Some Improvements to a Third Order Variant of Newton’s Method from Simpson’s Rule
Abstract
:1. Introduction
2. Developments of the Methods
3. Convergence Analysis
4. Numerical Examples
N | N | N | N | N | |||||||
7 | 1.09e-074 | 5 | 2.58e-094 | 4 | 1.04e-111 | 3 | 6.96e-077 | 3 | 3.31e-299 | ||
7 | 9.07e-061 | 5 | 1.65e-076 | 4 | 9.04e-095 | 3 | 8.96e-068 | 3 | 5.99e-249 | ||
7 | 7.80e-063 | 5 | 2.07e-079 | 4 | 5.53e-097 | 3 | 2.53e-080 | 3 | 9.88e-324 | ||
8 | 3.21e-053 | 6 | 1.29e-100 | 5 | 1.01e-173 | 4 | 2.57e-302 | 3 | 1.024e-125 | ||
7 | 7.80e-066 | 5 | 3.63e-083 | 4 | 1.62e-102 | 3 | 4.90e-071 | 3 | 1.18e-282 | ||
8 | 4.34e-073 | 6 | 6.08e-138 | 5 | 2.24e-144 | 4 | 7.38 e-190 | 3 | 3.88e-092 | ||
6 | 1.41e-067 | 4 | 5.59e-057 | 4 | 9.12e-222 | 3 | 1.08e-108 | 3 | 0 | ||
2 | 7 | 1.52e-062 | 5 | 8.42e-087 | 4 | 1.38e-069 | 4 | 9.78e-238 | 3 | 3.70e-123 |
5. Conclusion
Acknowledgments
Conflicts of Interest
References
- Hasanov, V.I.; Ivanov, I.G.; Nedzhibov, G.H. A new modification of Newton's method. Appl. Math. Eng. 2002, 27, 278–286. [Google Scholar]
- Babajee, D.K.R. Several improvements of the 2-point third order midpoint iterative method using weight functions. Appl. Math. Comput. 2012, 218, 7958–7966. [Google Scholar] [CrossRef]
- Babajee, D.K.R. On a two-parameter Chebyshev-Halley-like family of optimal two-point fourth order methods free from second derivatives. Afr. Mat. 2014. [Google Scholar] [CrossRef]
- Babajee, D.K.R.; Jaunky, V.C. Applications of higher-order optimal Newton Secant iterative methods in ocean acidification and investigation of long-run implications of CO2 emissions on alkalinity of seawater. ISRN Appl. Math. 2013. [Google Scholar] [CrossRef]
- Babajee, D.K.R.; Thukral, R. On a 4-point sixteenth-order King family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012. [Google Scholar] [CrossRef]
- Sharifi, M.; Babajee, D.K.R.; Soleymani, F. Finding solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 2012, 63, 764–774. [Google Scholar] [CrossRef]
- Soleymani, F.; Khratti, S.K.; Karimi Vanani, S. Two new classes of optimal Jarratt-type fourth-order methods. Appl. Math. Lett. 2011, 25, 847–853. [Google Scholar] [CrossRef]
- Wait, R. The Numerical Solution of Algebraic Equations; John Wiley & Sons: New York, NY, USA, 1979. [Google Scholar]
- Ostrowski, A.M. Solutions of Equations and System of Equations; Academic Press: San Diego, CA, USA, 1960. [Google Scholar]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton's method with accelerated third order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Frontini, M.; Sormani, E. Some variants of Newton's method with third-order convergence. Appl. Math. Comput. 2003, 140, 419–426. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton's method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martinez, E.; Torregrosa, J.R. Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Appl. Math. Comput. 2013, 57, 1950–1956. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babajee, D.K.R. Some Improvements to a Third Order Variant of Newton’s Method from Simpson’s Rule. Algorithms 2015, 8, 552-561. https://doi.org/10.3390/a8030552
Babajee DKR. Some Improvements to a Third Order Variant of Newton’s Method from Simpson’s Rule. Algorithms. 2015; 8(3):552-561. https://doi.org/10.3390/a8030552
Chicago/Turabian StyleBabajee, Diyashvir Kreetee Rajiv. 2015. "Some Improvements to a Third Order Variant of Newton’s Method from Simpson’s Rule" Algorithms 8, no. 3: 552-561. https://doi.org/10.3390/a8030552
APA StyleBabajee, D. K. R. (2015). Some Improvements to a Third Order Variant of Newton’s Method from Simpson’s Rule. Algorithms, 8(3), 552-561. https://doi.org/10.3390/a8030552