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Abstract: The trajectory estimation of a highly maneuvering target is a challenging problem and
has practical applications. The interacting multiple model (IMM) filter is a well-established filtering
algorithm for the trajectory estimation of maneuvering targets. In this study, we present an overview
of IMM filtering algorithms for tracking a highly-maneuverable fighter aircraft using an air moving
target indicator (AMTI) radar on another aircraft. This problem is a nonlinear filtering problem
due to nonlinearities in the dynamic and measurement models. We first describe single-model
nonlinear filtering algorithms: the extended Kalman filter (EKF), unscented Kalman filter (UKF), and
cubature Kalman filter (CKF). Then, we summarize the IMM-based EKF (IMM-EKF), IMM-based
UKF (IMM-UKF), and IMM-based CKF (CKF). In order to compare the state estimation accuracies of
the IMM-based filters, we present a derivation of the posterior Cramér-Rao lower bound (PCRLB).
We consider fighter aircraft traveling with accelerations 3g, 4g, 5g, and 6g and present numerical
results for state estimation accuracy and computational cost under various operating conditions. Our
results show that under normal operating conditions, the three IMM-based filters have nearly the
same accuracy. This is due to the accuracy of the measurements of the AMTI radar and the high
data rate.

Keywords: highly maneuvering fighter aircraft; extended Kalman filter (EKF); unscented Kalman
filter (CKF); cubature Kalman filter (CKF); interacting multiple model (IMM) filter; IMM-EKF; IMM-
UKF; IMM-CKF; posterior Cramér-Rao lower bound (PCRLB); measures of performance

1. Introduction

The trajectory estimation of a highly maneuvering fighter aircraft is a challenging
problem. By utilizing data obtained from an air moving target indicator (AMTI) radar
system, we delve into estimating the trajectory of such a highly maneuvering fighter
aircraft. The AMTI radar is on another aircraft, and it measures the range, azimuth, and
radial velocity of a target. The AMTI measurement model is nonlinear since the AMTI
measurements are nonlinear functions of the target state. The fighter aircraft is capable
of flying with motions of nearly constant velocity (NCV) and nearly constant turn (NCT).
The NCV model is linear, while the NCT model is nonlinear. The filtering problem is
nonlinear since the measurement and dynamic models are nonlinear. An accelerating
target is called a maneuvering target [1]. Aircraft that have an acceleration of 3g or higher
are considered to be highly maneuvering, where g is gravitational acceleration and is
quantified as 9.8 m/s2. Typical commercial aircraft are restricted to velocities that do
not exceed the speed of one Mach, where 1 Mach = 343 m/s [2]. For example, a Boeing
747-8i, Airbus A380, Boeing 787, and a Boeing 777 have maximum speeds of 0.86 Mach,
0.85 Mach, 0.85 Mach, and 0.84 Mach, respectively [2]. Commercial aircraft are typically
capable of achieving a maximum rotational acceleration equivalent to approximately three
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times gravitational acceleration [3–5]. The maneuverability of a target increases with the
g-value. The maximum g-value of a fighter aircraft is about 9g. In this study, we take into
account aircraft capable of withstanding accelerations ranging from three times to six times
gravitational acceleration.

A maneuvering target usually has multiple motions during its travel. This poses
a challenge for a filtering algorithm to estimate the states of such targets. In real-world
problems, the times at which the motion of a maneuvering target changes are not known.
Therefore, the trajectory estimation of a target undergoing various motion dynamics during
its maneuvers is significantly harder than that of a target with a single motion.

The Kalman filter (KF) [6–11], extended KF (EKF) [7–13], unscented KF (UKF) [10,11,14,15],
Gauss–Hermite filter (GHF) [16], central difference filter (CDF) [16], divided difference filter
(DDF) [17], cubature Kalman filter (CKF) [18], and particle filter (PF) [19–22] are single-model
filters based on the Bayesian framework. When a target moves with a single motion, these
filters are applicable to the filtering problem. The KF operates on the premise of linear dynamics
and observation models, incorporating both process noise and measurement noise modeled as
additive Gaussian distributions. Given these assumptions and a prior Gaussian distribution, the
KF is considered optimal when evaluated under the criterion of minimizing the mean square
error (MSE) [7,8,20]. In scenarios where the system dynamics and/or observation models exhibit
nonlinear characteristics, the original KF equations are not applicable to the filtering problem,
and the EKF, UKF, GHF, CDF, DDF, CKF, and PF are used instead. These filters are approximate
or sub-optimal in the MMSE sense. The EKF, UKF, GHF, CDF, DDF, and CKF are based on
Gaussian approximation [16,23], and the PF is based on Monte Carlo techniques [19–22]. The
EKF, UKF, and CKF are widely used in nonlinear filtering. Therefore, we have chosen these
three filtering techniques for tracking an aircraft that engages in complex maneuvers. The
computational cost to attain an equivalent level of precision to that of these three filters is a
few hundred times more for the PF [24]. Therefore, we have excluded the PF from this study.
Detailed explanations are given later.

The EKF [9–13] garnered significant attention following its successful application in
the Apollo lunar program. The EKF uses the linearization of the time-evolution function
and measurement function by using the Taylor series expansion [7,8]. Previous researchers
have found that when the dynamic and measurement models are highly nonlinear and the
measurement accuracy is low, the EKF could potentially exhibit sub-optimal performance,
and there is a risk that the filter might experience divergence [14,15]. Jullier and Uhlmann
introduced the UKF, which incorporates unscented transformation (UT) [14,15], to obtain
an improved filtering algorithm. The UKF approximates the posterior probability density
function (pdf) by utilizing a collection of 2n + 1 sigma points, which are deterministically
selected, alongside their respective weights, where n is the dimension of the state vector.
By using a third-degree spherical-radial cubature rule, Arasaratnam and Haykin [19] intro-
duced an innovative approach to the formulation of the CKF. The CKF has 2n deterministic
cubature points and associated weights, where each weight is 1/2n. The CKF is regarded
as a simple, stable, and effective algorithm for a nonlinear filtering problem based on sound
theoretical foundations.

The NCV is a nonmaneuvering motion, whereas nearly constant acceleration (NCA),
nearly constant jerk (NCJ), and NCT with an unknown angular velocity are maneuvering
motions [1,8]. The models for NCA and NCJ present linear characteristics when considering
the Cartesian co-ordinates of the target state. Conversely, the NCT model introduces
nonlinearity into the target state representation if the angular velocity remains unspecified.
In general, a target can move with a sequence of nonmaneuvering and maneuvering
motions. In scenarios where a target exhibits a variety of movement patterns, the times of
change in motion are usually unknown. For such a target, the continuous-valued kinematic
state (known as the base state) and the discrete-valued mode (known as the modal state)
or dynamic model change with time [8]. This class of problems is known as the hybrid
state estimation or the jump Markov state estimation problem [8,20,25]. A dynamic model
describes the time evolution of the base state by using a stochastic difference equation. The
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modal state can assume a finite number of possible values and can switch from one mode
to another over time. A homogeneous Markov chain with a known transition probability
matrix (TPM) describes changes in the modal state [8,20,25]. In a hybrid state estimation
algorithm, a bank of mode-matched filters is run in parallel, and an algorithm to manage
the co-operation among the filters is used. The generalized pseudo-Bayesian (GPB) [8,25]
algorithm and the interacting multiple model (IMM) algorithm were proposed by Blom
et al. [26,27] and are examples of hybrid state estimation algorithms. The kth-order GPB
algorithm is denoted by GPBk and requires nk

m filters, where nm is the number of models,
and k is the number of sampling periods over which mode switching is considered. In
contrast, the IMM algorithm always uses nm filters, and the performance of the IMM
algorithm is comparable to that of the GPB2 algorithm (which uses n2

m filters) at a much
reduced computational cost. The computational complexity of the IMM algorithm is nearly
linear in the number of models with a small quadratic term. An attractive feature of the
IMM algorithm is its modularity [25], which allows it to be used with any filter, such as
the KF, EKF, UKF, CKF, etc. The IMM approach has been effectively utilized in a broad
spectrum of applications [28–37]. Comprehensive insights into the algorithm, along with
an extensive review, can be found in [8] and [25], respectively.

If a single-model filter (e.g., KF, EKF, UKF, or CKF) is used for a maneuvering target,
then a high level of process noise will be chosen with a nonmaneuvering motion (e.g., NCV)
used to handle maneuvering motion. For this choice, the filter will perform well in the
maneuvering segments of the trajectory, but its performance will be poor in the nonma-
neuvering segments. If a low level of process noise is chosen, then the filter will perform
well in the nonmaneuvering segments, but it will have large errors in the maneuvering
segments. On the other hand, the IMM filter will perform well in the nonmaneuvering
and maneuvering segments since it probabilistically chooses the motion models. The IMM
algorithm also finds application in multi-target tracking (MTT), which refers to the problem
of jointly estimating the number of targets and their states from noisy sensor measurements
in the presence of a false alarm and a sensor probability of detection that is less than
unity [38–42]. MTT problems occur in both civilian and military domains and arise in air
traffic control (ATC), ground surveillance, maritime surveillance, airborne surveillance,
space–object tracking, autonomous vehicles, ballistic missile defense, [8,25,38,40,43–45],
robotics, remote sensing, computer vision, biomedical research, etc. In general, a tracking
scenario includes nonmaneuvering and maneuvering targets. Well-known MTT algorithms
are the joint probabilistic data association filter (JPDAF) [38,43], multiple hypothesis tracker
(MHT) [38–41,44], and random finite set (RFS)-based algorithms [41,42,45]. The IMM algo-
rithm has been successfully used in the multiscan JPDAF [43], MHT [46] and RFS-based
algorithms [47]. If a single-model filtering algorithm is used in a multi-target tracker for
maneuvering targets, then the measurements will not be associated with predicted tracks
due to model mismatch, and tracks will be terminated after a few scans. This will create
many tracks corresponding to a true target trajectory. This phenomenon is known as
track fragmentation. The fraction of correct measurements in a track, known as the track
purity, will also be affected. In general, an IMM-based multi-target tracker will have a
significant advantage over a single-model filter-based tracker. Since computer hardware
and software systems have improved significantly over the last few decades, IMM-based
multi-target trackers can solve complex tracking problems involving nonmaneuvering and
maneuvering targets.

The organization of the study is as follows. Section 2 presents the single-model
nonlinear filtering algorithms. The hybrid state estimation needed for a maneuvering target
is explained in Section 3. Sections 4 and 5 describe the dynamic and measurement models
used in the current problem. The EKF, UKF, and CKF are explained in Section 6. The IMM
algorithm based on the CKF and PCRLB are discussed in Sections 7 and 8, respectively.
The numerical simulation and results for the 3g, 4g, 5g, and 6g cases for various operating
conditions are presented in Section 10. Finally, Section 11 provides a summary of the work
in the study and discusses the future directions of this research.
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2. Single-Model Nonlinear Filtering Algorithms

Many real-world filtering problems are nonlinear due to the nonlinearities in the
dynamic and measurement models. Measurements of the sonar, radar, electro-optical,
GMTI radar, AMTI radar, synthetic aperture radar, over-the-horizon radar, passive radar,
video, IRST sensor, unattended ground sensor, and 2D air traffic control radar are nonlinear
functions of the target state [20,40,48]. The NCT model with an unknown turn rate and
dynamic models involving atmospheric drag, as well as the gravitational forces of the
earth, moon, sun, and other planets, are nonlinear in the target state [49]. The sensor
measurement models are always discrete, as the data are gathered at specific intervals.
A dynamic model can be continuous or discrete in time. The dynamic models for an
earth-orbiting satellite [49], ballistic missile, and ballistic projectile are continuous in time
and are described by stochastic differential equations [50]. These filtering problems are
known as continuous-discrete filtering problems. Most filtering problems in target tracking
are discrete in nature, where the dynamic and measurement models are both discrete. In
this study, we consider discrete filtering problems. Next, we discuss the general single-
model filtering.

2.1. Single-Model Filtering

Let xk and zk denote the n-dimensional and m-dimensional target state and sensor mea-
surement at time tk. The discrete-time dynamic and measurement models for a nonlinear
filtering problem are described by [8,20]

xk = fk−1(xk−1) + wk−1, (1)

zk = hk(xk) + nk, (2)

where fk−1 and hk are known functions for time evolution and measurement, respectively.
We assume that the process noise wk−1 is zero-mean white Gaussian for the time interval
(tk−1, tk] with a covariance of Qk−1 and that the measurement noise nk is zero-mean
white Gaussian with a covariance of Rk at time tk [8,20]. Our goal is to process the noisy
measurements sequentially and estimate the target state. Next, we present the formal
recursive Bayesian optimal estimation approach [20,50]. Let Zk represent the complete
collection of observations accumulated up to the time tk,

Zk := {z1, z2, . . . , zk}. (3)

The conditional mean represents the optimal estimate in the MMSE sense and is given
by [7,8,20,50]

x̂k|k = E{xk|Zk} =
∫

xk p(xk|Zk)dxk, (4)

where p(xk|Zk) represents the conditional probability density function (pdf). Suppose we
know the pdf p(xk−1|Zk−1) at time tk−1. Our objective is to determine the posterior pdf
p(xk|Zk) after processing the measurement zk. At time tk, the prediction density or prior
density is given by the Chapman-Kolmogorov equation [20,50].

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (5)

where p(xk|xk−1) is the transition density. By using Bayes’ rule, we obtain the posterior
density:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (6)

where the normalization constant is given by

p(zk|Zk−1) =
∫

p(zk|xk)p(xk|Zk−1)dxk. (7)
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The quantity p(zk|xk) is known as the likelihood of the state xk given the measurement
zk [8]. From the dynamic model (1) with additive zero-mean white Gaussian noise, wk−1,
with a covariance of Qk−1, we obtain the transition density as

p(xk|xk−1) = N (xk; fk−1(xk−1), Qk−1). (8)

Similarly, from the measurement model (2) with additive zero-mean Gaussian noise, nk,
with a covariance of Rk, the likelihood can be expressed as

p(zk|xk) = N (zk; hk(xk), Rk). (9)

Given the prior distribution p0(x0) of the target state, in principle, we can recursively
determine the posterior density p(xk|Zk) using (5)–(9). However, obtaining closed-form
solutions is intractable in most cases due to multi-dimensional integrals in (5) and (7), and
in most real-world problems, approximate or sub-optimal solutions are obtained. The EKF,
UKF, CKF, GHF, CDF, DDF, and PF represent examples of approximate nonlinear filters.
If we assume that all the densities are Gaussian, then the Bayesian recursion Equations
(5)–(7) can be evaluated approximately, and the resulting class of filters is called Gaussian
filters [16,20,23]. The Gaussian approximation to p(xk|Zk) is specified by the mean x̂k|k and
covariance Pk|k and is given by

p(xk|Zk) ≈ N (xk; x̂k|k, Pk|k), (10)

where
x̂k|k = x̂k|k−1 + Kkνk, (11)

Pk|k = Pk|k−1 − KkPzz,kK′
k, (12)

νk := zk − ẑk|k−1, (13)

Kk = Pxz,kP−1
zz,k, (14)

and x̂k|k−1 and Pk|k−1 denote the predicted mean and predicted covariance, respectively.
In (11)–(14), ẑk|k−1, νk, Pzz,k, and Kk represent the predicted measurement, innovation,
innovation covariance, and Kalman gain, respectively [8,16,20]. The matrix Pxz,k is the
cross-covariance between the prediction error and innovation. The various terms appearing
in (11)–(14) are given by

x̂k|k−1 = E{xk|Zk−1} = E{fk−1(xk−1)|Zk−1}, (15)

Pk|k−1 = Qk−1 + E{(fk−1(x)− x̂k|k−1)(fk−1(x)− x̂k|k−1)
′|Zk−1}, (16)

ẑk|k−1 = E{zk|Zk−1} = E{hk(xk)|Zk−1}, (17)

Pxz,k = E{(xk − x̂k|k−1)(hk(xk)− ẑk|k−1)
′|Zk−1}, (18)

Pzz,k = Rk + E{(xk − x̂k|k−1)(hk(xk)− ẑk|k−1)
′|Zk−1}. (19)

2.2. Gaussian Filters

The EKF, UKF, CKF, GHF, CDF, and DDF belong to the class of Gaussian filters.
These filters evaluate the expected values appearing in (15)–(19) differently using Gaussian
approximation. In general, a filter has two steps: prediction (or time update) and measure-
ment update. The prediction and measurement update steps are governed by (15)–(17) and
(11)–(14), as well as (18) and (19), respectively. The EKF linearizes the nonlinear functions
fk−1 and hk for estimates x̂k−|k−1 and x̂k|k−1 using the Taylor series expansion, and then
it computes the expected values in (15)–(19) [8,20,50]. It was observed in some cases that
the EKF does not work well and diverges when the degree of nonlinearity is high, the
measurement accuracy is low, and the measurement time interval is high. The Cartesian
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EKF diverges for the bearing-only filtering problem, which satisfies these conditions [20].
It is easier to approximate a pdf than to approximate a nonlinear function. UT [14] and
cubature transformation (CT) [18] use this concept to represent the mean and covariance
of a Gaussian-distributed random variable using sigma points and cubature points, re-
spectively. When a nonlinear function such as fk−1 or hk transforms a Gaussian random
variable, the sigma points and cubature points are used to obtain the more accurate mean
and covariance of the transformed random variable than those obtained by the Taylor
series expansion. The UKF based on the UT and the CKF based on the CT yield more
precise outcomes compared to the EKF in such cases. The PF or sequential Monte Carlo
is an approximate filter that implements the recursive Bayesian algorithm in (5)–(7) using
Monte Carlo simulations [19,20]. There are many versions of the PF [19,20]. In a PF, the
posterior pdf is represented by a set of random samples or particles and associated weights
{xi

k, wi
k}

N
i=1 , where N is the number of particles. As the number of particles increases, the

discrete approximation of the pdf approaches the true pdf, and the particle-based estimates
approach the optimal estimates. The number of particles depends on the nonlinear filtering
problem. The sequential importance sampling algorithm is a commonly used method in a
PF [19,20].

3. Hybrid State Estimation

Suppose a target can have nm modes or dynamic models. Let mk be the mode during
the time interval (tk−1, tk]. The dynamic and measurement models for a hybrid system are
given by [8,20,25]

xk = fk−1(xk−1, mk) + wk−1(mk), (20)

zk = hk(xk, mk) + nk(mk). (21)

The time variation of the modal state is described by a homogeneous Markov chain with
known nm × nm TPM Π [8,20,25]:

πij := P(mk = j|mk−1 = i), i, j = 1, 2, ..., nm, (22)

where πij is the (i,j)th matrix element of Π. The transition probabilities satisfy

πij > 0 and
nm

∑
j=1

πij = 1, for i, j = 1, 2, ..., nm. (23)

Let {µi} denote the initial model probabilities defined by µi := P(m1 = i), i = 1, 2, ..., nm
and satisfying

µi > 0, for i = 1, 2, ..., nm and
nm

∑
i=1

µi = 1. (24)

The state of the hybrid system at time tk is the augmented state yk = [x′k mk]
′. For the

formal recursive equations, interested readers may refer to Section 1.4 of [20]. Detailed
steps of the hybrid state estimation algorithm using the IMM-CKF algorithm are described
in Section 5.

4. Dynamic Models

For all dynamic models, we use the discretized continuous-time model [8]. Let (x, y)
and (ẋ, ẏ) denote the Cartesian position and velocity of the aircraft state, respectively.
At time tk, the state of the aircraft in both the NCV and NCT models is defined as fol-
lows [20,51]:

xk := [xk yk ẋk ẏk]
′. (25)

The counterclockwise and clockwise NCT motions are denoted by NCT+ and NCT-, re-
spectively. Within the scope of this study, the NCV, NCT+, and NCT- are each assigned to
model numbers 1, 2, and 3, respectively. Furthermore, the model indices are indicated in
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superscript form within the state transition matrix, time evolution function, the vector of
the process noise, and the matrix of process noise covariance [20,51].

4.1. Nearly Constant Velocity (NCV) Model

The dynamics of the NCV movement are captured through a linear model, which is
described by [5,8,20]:

xk = F(1)
k−1xk−1 + w(1)

k−1, (26)

where F(1)
k−1 is the state transition matrix and w(1)

k−1 represents the process noise during

the interval from tk−1 to tk. Assuming w(1)
k−1 to be zero-mean Gaussian white noise with

the covariance matrix Q(1)
k−1, the corresponding definitions for F(1)

k−1 and w(1)
k−1 are as fol-

lows [5,8,20]:

F(1)
k−1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, (27)

E
{

w(1)
k−1

}
= 04×1 (28)

E
{

w(1)
i−1w(1)

k−1

}
= δjkQ(1)

i−1 (29)

Q(1)
k−1 = q1


T3/3 0 T2/2 0

0 T3/3 0 T2/2
T2/2 0 T 0

0 T2/2 0 T

, (30)

where δ is the Kronecker delta, T is the constant measurement time interval, and q1 denotes
the power spectral density (PSD) of the acceleration noise process in continuous time for
model 1, which is applicable to both the X and Y components [8,20,51].

4.2. Nearly Constant Turn (NCT) Model

The dynamics of the NCT movement are captured through a nonlinear model, which
is described by [5,8,20]

xk = f(j)(xk−1) + w(j)
k−1, (31)

where
f(j)(xk−1) := A(j)(xk−1)xk−1, j = 2, 3, (32)

A(j)(xk−1) =



1 0
sin(ω(j)

k−1T)

ω
(j)
k−1

− 1−cos(ω(j)
k−1T)

ω
(j)
k−1

0 1
1−cos(ω(j)

k−1T)

ω
(j)
k−1

sin(ω(j)
k−1T)

ω
(j)
k−1

0 0 cos(ω(j)
k−1T) − sin(ω(j)

k−1T)

0 0 sin(ω(j)
k−1T) cos(ω(j)

k−1T)


, j = 2, 3. (33)

In (33), the angular velocity ω
(j)
k−1 at time tk−1 for model j is given by

ω
(j)
k−1 = κ(j) am√

ẋ2
k−1 + ẏ2

k−1

, j = 2, 3, (34)
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where am > 0 signifies a standard maneuvering acceleration, while κ(2) and κ(3) are
indicators with values of 1 and −1 for the NCT+ and NCT- maneuvers, respectively. The
covariance matrices of ω

(2)
k−1 and ω

(3)
k−1 are defined as follows [20,51]:

Q(j)
k−1 = qj


T3/3 0 T2/2 0

0 T3/3 0 T2/2
T2/2 0 T 0

0 T2/2 0 T

, j = 2, 3, (35)

where q2 and q3 denote the PSDs of the noise processes in models 2 and 3, respectively [3],
with q2 = q3.

5. Measurement Model

The AMTI radar measures the range, bearing (or azimuth), and radial velocity of the
target [52]. Figure 1 [51] depicts the true range, rk, azimuth, βk, and radial velocity, vr,k of
the target at time tk. Assume that the radar moves with CV. At time tk, the state vector of
the AMTI radar is given by

xs
k = [xs

k ys
k ẋs

k ẏs
k]
′. (36)

The position and velocity vectors of the target denoted by pk and vk, respectively, at time tk
are specified by

pk = [xk yk]
′, (37)

vk = [ẋk ẏk]
′. (38)

Let ps
k denote the position vector of the AMTI radar at time tk:

ps
k = [xs

k ys
k]
′. (39)

The range vector of the target from the AMTI radar at time tk is

rk = pk − ps
k = [xk − xs

k yk − ys
k]
′. (40)

Then, the range of the target from the AMTI radar at time tk is given by

rk =
∥∥pt

k − ps
k
∥∥ =

√(
xk − xs

k
)2

+
(
yk − ys

k
)2. (41)

Let uk denote the unit vector along the radar line-of-sight (RLOS). Then,

uk := rk/rk =
pk − ps

k∥∥pk − ps
k

∥∥ . (42)

The radial velocity of the target vr,k at time tk is given by [24,52]

vr,k =
1
rk
[(xk − xs

k)ẋk + (yk − ys
k)ẏk]. (43)

Hence, the radial velocity represents the component of the target’s velocity that is projected
onto the RLOS (Figure 1).

At time tk, given the target speed vk and the angle between the target velocity and the
RLOS αk, the radial velocity of the target vr,k can be calculated as

vr,k = vk cos αk. (44)
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Figure 1. True range, azimuth, and radial velocity [51].

Figure 1 and Equation (44) demonstrate that the radial velocity exhibits its peak
values of vk and −vk when the target moves in the same or opposite direction as the
RLOS. It vanishes to zero when the target’s velocity is perpendicular to the RLOS. The
true trajectories of the AMTI radar and aircraft moving at 3g, 4g, 5g, and 6g are shown in
Figure 2, where the red and blue lines indicate the trajectories of the aircraft and AMTI
radar, respectively. An open circle and a diamond indicate the start and end points of a
trajectory, respectively. Each aircraft trajectory encompasses a succession of motion phases,
including segments of NCV, NCT+, another NCV, NCT-, and concluding with another NCV.
In Figure 3, different segments of the trajectory of an aircraft moving at 3g are presented,
and the durations of various segments with start and end times are also given in Table 1.

(a) (b)

(c) (d)

Figure 2. Trajectories of an aircraft moving at (a) 3g, (b) 4g, (c) 5g, and (d) 6g and AMTI sensor
trajectories.
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NCV 

NCT 

NCV 

NCV NCT 

A B 

C 

D 

E F 

Figure 3. Different segments of the trajectory of an aircraft moving at 3g.

Table 1. Segment lengths and times for the 3g case.

Segment Length (s) Initial and Final Times (s)

First NCV, AB 60 [0, 60]
NCT+, BC 30 [60, 90]
Second NCV, CD 60 [90, 150]
NCT-, DE 30 [150, 180]
Third NCV, EF 60 [180, 240]

At time tk, the radar measurement vector zk is defined as

zk = [zk,r zk,β vk,vr ]
′. (45)

The measurement model for the AMTI radar is defined by [52]

zk = h(xk) + nk, (46)

where h is the nonlinear measurement function

h(xk) =

 rk
βk
vr,k

 =


√(

xk − xs
k
)2

+
(
yk − ys

k
)2

tan−1(xk − xs
k, yk − ys

k)
1
rk
[(xk − xs

k)ẋk + (yk − ys
k)ẏk]

, with rk > 0, βk ∈ [0, 2π). (47)

In (46), nk is a zero-mean white Gaussian measurement noise with the covariance matrix R.
The corresponding definitions of nk are given as follows:

nk = [nk,r nk,β nk,vr ]
′, (48)

E{nk} = 03×1, (49)

E{njnk} = δjkR, (50)

nk ∼ N (nk; 03×1, R), (51)

R = diag(σ2
r , σ2

β, σ2
vr ), (52)

where σr, σβ, σvr are the measurement errors’ standard deviations (SDs) for range, azimuth,
and radial velocity, respectively. The dynamic model of the radar moving with CV is
formulated by

xs
k = F(1)

k−1xs
k−1, (53)

where F(1)
k−1 is given by (27).
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6. EKF, UKF, and CKF

Suppose we have the estimated state x̂k−1|k−1 and associated covariance Pk−1|k−1 at
time tk−1. Our goal is to obtain the estimated state x̂k|k and associated covariance Pk|k at
time tk after processing the measurement zk at time tk. Next, we describe the iteration
of obtaining x̂k|k and Pk|k from x̂k−1|k−1 and Pk−1|k−1 using the nonlinear dynamic and
measurement models. We assume that the process noise and measurement noise are
zero-mean Gaussian. Consider the discrete-time nonlinear dynamic model in (1). For our
problem, the dynamic models for NCV and NCT are given in (26) and (31), respectively.
The nonlinear measurement model is given by (46)–(52). The iteration includes a prediction
step (also called the time-update step) and a measurement update step.

6.1. EKF
6.1.1. Prediction

The predicted state estimate and its associated covariance matrix are given, respec-
tively, by [5,7,8,20]

x̂k|k−1 = fk(x̂k−1|k−1), (54)

Pk|k−1 = Fk−1Pk−1|k−1F′
k−1 + Qk−1, (55)

where the Jacobian of the time evolution function is given by

Fk−1 =
∂fk(x)

∂x

∣∣∣∣
x=x̂k−1|k−1

. (56)

6.1.2. Measurement Update

The predicted measurement ẑk|k−1 and innovation covariance Pzz,k = Sk are given
by [5,7,8,20]

ẑk|k−1 = h(x̂k|k−1), (57)

Pzz,k = Sk = Rk + HkPk|k−1H′
k, (58)

where the Jacobian of the measurement function is given by

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

. (59)

The expression for the updated state estimate and covariance in (11)–(14) hold, and the
expression for the cross-covariance Pxz,k is given by [5,8]

Pxz,k = Pk|k−1H′
k. (60)

6.2. Unified Algorithm of UKF and CKF

Unlike the EKF, the UKF and CKF can operate without the need for derivative calcula-
tions. In this study, we use the UT [14] in UKF. The scaled UT (SUT) can also be used in the
UKF [15]. In order to present the UKF and CKF in a unified way, we define

i0 =

{
0 for UKF,
1 for CKF,

(61)

γ =

{
n + κ for UKF,

n for CKF,
(62)

where κ is a parameter used in the UT and a value of 3− n is suggested [14]. Following [18],
we summarize the prediction and measurement update steps in Sections 6.2.1 and 6.2.2,
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respectively. The UKF utilizes 2n + 1 sigma points, whereas the CKF employs 2n cubature
points in its computation. Let m = 2n. The weights used in the UKF and CKF are given by

UKF : w0 =
κ

γ
, wi =

1
2γ

, for i = 1, 2, ..., m, (63)

CKF : wi =
1

2γ
, i = 1, 2, ..., m. (64)

6.2.1. Prediction

The following steps describe the computation of the predicted state estimate x̂k|k−1
and predicted covariance Pk|k−1 at time tk.
Step 1: Perform a Cholesky decomposition on Pk−1|k−1,

Pk−1|k−1 = Sk−1|k−1S′
k−1|k−1. (65)

Step 2: Compute the sample points

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1, i = i0, ..., m, (66)

where
ξ0 = 0n×1, ξi =

√
γ[In − In]i i = i0, ...., m. (67)

Therefore,
Sk−1|k−1ξi =

√
γ[Sk−1|k−1 − Sk−1|k−1]i, i = i0, ..., m, (68)

where [Sk−1|k−1 − Sk−1|k−1]i is the ith column of the n×m matrix [Sk−1|k−1 −Sk−1|k−1].
Step 3: Propagate the sample points from time tk−1 to time tk,

X∗
i,k|k−1 = fk(Xi,k−1|k−1), i = i0, ..., m. (69)

Step 4: Compute the predicted state estimate at time tk,

x̂k|k−1 =
m

∑
i=i0

wiX∗
i,k|k−1. (70)

Step 5: Compute the predicted error covariance at time tk,

Pk|k−1 =
m

∑
i=i0

wiX∗
i,k|k−1(X

∗
i,k|k−1)

′ − x̂k|k−1x̂′k|k−1 + Qk−1. (71)

6.2.2. Measurement Update

Step 1: Perform a Cholesky decomposition on Pk|k−1,

Pk|k−1 = Sk|k−1S′
k|k−1 (72)

Step 2: Compute the cubature points,

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1, i = i0, ..., m. (73)

Step 3: Compute the predicted measurement sample points,

Zi,k|k−1 = h(Xi,k|k−1), i = i0, ..., m. (74)
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Step 4: Compute the predicted measurement at time tk,

ẑk|k−1 =
m

∑
i=i0

wiZi,k|k−1. (75)

Step 5: Compute the innovation covariance,

Pzz,k =
m

∑
i=i0

wiZi,k|k−1Z′
i,k|k−1 − ẑk|k−1ẑ′k|k−1 + Rk. (76)

Step 6: Compute the cross-covariance matrix,

Pxz,k =
m

∑
i=i0

wiXi,k|k−1Z′
i,k|k−1 − x̂k|k−1ẑ′k|k−1. (77)

Step 7: Compute the updated state estimate and associated covariance at time tk using
(11)–(14).

7. IMM Algorithm Based on CKF

In order to estimate the state of a maneuvering target in a nonlinear filtering prob-
lem, the IMM-EKF [29–31,53–56], IMM-UKF [32,54,55,57], IMM-CKF [2,3,58], and IMM-
cubature quadrature Kalman filter (IMM-CQKF) [4] are commonly used. The IMM filtering
algorithm maintains a common structure across its variations, such as the IMM-EKF, IMM-
UKF, and IMM-CKF, with only minor distinctions. In order to conserve space, this section
focuses on detailing the IMM-CKF filter. The IMM filter is designed to leverage a collection
of kinematic models, encompassing all potential aircraft maneuvers across any trajectory
segment [8,20,25,27]. By incorporating a parallel execution of three distinct CKFs, the IMM
filter adeptly manages the NCV, NCT+, and NCT- motion models.

Suppose at time tk−1, the state estimates x̂i
k−1|k−1, the covariance matrices Pi

k−1|k−1,

and the model probabilities µi
k−1 are available, where i = 1, 2, . . . , 3. We define the TPM

as Π ∈ R3×3 with elements {πij} and the probability of the ith model as µi
k. Next,

we summarize the various steps of the IMM filter [8,20,25,27] to compute the model
probabilities, state estimates, and covariances of all three filters at time tk.
Step 1: Compute the Mixing Probabilities

Given the model probabilities at time tk−1 and transition probabilities, compute the
mixing probabilities

µ
i|j
k−1|k−1 =

1
c̄j

πijµ
i
k−1, i, j = 1, 2, 3, (78)

c̄j =
3

∑
i=1

πijµ
i
k−1, j = 1, 2, 3. (79)

Step 2: Compute the Mixed Initial States and Covariances
Compute the mixed initial states and covariances,

x̂0,j
k−1|k−1 =

3

∑
i=1

µ
i|j
k−1|k−1x̂i

k−1|k−1, j = 1, 2, 3, (80)

P0,j
k−1|k−1 =

3

∑
i=1

µ
i|j
k−1|k−1

[
Pi

k−1|k−1

+(x̂i
k−1|k−1 − x̂0,j

k−1|k−1)(x̂
i
k−1|k−1 − x̂0,j

k−1|k−1)
′
]
, j = 1, 2, 3.

(81)

Step 3: Compute the Predicted State Estimates and Covariances
The predicted state estimate and covariance for the NCV model are given, respectively,

by
x̂1

k|k−1 = F(1)
k−1x̂0,1

k−1|k−1, (82)
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P1
k|k−1 = F(1)

k−1P0,1
k−1|k−1(F

(1)
k−1)

′ + Q(1)
k−1. (83)

Since the NCT+ and NCT- models are nonlinear, the predicted state estimates and co-
variances are calculated by using cubature points. Thus, the predicted state estimates are
given by

x̂j
k|k−1 =

m

∑
i=1

wiX
∗,j
i,k|k−1, j = 2, 3. (84)

where the ith predicted cubature point X∗
i,k|k−1 is calculated using (65)–(71). Then, the

predicted covariances are calculated by

Pj
k|k−1 =

m

∑
i=1

wiX
∗,j
i,k|k−1(X

∗,j
i,k|k−1)

′ − x̂j
k|k−1

(
x̂j

k|k−1

)′
+ Q(j)

k−1, j = 2, 3. (85)

Step 4: Compute the Innovation Covariance and Cross-covariance
For all three models, the predicted measurement and innovation covariance are given,

respectively, by

ẑj
k|k−1 =

m

∑
i=1

wiZ
j
i,k|k−1, j = 1, 2, 3. (86)

Pj
zz,k|k−1 =

m

∑
i=1

wiZ
j
i,k|k−1

(
Zj

i,k|k−1

)′
− ẑj

k|k−1

(
ẑj

k|k−1

)′
+ R, (87)

where Zj
i,k|k−1 is calculated using (72)–(74). The cross-covariance is calculated by

Pj
xz,k|k−1 =

m

∑
i=1

wiX
j
i,k|k−1

(
Zj

i,k|k−1

)′
− x̂j

k|k−1

(
ẑj

k|k−1

)′
. (88)

Step 5: Compute the Model Likelihoods
Calculate the model likelihoods by

λ
j
k = N (ν

j
k; 0, Pj

zz,k|k−1), j = 1, 2, 3, (89)

where ν
j
k is the innovation and is given by

ν
j
k = zk − ẑj

k|k−1. (90)

Step 6: Compute the Updated States and Covariances

x̂j
k|k = x̂j

k|k−1 + Kj
kν

j
k, j = 1, 2, 3, (91)

Pj
k|k = Pj

k|k−1 − Kj
kPj

zz,k|k−1(K
j
k)

′, j = 1, 2, 3, (92)

where the Kalman gain is given by

Kj
k = Pj

xz,k|k−1

(
Pj

zz,k|k−1

)−1
, j = 1, 2, 3. (93)

Step 7: Update the Mode Probabilities
Update the model probabilities by

µ
j
k =

1
c̄

λ
j
k c̄j, j = 1, 2, 3. (94)

Step 8: Compute the Combined State Estimate and Covariance
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The combined state estimate and covariance are given, respectively, by

x̂k|k =
3

∑
j=1

µ
j
k x̂j

k|k. (95)

Pk|k =
3

∑
j=1

µ
j
k

[
Pj

k|k +
(

x̂j
k|k − x̂k|k

)(
x̂j

k|k − x̂k|k

)′]
. (96)

A schematic diagram of the IMM filter based on the CKF is shown in Figure 4.

Interaction (Mixing)

CKF(NCT+)CKF(NCV) CKF(NCT-)

Mode Probability

 Update

Estimate and 

Covariance 

Combination

1 1

1| 1 1| 1
ˆ ,k k k kx P

2 2

1| 1 1| 1
ˆ ,k k k kx P

3 3

1| 1 1| 1
ˆ ,k k k kx P

1

1k
2

1k

3

1k

Updated State Estimate and 

Covariance at time k-1

1

k

2

k
3

k

{

01 01

1| 1 1| 1
ˆ ,k k k kx P

02 02

1| 1 1| 1
ˆ ,k k k kx P

03 03

1| 1 1| 1
ˆ ,k k k kx P

| |
ˆ ,k k k kx P

2 2

| |
ˆ ,k k k kx P

3 3

| |
ˆ ,k k k kx P

j

k | |
ˆ ,k k k kx P

Figure 4. The IMM filter based on CKF.

A large number of publications using the IMM estimator are available in the literature.
A few selected relevant papers are discussed based on their technical contribution and
results. Li and Bar-Shalom [29] considered a maneuvering aircraft in the air traffic control
(ATC) problem with accelerations of 0.6g, 1g, and 2g. The measurements of the ATC radar
are range and azimuth, which were converted to unbiased Cartesian position measurements.
They used two versions of the IMM-EKF with the NCV and NCT motions. Kastella and
Biscuso [30] performed an extensive study on the ATC problem and showed that the IMM-
EKF with the NCV and NCT motions had superior performance over the adaptive single
model KF. The maximum acceleration for the high-performance turn was 3.3g. Generic
maneuvering aircraft with accelerations of 1g, 1.5g, 2.5g, and 3g were studied in [31] using
radar range, azimuth, and range rate measurements. The authors used the EKF-based
switching grid and adaptive grid IMM filters. Blackman et al. [32] analyzed a highly
maneuvering aircraft with a maximum acceleration of 3g using the NCT motion.

8. Posterior Cramér-Rao Lower Bound (PCRLB)

Consider the discrete-time dynamic and measurement models given, respectively, by

xk= fk−1(xk−1,wk−1), (97)

zk = hk(xk, nk). (98)

Let x̂k|k be an unbiased estimator of the state vector xk, based on measurement sequence
Zk = {z1, ..., zk} and prior density p(x0). Then, the mean square error matrix (MSEM) of
x̂k|k, denoted as Σk|k, has a lower bound, called the PCRLB J−1

k [5,20,59–61]:

Σk|k := E{(x̂k|k − xk)(x̂k|k − xk)
′} ≥ J−1

k , (99)

where Jk represents the Bayesian information matrix [20]. Tichavsky et al. [60] derived an
elegant recursive expression to compute Jk recursively by using

Jk = D33
k−1 − (D12

k−1)
′(Jk−1 + D11

k−1)
−1

D12
k−1 + Jk,Z, (100)
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where, for additive Gaussian process noise and measurement noise (valid for our current
problem) [5,20,61],

D11
k−1 = E{F̄′

k−1Q−1
k−1F̄k−1}, (101)

F̄k−1 = [∇xk−1 f′k−1(xk−1)]
′, (102)

D12
k−1 = −E{F̄′

k−1}Q−1
k−1, (103)

D33
k−1 = Q−1

k−1, (104)

Jk,Z = E{H̄′
kR−1

k H̄k}, (105)

H̄k = [∇xk h′
k(xk)]

′. (106)

The Jacobian matrices F̄k−1 in (102) and H̄k in (106) are nonlinear functions of the true
states. Therefore, it is not possible to calculate the expected values in equations (101), (103),
and (105) by using analytical methods. We evaluated these expected values using Monte
Carlo runs. For the NCV motion,

D11
k−1 = (F1

k−1)’Q−1
k−1F1

k−1, (107)

D12
k−1 = −F′

k−1Q−1
k−1. (108)

A detailed derivation of the Jacobian F̄k for the time evolution function is presented in
Appendix A. A detailed derivation of the Jacobian H̄k for the AMTI measurement function
is presented in Appendix B and is given by

H̄k =

 u′
k 01×2

uy,k
rk

− ux,k
rk

01×2
v′

k
rk

[
I2 − uku′

k
]

u′
k

 (109)

9. Measures of Performance (MoP)

In order to evaluate the performance of the IMM-EKF, IMM-UKF, and IMM-CKF
filters, we calculate the RMS position and velocity errors, ANEES [8,24,62,63], RTAMS
errors [12,18,51,63], covariance consistency metric, and CPU times using Monte Carlo
simulation. Given the true state xk,i and estimated state x̂k|k,i of the aircraft, the RMS
position and velocity errors at time tk are defined, respectively, by

RMS position, k =

√√√√ 1
M

M

∑
i=1

[(xk,i − x̂k|k,i)
2 + (yk,i − ŷk|k,i)

2], (110)

RMS velocity, k =

√√√√ 1
M

M

∑
i=1

[(ẋk,i − ˆ̇xk|k,i)
2
+ (ẏk,i − ˆ̇yk|k,i)

2
], (111)

where M denotes the number of Monte Carlo runs.
The root time-averaged mean square (RTAMS) position and velocity er-

rors [5,20,52] are defined, respectively, by

RTAMSposition =

√√√√ 1
(k2 − k1 + 1)M

k2

∑
k=k1

M

∑
i=1

[(xk,i − x̂k|k,i)
2 + (yk,i − ŷk|k,i)

2], (112)

RTAMSvelocity =

√√√√ 1
(k2 − k1 + 1)M

k2

∑
k=k1

M

∑
i=1

[(ẋk,i − ˆ̇xk|k,i)
2
+ (ẏk,i − ˆ̇yk|k,i)

2
], (113)

where k1 and k2 are the first and the last indices of the trajectory segment, respectively.
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At time tk, the ANEES is calculated as [8,24,62,63]

ANEESk :=
1

nM

M

∑
i=1

(xk,i − x̂k|k,i)
′P−1

k|k,i(xk,i − x̂k|k,i), (114)

where n denotes the dimension of the state, and Pk|k,i is the covariance corresponding
to x̂k|k,i. The criterion for determining that the estimation error is consistent with the
calculated covariance of the filter at time tk is that ANEESk lies within the two-sided 99%
confidence interval. For 1,000 Monte Carlo runs and a four-dimensional state vector, the
99% confidence interval is [0.943, 1.058]. Since the nonlinear filters are approximate, the
filter calculated covariance, in general, is different from the actual mean square error matrix

(MSEM). The average of the covariance matrix at time tk is P̄k|k =
1
M

M
∑

i=1
Pk|k,i. The MSEM

at time tk is specified by

MSEMk =
1
M

M

∑
i=1

(xk,i − x̂k|k,i)(xk,i − x̂k|k,i)
′. (115)

At time tk, to determine the covariance consistency of a filter, we compute the ratio

ζk =
trace(P̄k|k)

trace (MSEMk)
. (116)

If ζk is close to unity, then the filter-calculated covariance is a good measure of the MSEM.
Thus, ζk can be regarded as a second metric for covariance consistency.

10. Numerical Simulations and Results

In this study, the motion patterns of a highly maneuvering aircraft are the same as
the target’s motion patterns in [64,65], which are NCV, NCT+, NCV, NCT-, and NCV in
sequence. In the experiments considered in this section, the acceleration of the target during
the NCT+ and NCT- phases is 3g, 4g, 5g, and 6g, respectively, while only the case with
an acceleration of 4g was considered in [64]. The prior distribution of the aircraft’s state
and the power spectral densities (PSDs) of the process noise during the NCV and NCT
phases are the same as in reference [64], as shown in Table 2. The impact of prior covariance
on filtering accuracy was studied further in [65]. The AMTI radar moves with constant
velocity in 2D along the X-axis and measures the range, azimuth, and radial velocity of the
aircraft. The initial position and velocity of the sensor and measurement parameters are
shown in Table 3. In the IMM filters, we use a constant transition probability matrix [8],
which is given by

Π =

0.95 0.025 0.025
0.04 0.95 0.01
0.04 0.01 0.95

. (117)

We used 1000 Monte Carlo runs to compute the various MoPs of the IMM-based filters. We
analyze the MoP of the filters using three azimuth SDs of 1, 2, 4 mrad and two measurement
time intervals of 0.5 and 1.0 s. For filter initialization, we draw a sample from the prior
distribution in each Monte Carlo run and set it to the initial state estimate. Therefore, the
initial state estimate is different from the true initial state in each Monte Carlo run.
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Table 2. Aircraft parameters.

Variable Value

Prior mean position (1000, 20,000) m
Prior mean velocity (374.332, 0) m/s

Variance of prior position (402, 402) m2

Variance of prior velocity (42, 42) (m/s)2

NCV: PSD of process noise (q1) 0.1 m2/s3

NCT: PSD of process noise (q2) 0.01 m2/s3

Table 3. Sensor parameters.

Variable Value

Initial position (−11,500, 5000) m
Constant velocity (200, 0) m/s

Range SD 10 m
Azimuth SD 1, 2, 4 mrad

Radial velocity SD 1 m/s
Measurement time interval (T) 0.5, 1.0 s
Number of measurements (N) 481, 241

We present the numerical results in Sections 10.1–10.3 with varying parameters.

10.1. Numerical Results for T = 0.5 s

The RMS position and velocity errors for the IMM-EKF, IMM-UKF, IMM-CKF, and
PCRLB in 3g, 4g, 5g, and 6g cases are presented in Figures 5 and 6, respectively. In
Figures 5 and 6, we observe that the RMS position and velocity errors from various filters
are nearly the same. In order to understand the results in Figures 5 and 6, we have presented
the time indices of dynamic models in Table 4. From Figures 5 and 6, it is noted that the
RMS errors in position and velocity during the NCV phases approximate the respective
PCRLB values closely. Nonetheless, minor discrepancies exist between the RMS errors and
their corresponding PCRLB values within the NCT+ and NCT- phases.

(a) (b)

(c) (d)

Figure 5. RMS position error in (a) 3g, (b) 4g, (c) 5g, and (d) 6g cases for T = 0.5 s.
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Table 4. Time indices of dynamic models for T = 0.5 s.

Time Indices Dynamic Model

1–121 NCV
121–181 NCT+
181–301 NCV
301–361 NCT-
361–481 NCV

(a) (b)

(c) (d)

Figure 6. RMS position error in (a) 3g, (b) 4g, (c) 5g, and (d) 6g cases for T = 0.5 s.

In order to see the differences in the RMS errors of various filters, we have plotted the
RMS position and velocity differences (EKF-UKF) and (EKF-CKF) in Figures 7a and 7b,
respectively. Figure 7 illustrates that the IMM-UKF and IMM-CKF filters demonstrate a
comparable level of precision, and they both marginally outperform the IMM-EKF in terms
of accuracy. The spikes in differences occur during the NCT+ and NCT- segments.

(a) (b)

Figure 7. (a) RMS position difference; (b) RMS velocity difference for 4g, azimuth SD = 1 mrad, and
T = 0.5 s.

Figure 8 displays the ANEES for the three IMM filters under consideration across three
distinct acceleration scenarios, all bounded by the 99% confidence intervals. It is evident
from the figure that the ANEES remains within the 99% confidence limits for segments
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where the aircraft’s motion is characterized by NCV. Conversely, for the NCT segments,
the ANEES is observed to exceed these limits. This discrepancy suggests that while the
filters’ computed covariance matrices align well with the estimation errors during the NCV
phases, they fail to maintain the same consistency during the NCT+ and NCT- phases.
Further research is warranted to address this issue and enhance the covariance calculations
within the NCT segments for improved filtering performance. A magnified view of ANEES
for the 4g case is shown in Figure 9a, and the covariance consistency metric ζk is plotted in
Figure 9b. The plot of ζk in Figure 9b indicates that the IMM-UKF and IMM-CKF-calculated
covariances have better covariance consistency than that of the IMM-EKF.

(a) (b)

(c)

Figure 8. ANEES in (a) 3g, (b) 4g, and (c) 5g cases for T = 0.5 s.

(a) (b)

Figure 9. (a) ANEES; (b) Trace (Cov)/Trace (MSEM) for 4g, azimuth SD = 1 mrad, and T = 0.5 s.

In the first Monte Carlo run, Figure 10 depicts the mode probabilities for the 3g, 4g, and
5g cases for the IMM-CKF. When comparing the mode probabilities in Figure 10 with the
results in Table 3, we find that the mode probabilities for the first NCV, NCT+, second NCV,
NCT-, and third NCV segments are calculated accurately. Moreover, the mode probabilities
approach a value of one in most cases. A similar trend is observed for the IMM-EKF and
IMM-UKF.

Table 5 presents the RTAMS position and velocity errors and corresponding PCRLBs
for the NCT- and last NCV segment. The results in Table 5 show that the RTAMS position
and velocity errors of the IMM-UKF and IMM-CKF are nearly the same, and those of the
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IMM-EKF are slightly higher. In the final NCV phase, the RTAMS errors of the three IMM
filters nearly approximate their respective PCRLB values. Conversely, during the segment
involving the NCT-, the discrepancies between the RTAMS errors recorded by the IMM
filters and the corresponding PCRLB values are somewhat higher.

From Figure 2, we observe that the trajectories of the aircraft are different in the three
acceleration cases. Therefore, we cannot compare the accuracies of the filtering results
among the three scenarios.

(a) (b)

(c) (d)

Figure 10. Mode probabilities for (a) 3g, (b) 4g, (c) 5g, and (d) 6g cases for the IMM-CKF for T = 0.5 s.

Table 5. RTAMS errors for T = 0.5 s.

Acceleration Segment RTAMS Error IMM-EKF IMM-UKF IMM-CKF PCRLB

3g
NCT-

Position (m) 8.663 8.616 8.615 6.871

Velocity (m/s) 1.105 1.084 1.083 0.407

Last NCV
Position (m) 11.288 11.273 11.278 10.848

Velocity (m/s) 1.193 1.192 1.192 1.175

4g
NCT-

Position (m) 6.809 6.694 6.694 5.225

Velocity (m/s) 0.925 0.859 0.859 0.349

Last NCV
Position (m) 9.076 8.986 8.986 8.712

Velocity (m/s) 1.123 1.120 1.120 1.106

5g
NCT-

Position (m) 4.689 4.470 4.470 3.330

Velocity (m/s) 0.740 0.701 0.701 0.298

Last NCV
Position (m) 5.985 5.845 5.845 5.655

Velocity (m/s) 0.995 0.990 0.990 0.978

We present the CPU times required for each execution of the Monte Carlo simulation
in Table 6. The results in Table 6 indicate that the IMM-EKF completes the run in the least
amount of CPU time. In comparison, the CPU time for both the IMM-UKF and IMM-CKF
is approximately 1.6 times the CPU time of the IMM-EKF. Additionally, the IMM-CKF
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slightly outperforms the IMM-UKF in terms of CPU time, consuming a marginally smaller
CPU time. This is due to the fact that the CKF uses 2n cubature points, whereas the UKF
uses 2n + 1 sigma points.

10.2. Comparison of IMM-CKF MoP with Varying Azimuth SD with T = 0.5 s

Since all IMM-based filters have nearly the same state estimation accuracy, we use the
IMM-CKF for this comparison. In Figures 11 and 12, the RMS position and velocity errors
for three different values of azimuth error SDs using the IMM-CKF and corresponding
PCRLBs are plotted. It is observed that as the azimuth error SD increases, the RMS position
and velocity errors and PCRLBs also increase. The same trend can be observed in Table 7,
which presents the RTAMS position and velocity errors and corresponding PCRLBs for all
three cases of azimuth error SDs. The velocity RMS error and corresponding PCRLB are
nearly the same for all three azimuth error SDs. As the azimuth error SD increases, the
difference between the RTAMS position error and corresponding PCRLB increases slightly.

Table 6. CPU times per Monte Carlo run for T = 0.5 s.

Case CPU Time IMM-EKF IMM-UKF IMM-CKF

3g
Absolute (s) 0.273 0.440 0.417

Relative 1.000 1.612 1.527

4g
Absolute (s) 0.293 0.456 0.433

Relative 1.000 1.670 1.586

5g
Absolute (s) 0.370 0.611 0.578

Relative 1.000 1.651 1.562

(a) (b)

(c)

Figure 11. RMS position errors for (a) 1 mrad, (b) 2 mrad, and (c) 4 mrad azimuth error SD in the 4g
case.
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(a) (b)

(c)

Figure 12. RMS velocity errors for (a) 1 mrad, (b) 2 mrad, and (c) 4 mrad azimuth error SD in the 4g
case.

Table 7. RTAMS errors for 4g using IMM-CKF and PCRLB for T = 0.5 s.

Azimuth SD Segment RTAMS Error IMM-EKF IMM-UKF IMM-CKF PCRLB

1 mrad

NCT-
Position (m) 6.809 6.694 6.694 5.225

Velocity (m/s) 0.925 0.859 0.859 0.341

Last NCV
Position (m) 9.076 8.986 8.986 8.712

Velocity (m/s) 1.123 1.120 1.120 1.106

2 mrad

NCT-
Position (m) 4.689 4.470 4.470 3.330

Velocity (m/s) 0.740 0.701 0.701 0.298

Last NCV
Position (m) 5.985 5.845 5.845 5.655

Velocity (m/s) 0.995 0.990 0.990 0.978

4 mrad

NCT-
Position (m) 16.265 16.118 16.119 11.676

Velocity (m/s) 1.464 1.184 1.184 0.401

Last NCV
Position (m) 21.531 21.234 21.236 19.219

Velocity (m/s) 1.436 1.430 1.423 1.374

10.3. Comparison of IMM-CKF MoP with Varying Measurement Time Interval

Figures 13 and 14 present the RMS position and velocity errors in the 4g case with the
measurement time intervals of 0.5 s and 1 s using the IMM-CKF. We observe that as the
measurement time interval increases, the RMS position and velocity errors also increase, as
expected. This can also be observed from Table 8, which shows the RTAMS errors for both
position and velocity.



Algorithms 2024, 17, 399 24 of 31

(a) (b)

Figure 13. RMS position errors for the 4g case using (a) T = 0.5 s and (b) T = 1 s.

(a) (b)

Figure 14. RMS velocity errors for the 4g case using (a) T = 0.5 s and (b) T = 1 s.

10.4. Comparison of Algorithms with Low Measurement Accuracy and Low Data Rate

In previous cases, realistic measurement SDs and measurement time intervals were
used. As a result, the state estimation accuracies of the various IMM filters are nearly
the same. In order to evaluate the performance of the IMM filters with high SDs and
measurement time intervals, the accuracy of state estimation among the three IMM filters is
quite similar. In order to evaluate the performance of the various IMM filters with high SDs
and measurement time intervals, we used σr = 50 m, σβ = 5◦, σvr = 5 m/s, and T = 2.0 s.
Table 9 presents the measurement time indices of various dynamic models. The RTAMS
position and velocity errors for the NCT- and last NCV segment are presented in Table 10.
The results in Table 10 show that the IMM-CKF and IMM-EKF have the best and the worst
performances, respectively, and the performance of the IMM-UKF is close to that of the
IMM-CKF. The RMS position and velocity errors are presented in Figure 15. Figure 16a,b
show the ANEES and ςk = Trace(Cov)/Trace(MSEM). The above findings indicate that the
IMM-UKF and IMM-CKF have better covariance consistency than the IMM-EKF.

Table 8. RTAMS errors for IMM-CKF and PCRLB for 4g using T = 0.5 s and 1.0 s.

Time
Interval Segment RTAMS Error IMM-EKF IMM-UKF IMM-CKF PCRLB

0.5 s

NCT-
Position (m) 6.809 6.694 6.694 5.225

Velocity (m/s) 0.925 0.859 0.859 0.341

Last NCV
Position (m) 9.076 8.986 8.986 8.712

Velocity (m/s) 1.123 1.120 1.120 1.106

1.0 s

NCT-
Position (m) 8.958 8.779 8.779 7.141

Velocity (m/s) 0.905 0.831 0.831 0.432

Last NCV
Position (m) 11.494 11.370 11.370 10.944

Velocity (m/s) 1.222 1.216 1.216 1.191
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Table 9. Time indices of dynamic models for T = 2.0 s.

Time Indices Dynamic Model

1–31 NCV
31–46 NCT+
46–76 NCV
76–91 NCT-

91–121 NCV

Table 10. RTAMS errors with σr = 50 m, σβ = 5◦, σvr = 5 m/s, and T = 2.0 s.

Segment RTAMS Error IMM-EKF IMM-UKF IMM-CKF PCRLB

NCT-
Position (m) 146.341 127.031 126.935 47.459

Velocity (m/s) 6.376 3.572 3.568 1.105

Last NCV
Position (m) 170.592 122.847 122.193 54.900

Velocity (m/s) 2.761 2.328 2.327 2.012

(a) (b)

Figure 15. RMS (a) position and (b) velocity errors for 4g, σr = 50 m, σβ = 5◦, σvr = 5 m/s, and
T = 2.0 s.

(a) (b)

Figure 16. (a) ANEES; (b) ςk = Trace (Cov)/Trace (MSEM) for 4g, σr = 50 m, σβ = 5◦, σvr = 5 m/s,
and T = 2.0 s.

We kept all the parameters the same and used σβ = 1◦ to examine the RTAMS errors
for both position and velocity in the IMM filters, thereby highlighting their performance
variations. Table 11 presents the resulting RTAMS position and velocity errors. The results
in Tables 10 and 11 show that as the measurement accuracy increases, the performance of
the IMM-EKF approaches those of the IMM-UKF or IMM-CKF.
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Table 11. RTAMS errors with σr = 50 m, σβ = 1◦, σvr = 5 m/s, and T = 2.0 s.

Segment RTAMS Error IMM-EKF IMM-UKF IMM-CKF PCRLB

NCT-
Position (m) 83.04 81.497 81.41 1.07

Velocity (m/s) 3.75 2.869 2.86 1.10

Last NCV
Position (m) 102.71 78.278 78.24 51.72

Velocity (m/s) 2.51 2.230 2.23 1.99

11. Conclusions

In this study, we offer a comprehensive review of IMM filtering techniques specifically
applied to the tracking of a highly maneuvering aircraft that is being monitored by an
AMTI radar system situated on a separate aircraft. Single-model filtering and hybrid
state-estimation algorithms are first described, and then the dynamic and measurement
models associated with the problem are explained. We summarize the EKF, UKF, and
CKF used in the IMM estimator and present detailed steps for the IMM-CKF. In order to
compare the state estimation accuracies of the IMM-EKF, IMM-UKF, and IMM-CKF, we
give a derivation of the PCRLB. Finally, we analyze the performance of various IMM-based
filtering algorithms.

The aircraft has a range of accelerations, specifically 3g, 4g, 5g, and 6g. We used the
RMS errors in position and velocity, ANEES, a covariance consistency metric, PCRLB, model
probabilities, and computational cost as performance metrics to compare the performances
of the three IMM-based filters. We also compared the root RTAMS errors of position
and velocityand the associated CPU times. Our results show that for the operational
measurement accuracy of the AMTI radar (range SD = 10 m; azimuth SD = 1, 2, and 4 mrad;
radial velocity SD = 1 m/s), the performances of these three filters are nearly the same
for T = 0.5 s. The RMS position and velocity errors are close to the corresponding PCRLB
values in the NCV segments, but small differences occur in the NCT segments. The ANEES
remains confined within the 99% confidence intervals during the NCV phases, whereas it
exceeds these intervals in the NCT phases. The results on mode probabilities show that the
three IMM-based filters are able to select the correct dynamic model for various segments
of the aircraft trajectory. The RTAMS errors of position and velocity are nearly the same for
these three IMM-based filters, and they are slightly higher than the corresponding PCRLB
values. The IMM-EKF exhibits the shortest CPU time, with the IMM-UKF and IMM-CKF
requiring approximately 1.6 times more CPU time in comparison.

We also analyze the performance of these three IMM filters at significantly higher
measurement SDs and T = 2 s for the 4g aircraft. In this case, the performance of the
IMM-UKF and IMM-CKF is essentially comparable, whereas the IMM-EKF performs the
least effectively among the three. This classical trend of the EKF, UKF, and CKF occurs at
much higher SDs, which is outside the operational domain of the AMTI radar.

We study the performance of the IMM-CKF by varying the azimuth SD with values
of 1, 2, and 4 mrad, with a measurement time interval of 0.5 s. We observe that the RMS
position and velocity errors and the RTAMS position and velocity errors are close to the
corresponding PCRLB values. The performance of the IMM-CKF gracefully degrades as
the azimuth SD increases. We also studied the performance of the IMM-CKF by using
measurement time intervals of 0.5 and 1.0 s. In both cases, the RMS errors in position and
velocity, as well as the RTAMS errors for position and velocity, were found to be in close
proximity to their respective PCRLB values.

Our future work will consider scenarios where the target aircraft and AMTI aircraft
move in 3D space. We shall also focus on using improved NCT models and new algorithms
for a maneuvering target [66].
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Appendix A

This appendix presents the detailed derivation of the time evolution function with
respect to the state vector. Given the nonlinear dynamic models for the NCT motions (31)
and (32),

xk = A(j)(xk−1)xk−1 + w(j)
k−1, j = 2, 3, (A1)

For simplicity, we drop the superscript j in (A1). Then, from (33), we have

A(xk−1) =


1 0 sin(ωT)

ω − 1−cos(ωT)
ω

0 1 1−cos(ωT)
ω

sin(ωT)
ω

0 0 cos(ωT) − sin(ωT)
0 0 sin(ωT) cos(ωT)

, (A2)

ω =
κam√

ẋ2
k−1 + ẏ2

k−1

. (A3)

Define
η1 := sin ωT, (A4)

η2 := cos ωT, (A5)

η3 :=
sin ωT

ω
=

η1

ω
(A6)

η4 :=
1 − cos ωT

ω
=

1 − η2

ω
. (A7)

Then, from (32), we obtain
f(xk−1) = A(xk−1)xk−1, (A8)

where

f(xk−1) = A(xk−1)xk−1 =


a′1xk−1
a′2xk−1
a′3xk−1
a′4xk−1

 =


f1(xk−1)
f2(xk−1)
f3(xk−1)
f4(xk−1)

, (A9)

with
a1 =

[
1 0 η3 −η4

]′, (A10)

a2 =
[
0 1 η4 η3

]′, (A11)

a3 =
[
0 0 η2 −η1

]′, (A12)

a4 =
[
0 0 η1 η2

]′. (A13)

By dropping the subscript k − 1 from xk−1, we obtain

fi(x) = a′ix, i = 1, 2, ..., 4. (A14)
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Let
x = [x y ẋ ẏ]′. (A15)

By using (A9)–(A15), we obtain

f1(x) = x + η3 ẋ − η4ẏ, (A16)

f2(x) = y + η4 ẋ + η3ẏ, (A17)

f3(x) = η2 ẋ − η1ẏ, (A18)

f4(x) = η1 ẋ + η2ẏ, (A19)

By differentiating f1(x), f2(x), f3(x) and f4(x) with respect to x, we obtain

∂ f1(x)
∂x

=
[
1 0

(
η3 + ẋ ∂η3

∂ẋ − ẏ ∂η4
∂ẋ

) (
ẋ ∂η3

∂ẏ − η4 − ẏ ∂η4
∂ẏ

)]
, (A20)

∂ f2(x)
∂x

=
[
0 1

(
η4 + ẋ ∂η4

∂ẋ + ẏ ∂η3
∂ẋ

) (
ẋ ∂η4

∂ẏ + η3 + ẏ ∂η3
∂ẏ

)]
, (A21)

∂ f3(x)
∂x

=
[
0 0

(
η2 + ẋ ∂η2

∂ẋ − ẏ ∂η1
∂ẋ

) (
ẋ ∂η2

∂ẏ − η1 − ẏ ∂η1
∂ẏ

)]
, (A22)

∂ f4(x)
∂x

=
[
0 0

(
η1 + ẋ ∂η1

∂ẋ + ẏ ∂η2
∂ẋ

) (
ẋ ∂η1

∂ẏ + η2 + ẏ ∂η2
∂ẏ

)]
. (A23)

The derivatives of ηi with respect to x can be expressed as

∂ηi
∂x

=
∂ηi
∂ω

∂ω

∂x
, i = 1, 2, 3, 4. (A24)

Since ω is a function of ẋ and ẏ only,

∂ω

∂x
=

∂ω

∂y
= 0. (A25)

From the expression of ω in (A3), we obtain

∂ω

∂ẋ
=

−kaẋ

(ẋ2 + ẏ2)3/2 (A26)

∂ω

∂ẏ
=

−kaẏ

(ẋ2 + ẏ2)3/2 . (A27)

Hence
∂ω

∂x
=

[
0 0 ∂ω

∂ẋ
∂ω
∂ẏ

]
. (A28)

Next, we describe the computation of ∂ηi
∂ω , i = 1, 2, ..., 4.

From (A4)–(A7), we obtain
∂η1

∂ω
= T cos ωT. (A29)

∂η2

∂ω
= −T sin ωT. (A30)

∂η3

∂ω
= − η1

ω2 +
1
ω

∂η1

∂ω
=

1
ω2 [ω

∂η1

∂ω
− η1]. (A31)

∂η4

∂ω
= − 1

ω2 [1 − η2 + ω
∂η2

∂ω
]. (A32)
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This completes the derivative of the nonlinear time evolution function f(x) with respect to
x. Hence

F(x) =
[

∂ f1(x)
∂x

∂ f2(x)
∂x

∂ f3(x)
∂x

∂ f4(x)
∂x

]
. (A33)

Appendix B

Appendix B presents the expressions for the derivatives of the nonlinear measure-
ment function with respect to the state vector (Jacobian matrix used in EKF or PCRLB
computation). The measurement model is explained in Section 3. Define

x :=
[

p
v

]
. (A34)

The derivatives of the range, azimuth, and radial velocity with respect to the state vector
are given by

∂ξ

∂x
=

[
∂ξ
∂p

∂ξ
∂v

]
, for ξ = r, β, vr. (A35)

We can show that
∂r
∂x

=
[
u′ 01×2

]
, (A36)

∂β

∂x
=

[
uy
r − ux

r 01×2

]
, (A37)

∂vr

∂x
=

[
v′
r [I2−uu′] u′

]
, (A38)

where u is a unit vector along the RLOS or range vector.
Hence

H(x) =
[

∂r
∂x

∂β
∂x

∂vr
∂x

]
. (A39)
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