Multi-View Network Representation Learning Algorithm Research
<p>Algorithm framework of multi-view network representation (MVNR). (<b>a</b>) Higher order neighboring relations acquisition; (<b>b</b>) Edge weight calculation.</p> "> Figure 2
<p>Parameter sensitivity analysis, here, we mainly research the influence of representation vector size and <span class="html-italic">K</span> value to network classification task. (<b>a</b>) parameter sensitivity analysis on Citeseer dataset; (<b>b</b>) parameter sensitivity analysis on Cora dataset; (<b>c</b>) parameter sensitivity analysis on Wiki dataset.</p> "> Figure 3
<p>2D Visualization on Citeseer. (<b>a</b>) Citeseer visualization using DeepWalk; (<b>b</b>) Citeseer visualization using node2vec; (<b>c</b>) Citeseer visualization using MVNR.</p> ">
Abstract
:1. Introduction
- (1)
- We introduce a novel network representation learning (MVNR), which explicitly captures higher order neighboring relations and global features. In network classification task, the performance of MVNR is superior to that of network representation algorithms based on the features of single view, such as DeepWalk, Line and node2vec. MVNR also outperforms the existing network representation learning algorithm based on the features of higher order, such as, GraRep and NEU.
- (2)
- We introduce the Matrix Forest Index (MFI) to evaluate the weights of different k-step networks, which gives different weights for the representation vectors of different k-step networks in common representation vector space. This operation makes up for the important deficiency of GraRep algorithm. In addition, MFI features are calculated based on the network structure features. Therefore, it can provide sufficient structure features and improve the sparse problem of structure feature matrix in sparse networks.
- (3)
- The visualization result of MVNR algorithm is better than that of node2vec and DeepWalk algorithm. It shows stronger cohesiveness and clearer classification boundary. Therefore, MVNR can learn the discriminative representation vectors. Consequently, it also shows excellent performance in link prediction tasks, and its link prediction performance is better than that of the baseline algorithms used in this paper.
2. Related Work
3. Our Method
3.1. Formalization
3.2. Feature Extraction for Different k-Step Networks
3.3. Feature Weighting for Different k-Step Networks
3.4. Joint Learning of MVNR
3.5. Complexity Analysis
Algorithm 1 MVNR Algorithm. |
Input: |
Adjacency matrix A on network. |
Maximum transition step K. |
Harmonic factor λ. |
Dimension of representation vector d. |
Output: |
Matrix of the network representation R. |
Content: |
|
4. Experiments and Evaluations
4.1. Datasets Setup
4.2. Baseline Algorithms
4.3. Multi-Class Classification
4.4. Parameter Sensitivity
4.5. Network Visualization
4.6. Link Prediction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the KDD, New York, NY, USA, 24–37 August 2014; pp. 701–710. [Google Scholar]
- Perozzi, B.; Kulkarni, V.; Skiena, H.C.; Skiena, S. Walklets: Multiscale graph embeddings for interpretable network classificatio. arXiv, 2016; arXiv:1605.02115. [Google Scholar]
- Yang, C.; Liu, Z.Y. Comprehend deepWalk as matrix factorization. arXiv, 2015; arXiv:1501.00358. [Google Scholar]
- Cao, S.S.; Lu, W.; Xu, Q.K. GraRep: Learning graph representations with global structural information. In Proceedings of the CIKM, Melbourne, VIC, Australia, 19–23 October 2015; pp. 891–900. [Google Scholar]
- Yang, C.; Sun, M.S.; Liu, Z.Y.; Tu, C.C. Fast network embedding enhancement via high order proximity approximation. In Proceedings of the IJCAI, Melbourne, Australia, 19–25 August 2017; pp. 3894–3900. [Google Scholar]
- Pan, S.R.; Wu, J.; Zhu, X.Q.; Wang, Y. Tri-party deep network representation. In Proceedings of the IJCAI, New York, NY, USA, 9–15 July 2016; pp. 1895–1901. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the SIGKDD, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.Z.; Zhang, M.; Yan, J.; Mei, Q.Z. Line: Large-scale information network embedding. In Proceedings of the WWW, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the NIPS, Las Vegas, NV, USA, 9 December 2013; pp. 3111–3119. [Google Scholar]
- Li, G.H.; Luo, J.W.; Xiao, Q. Predicting microRNA-disease associations using network topological similarity based on deepWalk. IEEE Access 2017, 5, 24032–24039. [Google Scholar] [CrossRef]
- Wang, D.X.; Cui, P.; Zhu, W.W. Structural deep network embedding. In Proceedings of the SIGKDD, San Francisco, CA, USA, 13–17 August 2016; pp. 1225–1234. [Google Scholar]
- Tu, C.C.; Liu, H.; Liu, Z.Y.; Sun, M.S. CANE: Context-aware network embedding for relation modeling. In Proceedings of the ACL, Vancouver, BC, Canada, 6–11 February 2017; pp. 1722–1731. [Google Scholar]
- Zhou, L.K.; Yang, Y.; Ren, X.; Wu, F.; Zhuang, Y.T. Dynamic network embedding by modeling triadic closure process. In Proceedings of the AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Ma, J.X.; Cui, P.; Zhu, W.W. DepthLGP: Learning embeddings of out-of-sample nodes in dynamic networks. In Proceedings of the AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Tu, K.; Cui, P.; Wang, X.; Wang, F.; Zhu, W.W. Structural deep embedding for hyper-networks. In Proceedings of the AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Goodfellow, I.L.; Pouget-Abadie, J.K.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. In Proceedings of the NIPS, Palais des Congrès de Montréal, Montréal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Dai, Q.Y.; Li, Q.; Tang, J.; Wang, D. Adversarial network embedding. In Proceedings of the AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Wang, H.W.; Wang, J.; Wang, J.L.; Zhao, M.; Zhang, W.N.; Zhang, F.Z.; Xing, X.; Guo, M.Y. GraphGAN: Graph Representation Learning with Generative Adversarial Nets. In Proceedings of the AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Bojchevski, A.; Shchur, O.; Zügner, D.; Günnemann, S. NetGAN: Generating Graphs via Random Walks. In Proceedings of the ICML 2018, Long Beach, CA, USA, 10–15 June 2018. [Google Scholar]
- Sun, X.F.; Guo, J.; Ding, X.; Liu, T. A general framework for content-enhanced network representation learning. arXiv, 2016; arXiv:1610.02906. [Google Scholar]
- Kipf, T.N.; Welling, M. Semisupervised classification with graph convolutional networks. arXiv, 2016; arXiv:1609.02907. [Google Scholar]
- Li, J.Z.; Zhu, J.; Zhang, B. Discriminative deep random walk for network classification. In Proceedings of the ACL, Berlin, Germany, 7–12 August 2016; pp. 1004–1013. [Google Scholar]
- Yang, Z.L.; Cohen, W.; Salakhutdinov, R. Revisiting semi-supervised learning with graph embeddings. In Proceedings of the ICML, New York, NY, USA, 19–24 June 2016; pp. 40–48. [Google Scholar]
- Tang, J.; Qu, M.; Mei, Q. PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks. In Proceedings of the KDD 2015, Sydney, Australia, 10–13 August 2015; pp. 1165–1174. [Google Scholar]
- Wang, X.; Cui, P.; Wang, J. Community Preserving Network Embedding. In Proceedings of the AAAI 2017, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Huang, X.; Li, J.D.; Hu, X. Accelerated attributed network embedding. In Proceedings of the SDM 2017, Houston, TX, USA, 27–29 April 2017. [Google Scholar]
- Zhang, Y.; Lyu, T.S.; Zhang, Y. COSINE: Community-preserving social network embedding from Information diffusion cascades. In Proceedings of the AAAI 2018, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Cavallari, S.; Zheng, V.W.; Cai, H.Y.; Chang, K.C.C.; Cambria, E. Learning community embedding with community detection and node embedding on Graphs. In Proceedings of the CIKM 2017, Singapore, 6–10 November 2017. [Google Scholar]
- Yang, C.; Liu, Z.Y.; Zhao, D.L.; Sun, M.S. Network representation learning with rich text information. In Proceedings of the AAAI, Austin, TX, USA, 25–30 January 2015; pp. 2111–2117. [Google Scholar]
- Tu, C.C.; Zhang, W.C.; Liu, Z.Y.; Sun, M.S. Max-Margin DeepWalk: Discriminative Learning of Network Representation. In Proceedings of the IJCAI, New York, NY, USA, 9–15 July 2016; pp. 3889–3895. [Google Scholar]
- Wang, X.; Cui, P.; Wang, J.; Yang, S. Community preserving network embedding. In Proceedings of the AAAI, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Huang, Z.P.; Mamoulis, N. Heterogeneous information network embedding for meta path based proximity. arXiv, 2017; arXiv:1701.05291. [Google Scholar]
- Yu, H.F.; Jain, P.; Kar, P.; Dhillon, I.S. Large-scale multi-label learning with missing labels. In Proceedings of the ICML, Atlanta, GA, USA, 16–21 June 2013; pp. 593–601. [Google Scholar]
- Natarajan, N.; Dhillon, I.S. Inductive matrix completion for predicting gene-disease associations. Bioinformatics 2014, 30, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Namata, G.M.; Bilgic, M.; Getoor, L.; Gallagher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008, 29, 93–106. [Google Scholar] [CrossRef]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Dataset | Node | Edge | The Number of Classes | Average Degree | Average Path Length |
---|---|---|---|---|---|
Citeseer | 3312 | 4732 | 6 | 2.857 | 9.036 |
Cora | 2708 | 5429 | 7 | 4.01 | 6.31 |
Wiki | 2405 | 17981 | 19 | 14.953 | 3.65 |
Random Walk Length | Random Walk Number | Representation Vector Size | The Number of Orders | Context Window Size | |
---|---|---|---|---|---|
DeepWalk | 80 | 10 | 200 | - | 5 |
Line | - | - | 200 | 2 | 5 |
node2vec | 80 | 10 | 200 | - | 5 |
NEU | 80 | 10 | 200 | - | 5 |
GraRep | - | - | 100 for k-th network | 1,3,6 | - |
WMF | - | - | 100 | 1 | - |
MVNR | - | - | 100 for k-th network | 1,3,6 | - |
%Labeled Nodes | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|---|---|---|---|
DeepWalk | 48.31 | 50.36 | 51.33 | 52.31 | 52.85 | 53.33 | 52.98 | 53.47 | 53.71 |
Line | 39.82 | 46.83 | 49.02 | 50.65 | 53.77 | 54.20 | 53.87 | 54.67 | 53.82 |
node2vec | 54.38 | 57.29 | 58.64 | 59.53 | 59.63 | 59.88 | 60.43 | 61.36 | 62.42 |
WMF (K = 1) | 52.14 | 54.17 | 55.38 | 55.42 | 56.41 | 56.57 | 57.23 | 57.79 | 57.22 |
NEU | 50.23 | 52.00 | 53.62 | 54.07 | 54.46 | 53.74 | 54.34 | 55.51 | 55.29 |
GraRep (K = 1) | 26.21 | 34.13 | 38.30 | 40.82 | 41.92 | 44.68 | 44.29 | 45.30 | 44.83 |
GraRep (K = 3) | 45.07 | 50.95 | 53.40 | 54.21 | 54.87 | 55.75 | 55.54 | 55.15 | 54.22 |
GraRep (K = 6) | 50.72 | 53.02 | 54.21 | 55.22 | 55.51 | 56.17 | 55.99 | 55.78 | 57.94 |
Un_MVNR (K = 1) | 51.07 | 55.65 | 56.96 | 57.84 | 58.04 | 58.30 | 58.95 | 58.21 | 58.76 |
Un_MVNR (K = 3) | 54.54 | 58.36 | 59.17 | 60.90 | 61.43 | 61.76 | 61.67 | 62.38 | 62.32 |
Un_MVNR (K = 6) | 54.90 | 59.23 | 60.31 | 61.12 | 61.96 | 62.47 | 62.49 | 63.15 | 62.14 |
MVNR (K = 1) | 54.32 | 56.67 | 57.99 | 58.94 | 59.26 | 59.59 | 60.11 | 59.89 | 60.39 |
MVNR (K = 3) | 56.99 | 59.80 | 61.57 | 62.54 | 63.73 | 64.71 | 64.93 | 64.98 | 66.22 |
MVNR (K = 6) | 57.63 | 60.61 | 61.39 | 63.69 | 64.15 | 65.05 | 65.59 | 65.97 | 66.97 |
%Labeled Nodes | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|---|---|---|---|
DeepWalk | 73.29 | 75.46 | 76.19 | 77.49 | 77.89 | 77.83 | 78.86 | 79.05 | 78.62 |
Line | 65.13 | 70.17 | 72.20 | 72.92 | 73.45 | 75.67 | 75.25 | 76.78 | 79.34 |
node2vec | 76.30 | 79.26 | 80.43 | 80.70 | 81.13 | 81.26 | 82.18 | 81.63 | 82.81 |
WMF (K = 1) | 68.77 | 71.75 | 72.53 | 73.68 | 73.71 | 74.54 | 74.56 | 75.04 | 75.55 |
NEU | 73.21 | 76.23 | 77.49 | 78.25 | 78.89 | 79.94 | 80.85 | 81.00 | 81.04 |
GraRep (K = 1) | 63.92 | 72.51 | 74.85 | 75.92 | 76.80 | 76.74 | 76.85 | 77.19 | 77.92 |
GraRep (K = 3) | 72.60 | 77.34 | 78.34 | 79.39 | 79.43 | 80.30 | 80.32 | 80.68 | 79.88 |
GraRep (K = 6) | 75.95 | 78.54 | 79.64 | 80.40 | 80.70 | 81.42 | 81.74 | 81.36 | 82.92 |
Un_MVNR (K = 1) | 70.43 | 76.97 | 78.61 | 79.63 | 80.68 | 80.31 | 80.16 | 81.60 | 82.25 |
Un_MVNR (K = 3) | 75.32 | 79.18 | 80.06 | 80.88 | 81.44 | 81.62 | 82.46 | 82.25 | 83.59 |
Un_MVNR (K = 6) | 76.15 | 78.52 | 79.98 | 80.65 | 81.70 | 82.35 | 82.98 | 81.97 | 82.59 |
MVNR (K = 1) | 74.96 | 77.86 | 78.69 | 80.04 | 80.26 | 80.69 | 80.91 | 80.99 | 81.81 |
MVNR (K = 3) | 77.50 | 79.69 | 81.15 | 81.42 | 82.38 | 82.86 | 83.05 | 83.79 | 82.78 |
MVNR (K = 6) | 78.24 | 80.44 | 81.08 | 82.08 | 82.29 | 83.12 | 83.25 | 83.90 | 83.81 |
%Labeled Nodes | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|---|---|---|---|
DeepWalk | 52.15 | 58.79 | 61.69 | 62.80 | 62.92 | 63.05 | 64.38 | 64.25 | 64.41 |
Line | 51.17 | 53.62 | 57.81 | 57.26 | 58.94 | 62.46 | 62.24 | 66.74 | 67.35 |
node2vec | 57.51 | 61.11 | 63.17 | 63.73 | 64.39 | 65.40 | 65.58 | 65.37 | 66.50 |
WMF (K = 1) | 35.22 | 39.68 | 40.92 | 42.71 | 42.97 | 43.95 | 46.04 | 44.31 | 44.87 |
NEU | 52.03 | 58.36 | 60.08 | 61.95 | 62.98 | 63.90 | 63.16 | 64.56 | 64.08 |
GraRep (K = 1) | 55.50 | 59.24 | 60.40 | 61.30 | 61.43 | 62.11 | 63.28 | 61.08 | 62.95 |
GraRep (K = 3) | 55.98 | 61.15 | 62.79 | 63.75 | 64.21 | 65.24 | 65.20 | 65.08 | 65.54 |
GraRep (K = 6) | 56.73 | 60.42 | 62.77 | 64.43 | 65.42 | 65.44 | 65.96 | 66.97 | 66.37 |
Un_MVNR (K = 1) | 57.22 | 61.88 | 63.19 | 65.68 | 65.03 | 66.11 | 66.61 | 65.89 | 68.91 |
Un_MVNR (K = 3) | 55.63 | 60.84 | 63.76 | 64.65 | 65.41 | 66.07 | 67.11 | 66.70 | 67.70 |
Un_MVNR (K = 6) | 54.72 | 60.49 | 62.31 | 63.63 | 64.40 | 65.41 | 65.65 | 66.91 | 67.95 |
MVNR (K = 1) | 57.74 | 62.27 | 64.26 | 64.51 | 65.81 | 66.50 | 66.69 | 67.93 | 68.33 |
MVNR (K = 3) | 58.29 | 61.98 | 63.81 | 65.56 | 66.08 | 66.54 | 66.62 | 67.92 | 68.08 |
MVNR (K = 6) | 57.55 | 62.37 | 63.99 | 65.92 | 66.41 | 66.74 | 67.03 | 68.75 | 69.50 |
Dataset Name | Training Ratio | Algorithm Name | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CN | LP | RA | ACT | LHNII | Cos+ | LRW | SRW | MVNR (K = 3) | MVNR (K = 6) | ||
Citeseer | 0.7 | 68.13 | 81.06 | 66.37 | 75.88 | 95.76 | 88.57 | 87.21 | 86.34 | 95.15 | 93.96 |
0.8 | 72.08 | 86.83 | 72.12 | 75.59 | 96.85 | 89.38 | 90.13 | 90.05 | 95.70 | 96.22 | |
0.9 | 74.67 | 88.45 | 74.63 | 73.79 | 96.20 | 88.49 | 91.25 | 90.47 | 97.08 | 97.01 | |
Cora | 0.7 | 69.50 | 80.12 | 69.47 | 74.11 | 89.41 | 90.25 | 88.48 | 88.40 | 92.09 | 92.60 |
0.8 | 72.38 | 82.97 | 72.47 | 73.67 | 90.37 | 90.98 | 90.58 | 90.50 | 93.15 | 92.47 | |
0.9 | 78.19 | 87.90 | 77.97 | 74.00 | 93.64 | 93.22 | 93.63 | 93.62 | 94.42 | 93.43 | |
Wiki | 0.7 | 85.79 | 92.60 | 85.99 | 80.19 | 86.45 | 91.49 | 93.65 | 93.48 | 93.38 | 93.66 |
0.8 | 87.95 | 93.56 | 88.24 | 80.35 | 86.77 | 91.63 | 94.20 | 94.18 | 93.95 | 93.44 | |
0.9 | 90.47 | 94.00 | 90.33 | 79.98 | 87.68 | 92.71 | 94.56 | 94.53 | 94.65 | 94.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Zhao, H.; Zhang, K.; Zhu, Y. Multi-View Network Representation Learning Algorithm Research. Algorithms 2019, 12, 62. https://doi.org/10.3390/a12030062
Ye Z, Zhao H, Zhang K, Zhu Y. Multi-View Network Representation Learning Algorithm Research. Algorithms. 2019; 12(3):62. https://doi.org/10.3390/a12030062
Chicago/Turabian StyleYe, Zhonglin, Haixing Zhao, Ke Zhang, and Yu Zhu. 2019. "Multi-View Network Representation Learning Algorithm Research" Algorithms 12, no. 3: 62. https://doi.org/10.3390/a12030062
APA StyleYe, Z., Zhao, H., Zhang, K., & Zhu, Y. (2019). Multi-View Network Representation Learning Algorithm Research. Algorithms, 12(3), 62. https://doi.org/10.3390/a12030062