Forest Tree Species Diversity Mapping Using ICESat-2/ATLAS with GF-1/PMS Imagery
<p>Location of the study area and distribution of tree species diversity sample plots.</p> "> Figure 2
<p>Distribution of ICESat-2/ATLAS light spots covering the study area obtained in this study.</p> "> Figure 3
<p>Variable correlation matrix of spectral variation feature variable set after correlation processing.</p> "> Figure 4
<p>Scatter plot of Shannon–Wiener and Simpson diversity indices in the sample area.</p> "> Figure 5
<p>Spatial interpolation results of ICESat-2 light-spot vertical structure variation characteristics in 4 study areas: (<b>a</b>) Standard deviation of percentile canopy height, (<b>b</b>) variance of percentile canopy height, (<b>c</b>) mean percentile canopy height, and (<b>d</b>) coefficient of variation of (<b>a</b>) standard deviation of percentile canopy height, (<b>b</b>) variance of percentile canopy height, (<b>c</b>) mean percentile canopy height, and (<b>d</b>) coefficient of variation of percentile canopy height.</p> "> Figure 5 Cont.
<p>Spatial interpolation results of ICESat-2 light-spot vertical structure variation characteristics in 4 study areas: (<b>a</b>) Standard deviation of percentile canopy height, (<b>b</b>) variance of percentile canopy height, (<b>c</b>) mean percentile canopy height, and (<b>d</b>) coefficient of variation of (<b>a</b>) standard deviation of percentile canopy height, (<b>b</b>) variance of percentile canopy height, (<b>c</b>) mean percentile canopy height, and (<b>d</b>) coefficient of variation of percentile canopy height.</p> "> Figure 6
<p>Three types of remote sensing feature preferences (GF-1, ICESat-2, and ICESat-2 + GF-1) for the tree species diversity model based on the RF-RFE algorithm. (<b>a</b>) The number of variables selected for the Shannon diversity model; (<b>b</b>) The number of variables selected for the Simpson diversity model; (<b>c</b>) The number of variables selected for the richness model.</p> "> Figure 7
<p>Ranking of feature importance for tree species diversity models based on different remote sensing data. (<b>a</b>) Feature importance ranking for the Shannon diversity model; (<b>b</b>) Feature importance ranking for the Simpson diversity model; (<b>c</b>) Feature importance ranking for the richness model.</p> "> Figure 8
<p>Scatter plots of estimated versus observed tree diversity indices were obtained using the horizontal spectral variance (GF-1/PMS), the vertical structural variance (ICESat-2/ATLAS), and the synergistic feature combining the horizontal spectral variance with the vertical structural variance (ICESat-2 + GF-1) modeled under leave-one-out cross-validation. (<b>a</b>) Performance of the Shannon diversity model; (<b>b</b>) Performance of the Simpson diversity model; (<b>c</b>) Performance of the richness model.</p> "> Figure 8 Cont.
<p>Scatter plots of estimated versus observed tree diversity indices were obtained using the horizontal spectral variance (GF-1/PMS), the vertical structural variance (ICESat-2/ATLAS), and the synergistic feature combining the horizontal spectral variance with the vertical structural variance (ICESat-2 + GF-1) modeled under leave-one-out cross-validation. (<b>a</b>) Performance of the Shannon diversity model; (<b>b</b>) Performance of the Simpson diversity model; (<b>c</b>) Performance of the richness model.</p> "> Figure 9
<p>Distribution of inversion results of forest species diversity in the study area. (<b>a</b>) Predicted distribution of tree species Shannon diversity; (<b>b</b>) Predicted distribution of tree species Simpson diversity; (<b>c</b>) Predicted distribution of tree species richness. (<b>a</b>) Predicted distribution of tree species Shannon diversity; (<b>b</b>) Predicted distribution of tree species Simpson diversity; (<b>c</b>) Predicted distribution of tree species richness.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Site Survey and Quantification of Tree Species Diversity
2.3. GF-1/PMS Data Remote Sensing Datasets and Preprocessing
2.3.1. ICESat-2/ATLAS Dataset
2.3.2. GF-1/PMS Dataset
2.4. Two-Dimensional Remote Sensing Variation Feature Construction Method for Tree Species Diversity Modeling
2.4.1. Horizontal Remote Sensing Variation Feature Construction
2.4.2. Vertical Remote Sensing Variation Feature Construction
2.4.3. Variance Function and Kriging Interpolation
2.5. Feature Preference and Importance Ranking
2.6. GBRT Regression Modeling
2.7. Model Performance Evaluation
3. Results and Analysis
3.1. Results of Data Analysis of Tree Species Diversity Sample Plots
3.2. Interpolation Results of Vertical Structural Variation Features
3.3. Results of Remote Sensing Modeling Feature Preferences for Tree Species Diversity
3.4. Ranking the Importance of Tree Species Diversity Remote Sensing Modeling Features
3.5. Optimization Results of GBRT Model Parameters
3.6. Model Performance for Remote Sensing Estimation of Tree Species Diversity
3.7. Predictive Mapping of Forest Species Diversity in the Study Area
4. Discussion
4.1. Analysis of the Contribution of Horizontal and Vertical Remote Sensing Variables in Modeling Tree Species Diversity
4.2. Performance of ICESat-2/ATLAS and GF-1/PMS Data in Tree Species Diversity Estimation
4.3. Effect of Synergistic Methods on the Accuracy of Inversion of Tree Diversity Indices
4.4. Analysis of the Potential of ICESat-2/ATLAS in Forest Tree Species Diversity Mapping
4.5. Spatial Patterns of Tree Species Diversity in the Study Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiao, X.T.; Lamy, T.; Wang, S.P.; Hautier, Y.; Geng, Y.; White, H.J.; Zhang, N.L.; Zhang, Z.H.; Zhang, C.Y.; Zhao, X.H.; et al. Latitudinal patterns of forest ecosystem stability across spatial scales as affected by biodiversity and environmental heterogeneity. Glob. Chang. Biol. 2023, 29, 2242–2255. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, Z.H.; Shi, G.X.; Su, H.Y.; Qin, R.M.; Chang, T.; Wei, J.J.; Zhou, C.Y.; Hu, X.; Shao, X.Q.; et al. Warming changed the relationship between species diversity and primary productivity of alpine meadow on the Tibetan Plateau. Ecol. Indic. 2022, 145, 109691. [Google Scholar] [CrossRef]
- Liu, D.; Wang, T.; Penuelas, J.; Piao, S.L. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. 2022, 15, 800–804. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Shu, Q.S. Research progress on the application of remote sensing technology in forest tree species diversity mon itoring. World For. Res. 2022, 35, 33–39. [Google Scholar]
- Ganivet, E.; Bloomberg, M. Towards rapid assessments of tree species diversity and structure in fragmented tropical forests: A review of perspectives offered by remotely-sensed and field-based data. For. Ecol. Manag. 2019, 432, 40–53. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 2019, 231, 111218–111232. [Google Scholar] [CrossRef]
- Reddy, C.S.; Kurian, A.; Srivastava, G.; Singhal, J.; Varghese, A.O.; Padalia, H.; Ayyappan, N.; Rajashekar, G.; Jha, C.S.; Rao, P.V.N. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: Technological advancement and potentials. Biodivers. Conserv. 2020, 30, 1–14. [Google Scholar] [CrossRef]
- Palmer, M.W.; Earls, P.G.; Hoagland, B.W.; White, P.S.; Wohlgemuth, T. Quantitative tools for perfecting species lists. Env. Off. J. Int. Env. Soc. 2002, 13, 121–137. [Google Scholar] [CrossRef]
- Mohammadi, J.; Shataee, S. Possibility investigation of tree diversity mapping using Landsat ETM plus data in the Hyrcanian forests of Iran. Remote Sens. Environ. 2010, 114, 1504–1512. [Google Scholar] [CrossRef]
- Mohammadi, J.; Shataee, S. Remote sensing of species diversity using Landsat 8 spectral variables. ISPRS J. Photogramm. 2017, 133, 116–127. [Google Scholar]
- Mallinis, G.; Chrysafis, I.; Korakis, G.; Pana, E.; Kyriazopoulos, A.P. A random forest modeling procedure for a multi-sensor assessment of tree species diversity. Remote Sens. 2020, 12, 1210. [Google Scholar] [CrossRef] [Green Version]
- Torresani, M.; Rocchini, D.; Sonnenschein, R.; Zebisch, M.; Hauffe, H.C.; Heym, M.; Pretzsch, H.; Tonon, G. Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data. Ecol. Indic. 2020, 117, 106520–106528. [Google Scholar] [CrossRef]
- Listopad, C.M.C.S.; Masters, R.E.; Drake, J.; Weishampel, J.; Branquinho, C. Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecol. Indic. 2015, 57, 68–279. [Google Scholar] [CrossRef]
- Schall, P.; Schulze, E.D.; Fischer, M.; Ayasse, M.; Ammer, C. Relations between forest management, stand structure and productivity across different types of Central European forests. Basic Appl. Ecol. 2018, 32, 39–52. [Google Scholar] [CrossRef]
- Gui, X.J.; Lian, J.Y.; Zhang, R.Y.; Li, Y.P.; Shen, H.; Ni, Y.L.; Ye, W.H. Vertical structure of southern subtropical evergreen broad-leaved forest community and its species diversity characteristics in Dinghu Mountain. Biodiversity 2019, 27, 619–629. [Google Scholar]
- Lou, Y.K.; Fan, Y.; Dai, Q.L.; Wang, Z.Y.; Ku, W.P.; Zhao, M.S.; Yu, S.Q. Relationship between the vertical structure of evergreen deciduous broadleaf forest community and the overall species diversity of the community in Tianmu Mountain, China. J. Ecol. 2021, 41, 8568–8577. [Google Scholar]
- Guo, X.; Coops, N.C.; Tompalski, P.; Nielsen, S.E.; Bater, C.W.; Stadt, J.J. Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecol. Inform. 2017, 38, 50–61. [Google Scholar] [CrossRef]
- Tamburlin, D.; Torresani, M.; Tomelleri, E.; Tonon, G.; Rocchini, D. Testing the Height Variation Hypothesis with the R rasterdiv Package for tree species diversity estimation. Remote Sens. 2021, 13, 3569. [Google Scholar] [CrossRef]
- Hakkenberg, C.R.; Zhu, K.; Peet, R.K.; Song, C. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Ecology 2018, 99, 474–487. [Google Scholar] [CrossRef]
- Hernandez-Stefanoni, J.L.; Dupuy, J.M.; Johnson, K.D.; Birdsey, R.; Tun-Dzul, F.; Peduzzi, A.; Caamal-Sosa, J.P.; Sanchez-Santos, G.; Lopez-Merlin, D. Improving species diversity and biomass estimates of tropical dry forests using airborne LiDAR. Remote Sens. 2014, 6, 4741–4763. [Google Scholar] [CrossRef] [Green Version]
- Leutner, B.F.; Reineking, B.; Muller, J.; Bachmann, M.; Beierkuhnlein, C.; Dech, S.; Wegmann, M. Modelling forest alpha-diversity and floristic composition—On the added value of Lidar plus hyperspectral remote sensing. Remote Sens. 2012, 4, 2818–2845. [Google Scholar] [CrossRef] [Green Version]
- Van Ewijk, K.Y.; Randin, C.F.; Treitz, P.M.; Scott, N.A. Predicting fine-scale tree species abundance patterns using biotic variables derived from LiDAR and high spatial resolution imagery. Remote Sens. Environ. 2014, 150, 120–131. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.F.; Ao, Z.R.; Lao, D.Z.; Xin, Q.C. Deep Learning Approaches for the Mapping of Tree Species Diversity in a Tropical Wetland Using Airborne LiDAR and High-Spatial-Resolution Remote Sensing Images. Forests 2019, 10, 1047. [Google Scholar] [CrossRef] [Green Version]
- George-Chacon, S.P.; Manuel Dupuy, J.; Peduzzi, A.; Luis Hernandez-Stefanoni, J. Combining high resolution satellite imagery and lidar data to model woody species diversity of tropical dry forests. Ecol. Indic. 2019, 101, 975–984. [Google Scholar] [CrossRef]
- Simonson, W.D.; Allen, H.D.; Coomes, D.A. Use of an Airborne Lidar System to Model Plant Species Composition and Diversity of Mediterranean Oak Forests. Conserv. Biol. 2012, 26, 840–850. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Sun, W.K. Seasonal cycles of high mountain asia glacier surface elevation detected by ICESat-2. J. Geophys. Res. Atmos. 2022, 127, e2022JD037501. [Google Scholar] [CrossRef]
- Li, B.; Fan, G.P.; Zhao, T.Z.; Deng, Z.; Yu, Y.H. Retrieval of DTM under Complex Forest Stand Based on Spaceborne LiDAR Fusion Photon Correction. Remote Sens. 2022, 14, 218. [Google Scholar] [CrossRef]
- Hsu, H.J.; Huang, C.Y.; Jasinski, M.; Li, Y.; Gao, H.L.; Yamanokuchi, T.; Wang, C.G.; Chang, T.M.; Ren, H.; Kuo, C.Y. A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea. ISPRS J. Photogramm. 2021, 178, 1–19. [Google Scholar] [CrossRef]
- Narine, L.L.; Popescu, S.C.; Malambo, L. Using ICESat-2 to Estimate and Map Forest Aboveground Biomass: A First Ex ample. Remote Sens. 2020, 12, 1824. [Google Scholar] [CrossRef]
- Guerra-Hernandez, J.; Narine, L.L.; Pascual, A.; Gonzalez-Ferreiro, E.; Botequim, B.; Malambo, L.; Neuenschwander, A.; Popescu, S.C.; Godinho, S. Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests. GIScience Remote Sens. 2022, 59, 1509–1533. [Google Scholar] [CrossRef]
- Varvia, P.; Korhonen, L.; Bruguiere, A.; Toivonen, J.; Packalen, P.; Maltamo, M.; Saarela, S.; Popescu, S.C. How to consider the effects of time of day, beam strength, and snow cover in ICESat-2 based estimation of boreal forest biomass? Remote Sens. Environ. 2022, 280, 113174–113183. [Google Scholar] [CrossRef]
- Narine, L.; Malambo, L.; Popescu, S. Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and Alabama, USA. Remote Sens. Environ. 2022, 281, 113242. [Google Scholar] [CrossRef]
- Gao, S.J.; Zhu, J.J.; Fu, H.Q. A Rapid and Easy Way for National Forest Heights Retrieval in China Using ICESat-2/ATL08 in 2019. Forests 2023, 14, 1270. [Google Scholar] [CrossRef]
- Zhu, X.X. Forest Height Retrieval of China with a Resolution of 30 m Using ICESat-2 and GEDI Data. Ph.D. Thesis, University of Chinese Academy of Sciences, Institute of Air and Space Information Innovation, Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Torresani, M.; Feilhauer, H.; Rocchini, D.; Feret, J.B.; Zebisch, M.; Tonon, G. Which optical traits enable an estimation of tree species diversity based on the Spectral Variation Hypothesis? Appl. Veg. Sci. 2021, 24, e12586. [Google Scholar] [CrossRef]
- Lu, C.L.; Wang, R.; Yin, H. GF-1 Satellite Remote Sensing Characters. Spacecr. Recovery Remote Sens. 2014, 35, 67–73. [Google Scholar]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Li, F.L.; Peng, X.C.; Wang, C.Y.; Peng, M.C.; Xie, Y.X.; Zuo, Y.J. Research on population pattern of dominate tree species in plant communities based on UAV at the Kuandiba section of Haikou Forest Farm in Kunming. Ecol. Sci. 2020, 39, 57–63. [Google Scholar]
- Lu, G.; Jin, Z.W.; Zheng, Y.; Wang, Y.Q.; Yan, Y. The Floristic Characteristics and Their Significance in Conservation of Semi-humid Evergreen Broad-leaved Forests in Kunming Haikou Forest Farm. Eucalypt. Sci. Technol. 2022, 39, 35–42. [Google Scholar]
- Wu, Z.Y.; Zhu, Y.C. Vegetation of Yunnan; Science Publishing House: Beijing, China, 1987. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Muller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef] [Green Version]
- Neuenschwander, A.; Pitts, K. The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sens. Environ. 2019, 221, 247–259. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Dong, P.L.; Xi, X.H.; Luo, S.Z.; Qin, H.M. A revised progressive TIN densification for filtering airborne LiDAR data. Measurement 2017, 104, 70–77. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec. Publ. 1973, 351, 309. [Google Scholar]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Chen, Z.K. Comparison of broad-band and narrow-band red and near-infrared vegetation indexes. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant. Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Peng, Y.; Masek, J.G.; Rundquist, D.C.; Verma, S.; Suyker, A.; Baker, J.M.; Hatfield, J.L.; Meyers, T. Remote estimation of crop gross primary production with Landsat data. Remote Sens. Environ. 2012, 121, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Gould, W. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol. Appl. 2000, 10, 1861–1870. [Google Scholar] [CrossRef]
- Warrick, A.W.; Myers, D.E.; Nielsen, D.R. Geostatistical Methods Applied to Soil Science. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, 2nd ed.; Soil Science Society of America, Inc.: Madison, WI, USA, 1986; Volume 5, pp. 53–82. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Sci. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Granitto, P.M.; Furlanello, C.; Biasioli, F.; Gasperi, F. Recursive feature elimination with random forest for PTR-MS anal ysis of agroindustrial products. Chemometr Intell. Lab. 2006, 83, 83–90. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhang, Y.; Wang, H.Y.; Du, X.; Li, Q.Z.; Zhu, J. Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling. Remote Sens. 2021, 13, 805. [Google Scholar] [CrossRef]
- Olusola, A.O.; Olumide, O.; Fashae, O.A.; Adelabu, S. River sensing: The inclusion of red band in predicting reach-scale types using machine learning algorithms. Hydrol. Sci. J. 2022, 67, 1740–1754. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Lu, J. Study on Gradient Boosting Decision Tree and Its Improvement—An Hybrid Model and Its Application. Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, January 2017. [Google Scholar]
- Fang, Y.H.; Huang, Y.Z.; Qu, B.; Zhang, X.N.; Zhang, T.; Xia, D.Z. Estimating the Routing Parameter of the Xin’anjiang Hydrological Model Based on Remote Sensing Data and Machine Learning. Remote Sens. 2022, 14, 4609. [Google Scholar] [CrossRef]
- Cawley, G.C.; Talbot, N.C. Efficient approximate leave-one-out cross-validation for kernel logistic regression. Mach. Learn. 2008, 71, 243–264. [Google Scholar] [CrossRef] [Green Version]
Vegetation Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [46] | |
Carotenoid Reflectance Index (CRI) | [47] | |
Enhanced Vegetation Index (EVI) | [48] | |
Differential Vegetation Index (DVI) | [49] | |
Nonlinear Vegetation Index (NIL) | [46] | |
Modified Normalized Vegetation Index (mNDVI) | [50] | |
Renormalized Vegetation Index (RDVI) | [51] | |
Soil-Adjusted Vegetation Index (SAVI) | [52] | |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | [53] | |
Ratio Vegetation Index (RVI) | [54] | |
GF42 Index | [55] | |
Green Chlorophyll Vegetation Index (GCVI) | [56] | |
Wide Dynamic Range Vegetation Index (WDRVI) | [57] | |
Green Wide Dynamic Range Vegetation Index (GWDRVI) | [58] |
GLCM Texture Features of GF-1/PMS Image | |
---|---|
Mean | Dissimilarity |
Variance | Entropy |
Homogeneity | Second Moment |
Contrast | Correlation |
Initial Structural Features | Units | Data Source | Construction Method | Abbreviations |
---|---|---|---|---|
Canopy height parameters by percentile | m | ICESat-2/ATL08 | The standard deviation of different percentile canopy heights | sd_CH |
The variance of different percentile canopy heights | var_CH | |||
Mean values of different percentile canopy heights | mean_CH | |||
Coefficient of variation of different percentile canopy heights | cv_CH |
Procedure | Specific Steps |
---|---|
Input | Training samples |
Prediction sample | |
Number of residual tree training M, reduced step size λ, complexity parameter cp | |
Training samples where | |
For j = 1, 2, …, M | |
Training process |
|
| |
| |
END For | |
Output |
Diversity Index | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
Shannon–Wiener Index | 0.154 | 2.23 | 0.973 | 0.448 |
Simpson Index | 0.067 | 0.868 | 0.498 | 0.207 |
Species Richness | 2 | 11 | 4.73 | 2.03 |
Vertical Structural Variation Features | Optimal Variance Function Model | R2 | RSS | C/(C0 + C) | Nugget Variance | C0 + C | Range |
---|---|---|---|---|---|---|---|
sd_CH | Exponential model | 0.478 | 6.23 × 10−3 | 0.91 | 0.040 | 0.417 | 1170 |
var_CH | Exponential model | 0.472 | 1.00 × 10−1 | 0.90 | 0.167 | 1.669 | 1170 |
mean_CH | Exponential model | 0.693 | 3.21 × 10−3 | 0.89 | 0.046 | 0.408 | 1290 |
cv_CH | Spherical model | 0.324 | 1.87 × 10−4 | 0.96 | 0.006 | 0.142 | 780 |
Species Diversity | Model Optimal Hyperparameters | R2 | RSME | |||
---|---|---|---|---|---|---|
n.trees | Interaction. Depth | Shrinkage | n.minobsinnode | |||
Shannon | 300 | 2 | 0.01 | 5 | 0.58 | 0.291 |
Simpson | 500 | 1 | 0.005 | 5 | 0.43 | 0.159 |
Richness | 300 | 4 | 0.01 | 3 | 0.56 | 1.367 |
Remote Sensing Heterogeneity Variables | Data Sources | Tree Diversity Models and Their Accuracy Performance | |||||
---|---|---|---|---|---|---|---|
Shannon Model | Simpson Model | Richness Model | |||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
HSVF | GF-1/PMS | 0.58 | 0.291 | 0.43 | 0.159 | 0.56 | 1.367 |
VSVF | ICESat-2/ATLAS | 0.62 | 0.279 | 0.54 | 0.142 | 0.52 | 1.425 |
HSVF + VSVF | ICESat-2 + GF-1 | 0.64 | 0.273 | 0.47 | 0.154 | 0.54 | 1.399 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Shu, Q.; Zhang, L.; Yang, X. Forest Tree Species Diversity Mapping Using ICESat-2/ATLAS with GF-1/PMS Imagery. Forests 2023, 14, 1537. https://doi.org/10.3390/f14081537
Yang Z, Shu Q, Zhang L, Yang X. Forest Tree Species Diversity Mapping Using ICESat-2/ATLAS with GF-1/PMS Imagery. Forests. 2023; 14(8):1537. https://doi.org/10.3390/f14081537
Chicago/Turabian StyleYang, Zezhi, Qingtai Shu, Liangshi Zhang, and Xu Yang. 2023. "Forest Tree Species Diversity Mapping Using ICESat-2/ATLAS with GF-1/PMS Imagery" Forests 14, no. 8: 1537. https://doi.org/10.3390/f14081537