Subnational Populations and Lights at Night. Comput. Environ. Urban Syst. 2020, 80, 101444. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to quantify the cooling effect of urban parks? linking maximum and accumulation perspectives. Remote Sens. Environ. 2021, 252, 112135. [Google Scholar] [CrossRef]
- Xiao, Y.; Piao, Y.; Pan, C.; Lee, D.; Zhao, B. Using Buffer Analysis to Determine Urban Park Cooling Intensity: Five Estimation Methods for Nanjing, China. Sci. Total Environ. 2023, 868, 161463. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in Land Surface Temperature and Cooling Efficiency of Green Space in Rapid Urbanization: The Case of Fuzhou City, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Qiao, Z.; He, T.; Wang, N.; Wu, F.; Chen, J.; Xu, X.; Liu, L.; Zhang, Q. How Do Natural Factor and Human Activity Affect Urban Land Surface Heat Environment in China? Ecosyst. Health Sustain. 2023, 9, 0126. [Google Scholar] [CrossRef]
- He, T.; Wang, N.; Tong, Y.; Wu, F.; Xu, X.; Liu, L.; Chen, J.; Lu, Y.; Sun, Z.; Han, D.; et al. Anthropogenic Activities Change Population Heat Exposure Much More than Natural Factors and Land Use Change: An Analysis of 2020−2100 under SSP-RCP Scenarios in Chinese Cities. Sustain. Cities Soc. 2023, 96, 104699. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Song, J.; Zhong, Q.; Myint, S.W.; Zeng, P.; Che, Y. Cooling Wisdom of ‘Water Towns’: How Urban River Networks Can Shape City Climate? Remote Sens. Environ. 2024, 300, 113925. [Google Scholar] [CrossRef]
- Cao, B.; Chen, Q.; Du, M.; Cheng, Q.; Li, Y.; Liu, R. Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment. Water-Sui 2022, 14, 3091. [Google Scholar] [CrossRef]
- Leng, S.; Sun, R.; Yan, M.; Chen, L. Prevalent Underestimation of Tree Cooling Efficiency Attributed to Urban Intrinsic Heterogeneity. Sustain. Cities Soc. 2024, 103, 105277. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Wang, F.; Qiao, Z.; An, H.; Han, D.; Luo, J. Exploring the Cooling Effect of Urban Parks Based on the ECOSTRESS Land Surface Temperature. Front. Ecol. Evol. 2022, 10, 1031517. [Google Scholar] [CrossRef]
- Alkama, R.; Forzieri, G.; Duveiller, G.; Grassi, G.; Liang, S.; Cescatti, A. Vegetation-Based Climate Mitigation in a Warmer and Greener World. Nat. Commun. 2022, 13, 606. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Comparing the Transpirational and Shading Effects of Two Contrasting Urban Tree Species. Urban Ecosyst 2019, 22, 683–697. [Google Scholar] [CrossRef]
- Rahman, M.A.; Stratopoulos, L.M.F.; Moser-Reischl, A.; Zölch, T.; Häberle, K.-H.; Rötzer, T.; Pretzsch, H.; Pauleit, S. Traits of Trees for Cooling Urban Heat Islands: A Meta-Analysis. Build. Environ. 2020, 170, 106606. [Google Scholar] [CrossRef]
- Tukiran, J. Cooling Effects of Two Types of Tree Canopy Shape in Penang, Malaysia. Int. J. Geomate 2016, 11, 2275–2283. [Google Scholar] [CrossRef]
- Bai, Y.; Gaofeng, Z.; Kun, Z.; Ting, M. Research of transpiration and evapotranspiration from a grapevine canopy combining the sap flow and eddy covariance techniques. Acta Ecol. Sin. 2015, 35, 7821–7831. [Google Scholar] [CrossRef]
- Wang, X.; Kong, F.; Yin, H.; Xu, H.; LI, J.; Pu, Y. Characteristics of Vegetation Shading and Transpiration Cooling Effects during Hot Summer. Acta Ecol. Sin. 2018, 38, 4234–4244. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, H.; Lu, Y.; Yang, X.; Zhou, X.; An, J.; Yan, D.; Jin, X.; Shi, X. A Novel Approach to Examining the Optimal Use of the Cooling Effect of Water Bodies in Urban Planning. Build. Environ. 2023, 243, 110673. [Google Scholar] [CrossRef]
- Hathway, E.A.; Sharples, S. The Interaction of Rivers and Urban Form in Mitigating the Urban Heat Island Effect: A UK Case Study. Build. Environ. 2012, 58, 14–22. [Google Scholar] [CrossRef]
- Du, J.; Jiang, S.; Cui, B.; Wu, G.; Liu, H. Observation-Based Evaluation of Local Climate Effect of Terrestrial Vegetation in Temperate Zones. JGR Atmos. 2022, 127, e2021JD036313. [Google Scholar] [CrossRef]
- Cruz, J.A.; Blanco, A.C.; Garcia, J.J.; Santos, J.A.; Moscoso, A.D. Evaluation of the Cooling Effect of Green and Blue Spaces on Urban Microclimate through Numerical Simulation: A Case Study of Iloilo River Esplanade, Philippines. Sustain. Cities Soc. 2021, 74, 103184. [Google Scholar] [CrossRef]
- Xue, Z. Quantifying the Cooling-Effects of Urban and Peri-Urban Wetlands Using Remote Sensing Data: Case Study of Cities of Northeast China. Landsc. Urban Plan. 2019, 182, 92–100. [Google Scholar] [CrossRef]
- Liao, W.; Guldmann, J.-M.; Hu, L.; Cao, Q.; Gan, D.; Li, X. Linking Urban Park Cool Island Effects to the Landscape Patterns inside and Outside the Park: A Simultaneous Equation Modeling Approach. Landsc. Urban Plan. 2023, 232, 104681. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.; Chen, M. Do Water Bodies Play an Important Role in the Relationship between Urban Form and Land Surface Temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Dang, X.; Sun, D.; Hu, F.; Mu, H. Separate and Combined Effects of 3D Building Features and Urban Green Space on Land Surface Temperature. J Env. Manag. 2021, 295, 113116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Ning, Z.; Xu, C.; Zhao, X.; Huang, X. How Do Driving Factors Affect the Diurnal Variation of Land Surface Temperature across Different Urban Functional Blocks? A Case Study of Xi’an, China. Sustain. Cities Soc. 2024, 114, 105738. [Google Scholar] [CrossRef]
- Sun, R.; Chen, A.; Chen, L.; Lü, Y. Cooling Effects of Wetlands in an Urban Region: The Case of Beijing. Ecol. Indic. 2012, 20, 57–64. [Google Scholar] [CrossRef]
- Huang, M.; Cui, P.; He, X. Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef]
- Kong, F.; Yin, H.; James, P.; Hutyra, L.R.; He, H.S. Effects of Spatial Pattern of Greenspace on Urban Cooling in a Large Metropolitan Area of Eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Dong, Y.; Zhang, P.; Guo, Y.; Wang, W.; Bao, G. Efficient Cooling of Cities at Global Scale Using Urban Green Space to Mitigate Urban Heat Island Effects in Different Climatic Regions. Urban For. Urban Green. 2022, 74, 127635. [Google Scholar] [CrossRef]
- Qiu, X.; Kil, S.-H.; Jo, H.-K.; Park, C.; Song, W.; Choi, Y.E. Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China. Int. J. Environ. Res. Public Health 2023, 20, 2613. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, W.; Sun, J.; Xu, X.; Wang, R.; Lu, Y.; Zhang, S.; Zhou, W. Assessing the Effects of 2D/3D Urban Morphology on the 3D Urban Thermal Environment by Using Multi-Source Remote Sensing Data and UAV Measurements: A Case Study of the Snow-Climate City of Changchun, China. J. Clean. Prod. 2021, 321, 128956. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the Effects of 3D Urban Morphology on the Surface Urban Heat Island Effect in Urban Functional Zones by Using High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central China. Isprs J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, Q.; Liu, Y.; Wang, R. The Effects of 2D and 3D Building Morphology on Urban Environments: A Multi-Scale Analysis in the Beijing Metropolitan Region. Build. Environ. 2021, 192, 107635. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, W.; Qian, Y.; Zheng, Z.; Yan, J. The Effect of Urban 2D and 3D Morphology on Air Temperature in Residential Neighborhoods. Landsc. Ecol. 2019, 34, 1161–1178. [Google Scholar] [CrossRef]
- Kim, J.-J.; Kim, D.-Y. Effects of a Building’s Density on Flow in Urban Areas. Adv. Atmos. Sci. 2009, 26, 45–56. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E.; An, X.; Ren, C.; Lee, M.; Wang, U.; He, Z. Sky View Factor Analysis of Street Canyons and Its Implications for Daytime Intra-urban Air Temperature Differentials in High-rise, High-density Urban Areas of Hong Kong: A GIS-based Simulation Approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
- Yang, J.; Jin, S.; Xiao, X.; Jin, C.; Xia, J.C.; Li, X.; Wang, S. Local Climate Zone Ventilation and Urban Land Surface Temperatures: Towards a Performance-Based and Wind-Sensitive Planning Proposal in Megacities. Sustain. Cities Soc. 2019, 47, 101487. [Google Scholar] [CrossRef]
- Han, D.; Yang, X.; Cai, H.; Xu, X. Impacts of Neighboring Buildings on the Cold Island Effect of Central Parks: A Case Study of Beijing, China. Sustainability 2020, 12, 9499. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, T.; Wang, Z.; Gao, M.; Shen, H. Quantifying 3D Building Form Effects on Urban Land Surface Temperature and Modeling Seasonal Correlation Patterns. Build. Environ. 2021, 204, 108132. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Wind-Sensitive Urban Planning and Design: Precinct Ventilation Performance and Its Potential for Local Warming Mitigation in an Open Midrise Gridiron Precinct. J. Build. Eng. 2020, 29, 101145. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, T.; Yang, G.; Sun, R.; Xie, W.; Vejre, H. Quantifying Seasonal and Diurnal Contributions of Urban Landscapes to Heat Energy Dynamics. Appl. Energy 2020, 264, 114724. [Google Scholar] [CrossRef]
- Murakawa, S.; Sekine, T.; Narita, K.; Nishina, D. Study of the Effects of a River on the Thermal Environment in an Urban Area. Energy Build. 1991, 16, 993–1001. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong Contributions of Local Background Climate to Urban Heat Islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Qiao, Z.; Wang, N.; Chen, J.; He, T.; Xu, X.; Liu, L.; Sun, Z.; Han, D. Urbanization Accelerates Urban Warming by Changing Wind Speed: Evidence from China Based on 2421 Meteorological Stations from 1978 to 2017. Environ. Impact Assess. Rev. 2023, 102, 107189. [Google Scholar] [CrossRef]
- Niza, I.L.; Bueno, A.M.; Gameiro da Silva, M.; Broday, E.E. Air Quality and Ventilation: Exploring Solutions for Healthy and Sustainable Urban Environments in Times of Climate Change. Results Eng. 2024, 24, 103157. [Google Scholar] [CrossRef]
- Schultz, N.M.; Lawrence, P.J.; Lee, X. Global Satellite Data Highlights the Diurnal Asymmetry of the Surface Temperature Response to Deforestation. J. Geophys. Res. Biogeosci. 2017, 122, 903–917. [Google Scholar] [CrossRef]
- Meier, R.; Davin, E.L.; Swenson, S.C.; Lawrence, D.M.; Schwaab, J. Biomass Heat Storage Dampens Diurnal Temperature Variations in Forests. Environ. Res. Lett. 2019, 14, 084026. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical Review on the Cooling Effect of Urban Blue-Green Space: A Threshold-Size Perspective. Urban For. Urban Gree. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The Win-Win Interaction between Integrated Blue and Green Space on Urban Cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef]
ECOSTRESS Acquisition Time (Beijing Time) | LST Range | Average LST | Atmospheric Temperature (°C) | Relative Humidity (%) | Wind Direction | Wind Speed (m/s) |
---|---|---|---|---|---|---|
01:19 on 04 September | 10.0–22.7 °C | 17.0 °C | 17.2 °C | 79% | North–northeast | Soft wind (1 m/s) |
02:37 on 19 July | 8.5–24.9 °C | 20.2 °C | 22.3 °C | 90% | Northeastern | Soft wind (1 m/s) |
04:11 on 15 July | 18.1–26.2 °C | 21.7 °C | 22.3 °C | 92% | Windless | Windless |
07:20 on 07 July | 19.7–30.9 °C | 24.4 °C | 26.5 °C | 56% | North | Light wind (3 m/s) |
10:42 on 11 August | 28.5–51.1 °C | 38.5 °C | 31.8 °C | 49% | North | Light wind (2 m/s) |
13:49 on 03 August | 27.4–59.5 °C | 45.2 °C | 36.5 °C | 35% | West–southwest | Light wind (2 m/s) |
14:13 on 02 June | 24.9–52.0 °C | 40.4 °C | 31.2 °C | 32% | South | Light wind (3 m/s) |
18:45 on 07 August | 15.5–35.3 °C | 28.1 °C | 29.9 °C | 51% | East–southeast | Light wind (2 m/s) |
22:32 on 27 September | 10.4–20.5 °C | 16.83 °C | 20.2 °C | 72% | South | Light wind (2 m/s) |
BGCI Indicator | Abbreviation | Formula | Description |
---|---|---|---|
Cooling distance | CD | The furthest distance that BGCIs can reach; unit: m. | |
Cooling intensity | CI | The maximum LST reduction that can be achieved; unit: °C. | |
Cooling rate/gradient | CR | Used to indicate the speed of cooling; unit: °C/m. | |
Cooling efficiency | CE | The area of cooling per unit area of blue-green space. It indicates whether BGCIs are economical and effective; unit: none. | |
Cooling service | CS | The maximum service degree of BGCIs; unit: °C ha. | |
Comprehensive cooling effect | CCE | An indicator to quantify BGCIs in an integrated manner; unit: none. |
Types | Subcategory | Indicator | Abbreviations | Descriptions |
---|---|---|---|---|
2D | Feature | Patch area | AREA | The area of the patch; unit: ha. |
Landscape shape index | LSI | Assessing the complexity of the shape of vegetation or water bodies; unit: none. | ||
Sur_ISs | Percent of landscape | PLAND | The proportion of area occupied by various land types; unit: %. | |
Landscape shape index | LSI | Assessing the complexity of the shape of certain types of patches; unit: none. | ||
Largest path index | LPI | The ratio of the maximum patch area to landscape area, to determine the dominant patch type in the landscape; unit: %. | ||
Edge density | ED | The ratio of the sum of the lengths of all edge segments of a given type of patch to the area of the landscape, assessing the density of edges in the landscape; unit: m/ha. | ||
Aggregation index | AI | To assess the degree of aggregation of different types of patches in the landscape, in terms of distance, number, and area of neighboring patches of the same type; unit: none. | ||
Connectance Index | NECT | To assess the degree of connectivity between patches, reflecting the spatial connectivity between patches of the same land category; unit: none. | ||
Number of patches | NP | The number of landscape patches in each category; unit: pcs. | ||
Patch density | PD | The density of patches of a given land category in the landscape. It reflects the degree of fragmentation; unit: #/100 ha. | ||
Sur_VEG | Same as Sur_ISs | |||
Sur_WAT | Same as Sur_ISs | |||
Sur_PEP | Population | PEP | The number of populations. | |
3D | 3D metrics | Building coverage ratio | BCR | The extent of building coverage in the study area can be calculated as the ratio of the roof area of the building to the total statistical area; unit: %. |
Building height | BH | The height of buildings; unit: m. | ||
Building volume | BV | The volume of buildings; unit: m3. | ||
Floor area ratio | FAR | The ratio of the sum of the gross floor area to the statistical unit area. It reflects the extent to which the building is utilized on the statistical unit area; unit: %. | ||
Architecture height standard | AHSD | The extent of change in building heights in the region; unit: m. | ||
Tree height | TH | The tree height of the vegetation; unit: m. | ||
Tree height of the surrounding area | Sur_TH | The tree height of surroundings; unit: m. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, R.; Chu, Y.; Hu, Y.; Zhang, H.; Wang, Q.; Li, C. Diurnal Variation Reveals the Characteristics and Influencing Factors of Cool Island Effects in Urban Blue-Green Spaces. Forests 2024, 15, 2115. https://doi.org/10.3390/f15122115
Kong R, Chu Y, Hu Y, Zhang H, Wang Q, Li C. Diurnal Variation Reveals the Characteristics and Influencing Factors of Cool Island Effects in Urban Blue-Green Spaces. Forests. 2024; 15(12):2115. https://doi.org/10.3390/f15122115
Chicago/Turabian StyleKong, Ruixue, Yaqi Chu, Yuanman Hu, Huanxue Zhang, Qiuyue Wang, and Chunlin Li. 2024. "Diurnal Variation Reveals the Characteristics and Influencing Factors of Cool Island Effects in Urban Blue-Green Spaces" Forests 15, no. 12: 2115. https://doi.org/10.3390/f15122115
APA StyleKong, R., Chu, Y., Hu, Y., Zhang, H., Wang, Q., & Li, C. (2024). Diurnal Variation Reveals the Characteristics and Influencing Factors of Cool Island Effects in Urban Blue-Green Spaces. Forests, 15(12), 2115. https://doi.org/10.3390/f15122115