Embedding Equality Constraints of Optimization Problems into a Quantum Annealer †
<p>The Chimera interconnection graph for the D-Wave 2X system is a <math display="inline"><semantics> <mrow> <mn>12</mn> <mo>×</mo> <mn>12</mn> </mrow> </semantics></math> array of <span class="html-italic">unit cells</span>, where each cell is a <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> bipartite graph.</p> "> Figure 2
<p>Illustration of the internal (<span class="html-fig-inline" id="algorithms-12-00077-i001"> <img alt="Algorithms 12 00077 i001" src="/algorithms/algorithms-12-00077/article_deploy/html/images/algorithms-12-00077-i001.png"/></span>) and problem (<span class="html-fig-inline" id="algorithms-12-00077-i002"> <img alt="Algorithms 12 00077 i002" src="/algorithms/algorithms-12-00077/article_deploy/html/images/algorithms-12-00077-i002.png"/></span>) type gadgets and tiles. (<b>a</b>) A cell of the Chimera graph. Short lines denote couplers connecting the cell to other cells. (<b>b</b>) The logical structure of the corresponding internal gadget, showing the types of the variables, and, as an example, a concrete assignment of values to the interface variables. (<b>c</b>) The corresponding tile as used in our embedding illustrations, with red color for +1 and green for −1 type variables. Analogous illustrations for the problem type gadget and tile are found in (<b>d</b>–<b>f</b>).</p> "> Figure 3
<p>The set of the good tiles.</p> "> Figure 4
<p>Ising proram construction for the case <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Optimal tiling of <math display="inline"><semantics> <mrow> <mi mathvariant="italic">Is</mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 6
<p>A row <math display="inline"><semantics> <msub> <mi>R</mi> <mi>i</mi> </msub> </semantics></math> of <span class="html-italic">R</span>, denoted by <math display="inline"><semantics> <msub> <mi>R</mi> <mi>i</mi> </msub> </semantics></math>, with an assignment of values to the program variables/tiles.</p> "> Figure 7
<p>Illustration of the internal type gadgets and tile for the case <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>) A cell of the Chimera graph. Short lines indicate the couplers connecting to the neighboring cells (some may be missing for boundary cells). (<b>b</b>) The logical structure of the the corresponding internal gadget. There are two edges (couplers) shown in red (thicker line in b&w) in (<b>a</b>) with weights (in he example) <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> and 1 connecting it to the neighboring cells in the row. The coupler shown in blue, in combination with the red coupler on top, is used in the gadget discussed in <a href="#sec7dot2-algorithms-12-00077" class="html-sec">Section 7.2</a>. (<b>c</b>) The corresponding tile as used in our embedding illustrations, with red color for +1 and green for −1 type variables.</p> "> Figure 8
<p>The set of the good tiles for the case <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>(<b>a</b>) Ising program <math display="inline"><semantics> <mrow> <mi mathvariant="script">I</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> for the case <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>b</b>) The structure of an optimal tiling of <math display="inline"><semantics> <mrow> <mi mathvariant="script">I</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>. In such tiling, adjacent halves of neighboring tiles should be in different colors.</p> "> Figure 10
<p>This example illustrates the connections between the tiles in a solution for the multi-row case for a Chimera graph of size <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> <mn>4</mn> </mrow> </semantics></math> cells, each cell representing a tile with one problem variable, with the exception of first and last tiles that contain no problem variables.</p> "> Figure 11
<p>Positions of the <span class="html-italic">x</span> and <span class="html-italic">t</span> variables in a Chimera graph cell for the optimization problem (<b>a</b>) in the single-row embedding, and (<b>b</b>) for the extra gadgets in the multi-row embedding.</p> "> Figure 12
<p>The structure of the tiles for the case of <math display="inline"><semantics> <mrow> <mi mathvariant="italic">gap</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. (<b>a</b>) A cell of the Chimera graph. Short lines indicate the couplers connecting to the neighboring cells. (<b>b</b>) The logical structure of the tile corresponding to that cell. Edges correspond to couplers shown in red in (<b>a</b>).</p> "> Figure 13
<p>Figure illustrating a connection between two perfect cells by a chain of bad-cell vertices and edges. Colors on the vertices and edges encode the values of the corresponding coefficients, where blue is for negative, red for positive, and gray is for near-zero, and the intensities of colors encode the magnitudes. The couplers of cell <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>f</mi> </msub> </semantics></math> are all set to <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> forcing <math display="inline"><semantics> <msub> <mi>t</mi> <mn>12</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msup> <mi>t</mi> <mo>*</mo> </msup> </semantics></math> to take the same values in an optimal solution.</p> "> Figure 14
<p>Embedding of the Ising constraint <math display="inline"><semantics> <mrow> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>−</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> </semantics></math> (corresponding to QUBO constraint <math display="inline"><semantics> <mrow> <msubsup> <mo>∑</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>94</mn> </mrow> </semantics></math>. Colors encode vertex and edge values as in <a href="#algorithms-12-00077-f013" class="html-fig">Figure 13</a>.</p> "> Figure 15
<p>Dependence of the quality of the constraint embedding measured as the value of the sum of all <math display="inline"><semantics> <msub> <mi>x</mi> <mi>i</mi> </msub> </semantics></math> (horizontal axis) on the value of the <span class="html-italic">gap</span> parameter, shown as curves of different colors. The vertical axis shows the frequency, or how many times, out of 10,000, the solution returned by the D-Wave annealer had the respective sum.</p> "> Figure 16
<p>Dependence of the quality of the constraint embedding on the length of the vector <span class="html-italic">x</span> (number of problem variables <math display="inline"><semantics> <msub> <mi>x</mi> <mi>i</mi> </msub> </semantics></math>). Results for sizes <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>90</mn> </mrow> </semantics></math> are shown in different colors.</p> "> Figure 17
<p>Illustration of our implementation for a vector <span class="html-italic">x</span> with 82 coordinates on a real D-Wave 2X hardware, which vector is constrained to contain exactly one <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math> coordinate.</p> "> Figure 18
<p>In this figure one can see how the dimension of <math display="inline"><semantics> <mi mathvariant="bold-italic">x</mi> </semantics></math> affects the accuracy of the embedding of the constraint, i.e., the number of <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math> s in the resulting vector.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
- (i)
- for each , ;
- (ii)
- for each , for some ( in this case).
- (C1)
- s.t. ,
- (C2)
- ,
- (C3)
- ,
3. Direct Approach
4. A Two-Level Approach
4.1. Gadgets
- Problem variables: variables in , i.e., variables used in the original constraint (2).
- Interface variables: variables in or used for interaction and exchange of information between neighboring cells by being located on the endpoints of an edge (coupler) joining the cells.
- Hidden variables: ancillary “working” variables in used to ensure that the given gadget/tile satisfies desired properties.
- Internal gadget—for cells in the interior of R and denoted by ;
- Problem gadget—containing a problem variable (and the only type that contains such a variable) and denoted by ;
- Boundary gadget—for cells on the boundary of the region R of the Chimera graph implementing the constraint. The three possible orientations of this gadget will be denoted by , , and .
4.2. Tiles
4.3. From Variables Assignments to Configurations of Tiles
5. Ising Program Design and Correctness Analysis
5.1. Cost of Tiles and Tile Configurations
5.2. Defining the Ising Program
6. Solving the Optimization Problem
- (C1)
- For all s.t. ,
- (C2)
- For all ,
- (C3)
- For all
7. Improved Embeddings for the Case
7.1. Reducing the Number of Cells
- An internal gadget—for cells in the interior of the row, and will be denoted by . Each internal gadget contains one problem, two interface, and five hidden variables (Figure 7a,b).
- A boundary gadget—for cells on the two ends of the row. They are similar to the boundary gadgets in the general case, but come in only two orientations, which will be denoted by and .
7.2. Increasing the Size of the Constraint
7.3. Increasing the Gap
8. Experiments
8.1. Multi-Row Algorithm
8.1.1. Embedding in the Real Chimera Graph
8.1.2. Analysis
8.2. Increased-Gap Algorithm
8.2.1. Modifying the Embedding for the Real Chimera Graph
8.2.2. Results
9. Using the Constraint Embeddings for Solving Constrained Optimization Problems
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1979. [Google Scholar]
- Sahni, S. Computationally Related Problems. SIAM J. Comput. 1974, 3, 262–279. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Amin, M.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.; Johansson, J.; Bunyk, P.; et al. Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Bunyk, P.; Hoskinson, E.; Johnson, M.; Tolkacheva, E.; Altomare, F.; Berkley, A.; Harris, R.; Hilton, J.; Lanting, T.; Przybysz, A.; et al. Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor. IEEE Trans. Appl. Supercond. 2014, 24, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 1–27. [Google Scholar] [CrossRef]
- Bichot, C.; Siarry, P. Graph Partitioning; Wiley-IST: Hoboken, NJ, USA, 2013. [Google Scholar]
- Bian, Z.; Chudak, F.; Israel, R.; Lackey, B.; Macready, W.G.; Roy, A. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2014, 2, 56. [Google Scholar] [CrossRef]
- Cimatti, A.; Griggio, A.; Schaafsma, B.J.; Sebastiani, R. The MathSAT5 SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems; Piterman, N., Smolka, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 93–107. [Google Scholar]
- De Moura, L.; Bjørner, N. Satisfiability Modulo Theories: Introduction and Applications. Commun. ACM 2011, 54, 69–77. [Google Scholar] [CrossRef]
- Bertsekas, D. Nonlinear Programming; Athena Scientific: Nashua, NH, USA, 1999. [Google Scholar]
- Auslender, A.; Cominetti, R.; Haddou, M. Asymptotic Analysis for Penalty and Barrier Methods in Convex and Linear Programming. Math. Oper. Res. 1997, 22, 43–62. [Google Scholar] [CrossRef]
- Birgin, E.; Martínez, J. Practical Augmented Lagrangian Methods for Constrained Optimization; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2014. [Google Scholar] [CrossRef]
- Chong, E.K.P.; Zak, S.H. Algorithms for Constrained Optimization. In An Introduction to Optimization; Wiley-Blackwell: Hoboken, NJ, USA, 2011; Chapter 22; pp. 513–539. [Google Scholar] [CrossRef] [Green Version]
- Kochenberger, G.; Hao, J.K.; Glover, F.; Lewis, M.; Lü, Z.; Wang, H.; Wang, Y. The Unconstrained Binary Quadratic Programming Problem: A Survey. J. Comb. Optim. 2014, 28, 58–81. [Google Scholar] [CrossRef]
- Choi, V. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 2008, 7, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Choi, V. Different adiabatic quantum optimization algorithms. Quantum Inf. Comput. 2011, 11, 638–648. [Google Scholar]
- Klymko, C.; Sullivan, B.D.; Humble, T.S. Adiabatic quantum programming: Minor embedding with hard faults. Quantum Inf. Process. 2014, 13, 709–729. [Google Scholar] [CrossRef]
- Boothby, T.; King, A.; Roy, A. Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Inf. Process. 2016, 15, 495–508. [Google Scholar] [CrossRef]
- Cai, J.; Macready, W.G.; Roy, A. A practical heuristic for finding graph minors. arXiv, 2014; arXiv:1406.2741. [Google Scholar]
- Rieffel, E.G.; Venturelli, D.; O’Gorman, B.; Do, M.; Prystay, E.M.; Smelyanskiy, V. A case study in programming a quantum annealer for hard operational planning problems. Quantum Inf. Process. 2015, 14, 1–36. [Google Scholar] [CrossRef]
- Bian, Z.; Chudak, F.; Israel, R.B.; Lackey, B.; Macready, W.G.; Roy, A. Mapping Constrained Optimization Problems to Quantum Annealing with Application to Fault Diagnosis. Front. ICT 2016, 3, 14. [Google Scholar] [CrossRef]
- Hamilton, K.E.; Humble, T.S. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets. Quantum Inf. Process. 2017, 16, 94. [Google Scholar] [CrossRef]
- Goodrich, T.D.; Sullivan, B.D.; Humble, T.S. Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Inf. Process. 2018, 17, 118. [Google Scholar] [CrossRef] [Green Version]
- Date, P.; Patton, R.; Schuman, C.; Potok, T. Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf. Process. 2019, 18, 117. [Google Scholar] [CrossRef]
- Vyskocil, T.; Djidjev, H. Simple constraint embedding for quantum annealers. In Proceedings of the International Conference on Rebooting Computing, Tysons, VA, USA, 7–9 November 2018. [Google Scholar]
- Vyskocil, T.; Pakin, S.; Djidjev, H. Embedding Inequality Constraints for Quantum Annealing Optimization; Technical Report LA-UR-18-3097; Los Alamos National Laboratory: Alamos, NM, USA, 2018.
- Fourer, R.; Gay, D.M.; Kernighan, B.W. AMPL: A Modelling Language for Mathematical Programming, 2nd ed.; Cengage Learning: Boston, MA, USA, 2002. [Google Scholar]
- Gurobi Optimizer Reference Manual; Gurobi Optimization, Inc.: Beaverton, OR, USA, 2015.
- Technical Description of the D-Wave Quantum Processing Unit; 09-1109A-A; D-Wave: Burnaby, BC, Canada, 2016.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vyskocil, T.; Djidjev, H. Embedding Equality Constraints of Optimization Problems into a Quantum Annealer. Algorithms 2019, 12, 77. https://doi.org/10.3390/a12040077
Vyskocil T, Djidjev H. Embedding Equality Constraints of Optimization Problems into a Quantum Annealer. Algorithms. 2019; 12(4):77. https://doi.org/10.3390/a12040077
Chicago/Turabian StyleVyskocil, Tomas, and Hristo Djidjev. 2019. "Embedding Equality Constraints of Optimization Problems into a Quantum Annealer" Algorithms 12, no. 4: 77. https://doi.org/10.3390/a12040077
APA StyleVyskocil, T., & Djidjev, H. (2019). Embedding Equality Constraints of Optimization Problems into a Quantum Annealer. Algorithms, 12(4), 77. https://doi.org/10.3390/a12040077