Can the Plantar Pressure and Temperature Data Trend Show the Presence of Diabetes? A Comparative Study of a Variety of Machine Learning Techniques
<p>A 25 m walkway; the designated area avoided “quick” twisting movements.</p> "> Figure 2
<p>Thermal image capture setup.</p> "> Figure 3
<p>Regions of interest on the feet were marked for thermal and pressure measurements: hallux, 1st metatarsus, 3rd metatarsus, 5th metatarsus, midfoot (proximal to 5th metatarsus apophysis), medial arch on proximal 1st metatarsus, and heel.</p> "> Figure 4
<p>Correlation index matrix representing the relationship between temperature and pressure features across different individuals. The matrix shows correlation coefficients for pressure and temperature data between the left and right feet of each individual, as well as across different individuals.</p> "> Figure 5
<p>Performance comparison between the Extra Trees Classifier and Random Forest Classifier. (<b>a</b>,<b>c</b>) display the feature importance plots, with (<b>a</b>) highlighting the Extra Trees Classifier’s focus on thermal data and (<b>c</b>) illustrating the Random Forest Classifier’s balanced consideration of both temperature and pressure features. (<b>b</b>,<b>d</b>) depict the decision boundaries for the Extra Trees Classifier and Random Forest Classifier, respectively, showing how the models classify diabetic (1) and non-diabetic (0) cases based on these features. Random Forest’s mixed use of temperature and pressure data underscores its more comprehensive approach to predicting diabetes.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Dataset Description
2.2. Experimental Setup and Protocol
2.3. Data Acquisition Procedure
- The participant was asked to be barefoot and lie supine on a flat couch, with a cushion placed under the head for comfort. Specific regions of interest on the feet were marked for thermal measurements. These regions included the hallux, first metatarsus, third metatarsus, fifth metatarsus, midfoot (proximal fifth metatarsal head), medial arch (proximal first metatarsal head), and heel, as shown in Figure 3.
- After a 15 min acclimatization period on the couch, baseline foot temperature was recorded using the thermal imaging camera.
- The participant then wore shoes and walked at a natural pace along the designated pathway.
- Immediately after completing the walk, the shoes were removed and the participant was asked to lie on the couch.
- Temperature measurements were taken at specific intervals 30 s, 90 s, 120 s, and 180 s after walking. For each measurement, the participant returned to the couch, removed their footwear, and thermal images were captured.
- These temperature readings, along with the baseline values recorded after acclimatization, were used to calculate temperature changes.
2.4. Feature Description and Data Structure
Analysis of Correlation Between Individuals’ Feet
2.5. Machine Learning Algorithms
2.5.1. Regression Models
- Extra Trees Regressor: An ensemble learning method that aggregates results from multiple randomized Decision Trees to improve prediction accuracy.
- K Neighbors Regressor: A non-parametric method that predicts the output based on the average value of the k-nearest neighbors in the feature space.
- Dummy Regressor: A simple baseline model that makes predictions using basic strategies such as the mean or median of the target values.
- Light Gradient Boosting Machine (LightGBM): A gradient boosting framework that uses tree-based learning algorithms, optimized for efficiency and performance.
- Bayesian Ridge: A linear regression model that uses Bayesian inference to estimate the regression coefficients.
- Random Forest Regressor: A tree-based ensemble model that builds multiple Decision Trees and averages their outputs to enhance predictive accuracy.
- Gradient Boosting Regressor: An ensemble technique that builds models sequentially, optimizing the prediction by minimizing the error of previous models.
- AdaBoost Regressor: A boosting method that combines weak regressors to produce a strong predictive model by focusing on the most difficult-to-predict instances.
- Extreme Gradient Boosting (XGBoost): A highly efficient and flexible boosting algorithm that improves performance by reducing overfitting and increasing accuracy.
- Orthogonal Matching Pursuit: A greedy algorithm for linear regression that selects the most correlated features in each iteration.
- Elastic Net: A regularized regression model that linearly combines L1 and L2 penalties of the lasso and ridge methods to improve prediction and feature selection.
- Lasso Least Angle Regression (LassoLARS): A variant of linear regression that automatically selects the most relevant features by shrinking the less important ones to zero.
- Lasso Regression: A regression method that performs both variable selection and regularization to enhance prediction accuracy.
- Ridge Regression: A technique used when multicollinearity exists, adding a degree of bias to the regression estimates.
- Decision Tree Regressor: A non-linear regression model that splits the dataset into subsets based on the feature values to make predictions.
- Huber Regressor: A robust regression technique that is less sensitive to outliers in the data than least squares regression.
- Linear Regression: A basic regression model that assumes a linear relationship between the input features and the target values.
- Passive Aggressive Regressor: An online learning algorithm that updates the model in response to each individual sample.
- Least Angle Regression (LARS): A regression algorithm particularly suited for high-dimensional data, similar to forward stepwise regression.
2.5.2. Classification Models
- Extra Trees Classifier: An ensemble learning method that aggregates the results of multiple randomized Decision Trees to make predictions.
- Random Forest Classifier: A tree-based ensemble method that creates multiple Decision Trees for classification and averages their outputs.
- Extreme Gradient Boosting (XGBoost): A highly efficient boosting algorithm used for classification tasks, known for its high performance in structured data.
- AdaBoost Classifier: A boosting algorithm that improves classification by combining weak classifiers to form a stronger overall classifier.
- Gradient Boosting Classifier: An iterative boosting method that combines weak classifiers to produce a strong predictive model by sequentially reducing the classification error.
- Naive Bayes: A probabilistic classifier based on Bayes’ theorem, assuming independence between the features.
- Logistic Regression: A simple linear classifier used to predict the probability of a binary outcome (diabetes or non-diabetes).
- Decision Tree Classifier: A non-linear model that classifies instances by recursively partitioning the feature space based on feature values.
- Linear Discriminant Analysis (LDA): A classification algorithm that models the differences between multiple classes by assuming normally distributed features.
- Ridge Classifier: A variant of Logistic Regression that uses regularization to handle collinearity and improve classification.
- Quadratic Discriminant Analysis (QDA): A classifier that assumes each class is normally distributed but with different covariance matrices.
- K Neighbors Classifier: A non-parametric method that classifies instances based on the majority class of the k-nearest neighbors in the feature space.
- Support Vector Machine (SVM) with a linear kernel: A classification algorithm that creates a linear boundary between classes to maximize the margin between them.
- Light Gradient Boosting Machine (LightGBM): A highly efficient gradient boosting method optimized for classification tasks on large datasets.
- Dummy Classifier: A simple baseline model that makes predictions using basic strategies such as stratified or most frequent class predictions.
2.5.3. Handling of Correlated Features in Machine Learning Models
2.5.4. Hyperparameter Tuning
3. Results
3.1. Correlation Between Plantar Pressure and Temperature Data
3.1.1. Calculation of Correlation Coefficients
- Pearson correlation:
- Spearman correlation:
3.1.2. Anatomical Points and Correlation with Temperature
First Metatarsal (1stM)
Third Metatarsal (3rdM)
Fifth Metatarsal (5thM)
Hallux
Heel
Lateral and Medial Midfoot (LatM and MedMF)
- Moderate Positive Correlations: Strong correlations were observed between pressure and temperature in the midfoot regions, particularly in the MedMF and LatM regions, indicating an interdependence between the mechanical load and thermal responses in these areas.
- Weaker or Negative Correlations: In regions such as the 1stM and 3rdM, weaker or inverse correlations were found, suggesting that temperature variations have a limited effect on pressure in these areas.
3.1.3. Possible Impact of Correlation on Machine Learning Performance
3.2. Machine Learning Analysis for Pressure Estimation
3.2.1. Pressure Estimation at Individual Anatomical Points
3.2.2. Analysis of Correlation Between Consolidated Temperature and Pressure Prediction
3.2.3. Implications of Correlations for Machine Learning Model Performance
3.3. Diabetes Prediction from Temperature and Pressure Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC-ROC | Area Under the Receiver Operating Characteristic Curve |
ML | Machine Learning |
SVM | Support Vector Machine |
MAE | Mean Absolute Error |
MSE | Mean Squared Error |
RMSE | Root Mean Squared Error |
R2 | Coefficient of Determination |
RMSLE | Root Mean Squared Logarithmic Error |
MAPE | Mean Absolute Percentage Error |
References
- World-Health-Organization. Global Report on Diabetes; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- American Diabetes Association. Standards of Medical Care in Diabetes—2015 Abridged for Primary Care Providers. Clin. Diabetes 2015, 33, 97–111. [Google Scholar] [CrossRef]
- Laing, P. The development and complications of diabetic foot ulcers. Am. J. Surg. 1998, 176, 11S–19S. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.; Lin, F.; Alshurafa, N.; Xu, W. Wearable Food Intake Monitoring Technologies: A Comprehensive Review. Computers 2017, 6, 4. [Google Scholar] [CrossRef]
- Punj, R.; Kumar, R. Technological aspects of WBANs for health monitoring: A comprehensive review. Wirel. Netw. 2019, 25, 1125–1157. [Google Scholar] [CrossRef]
- Frykberg, R.G.; Gordon, I.L.; Reyzelman, A.M.; Cazzell, S.M.; Fitzgerald, R.H.; Rothenberg, G.M.; Bloom, J.D.; Petersen, B.J.; Linders, D.R.; Nouvong, A.; et al. Feasibility and efficacy of a smart mat technology to predict development of diabetic plantar ulcers. Diabetes Care 2017, 40, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Lekha, S.; Suchetha, M. Recent Advancements and Future Prospects on E-Nose Sensors Technology and Machine Learning Approaches for Non-Invasive Diabetes Diagnosis: A Review. IEEE Rev. Biomed. Eng. 2021, 14, 127–138. [Google Scholar] [CrossRef]
- Maldonado, H.; Bayareh, R.; Torres, I.; Vera, A.; Gutiérrez, J.; Leija, L. Automatic detection of risk zones in diabetic foot soles by processing thermographic images taken in an uncontrolled environment. Infrared Phys. Technol. 2020, 105, 103187. [Google Scholar] [CrossRef]
- Astasio-Picado, A.; Escamilla Martínez, E.; Martínez Nova, A.; Sánchez Rodríguez, R.; Gómez-Martín, B. Thermal map of the diabetic foot using infrared thermography. Infrared Phys. Technol. 2018, 93, 59–62. [Google Scholar] [CrossRef]
- Hazari, A.; Maiya, A.; Agouris, I.; Monteiro, A.; Shivashankara. Prediction of peak plantar pressure for diabetic foot: The regressional model. Foot 2019, 40, 87–91. [Google Scholar] [CrossRef]
- Yavuz, M.; Brem, R.W.; Glaros, A.G.; Garrett, A.; Flyzik, M.; Lavery, L.; Davis, B.L.; Hilario, H.; Adams, L.S. Association Between Plantar Temperatures and Triaxial Stresses in Individuals with Diabetes. Diabetes Care 2015, 38, e178–e179. [Google Scholar] [CrossRef]
- Khandakar, A.; Mahmud, S.; Chowdhury, M.E.; Reaz, M.B.I.; Kiranyaz, S.; Mahbub, Z.B.; Md Ali, S.H.; Bakar, A.A.A.; Ayari, M.A.; Alhatou, M.; et al. Design and Implementation of a Smart Insole System to Measure Plantar Pressure and Temperature. Sensors 2022, 22, 7599. [Google Scholar] [CrossRef] [PubMed]
- Liberman, A.; Buckingham, B. Diabetes Technology and the Human Factor. Diabetes Technol. Ther. 2016, 18, S-101–S-111. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Khandakar, A.; Chowdhury, M.E.; AbdulMoniem, M.; Bin Ibne Reaz, M.; Bin Mahbub, Z.; Sadasivuni, K.K.; Murugappan, M.; Alhatou, M. Fiber Bragg Gratings based smart insole to measure plantar pressure and temperature. Sens. Actuators A Phys. 2023, 350, 114092. [Google Scholar] [CrossRef]
- Paton, J.; Bruce, G.; Jones, R.; Stenhouse, E. Effectiveness of insoles used for the prevention of ulceration in the neuropathic diabetic foot: A systematic review. J. Diabetes Its Complicat. 2011, 25, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Moulaei, K.; Malek, M.; Sheikhtaheri, A. A smart wearable device for monitoring and self-management of diabetic foot: A proof of concept study. Int. J. Med. Inform. 2021, 146, 104343. [Google Scholar] [CrossRef]
- Rescio, G.; Leone, A.; Francioso, L.; Losito, P.; Genco, E.; Crudele, F.; D’Alessandro, L.; Siciliano, P. Fully Integrated Smart Insole for Diabetic Foot. In Ambient Assisted Living: Italian Forum 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 221–228. [Google Scholar] [CrossRef]
- Deng, Z.S.; Liu, J. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics. Comput. Biol. Med. 2004, 34, 495–521. [Google Scholar] [CrossRef]
- Abbott, C.; Chatwin, K.; Foden, P.; Hasan, A.; Sange, C.; Rajbhandari, S.; Nadipi Reddy, P.; Vileikyte, L.; Bowling, F.; Boulton, A.; et al. Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: A prospective, randomised, proof-of-concept study. Lancet Digit. Health 2019, 1, e308–e318. [Google Scholar] [CrossRef]
- Korada, H.; Maiya, A.; Rao, S.K.; Hande, M. Effectiveness of customized insoles on maximum plantar pressure in diabetic foot syndrome: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1093–1099. [Google Scholar] [CrossRef]
- Tsung, B.Y.S.; Zhang, M.; Mak, A.F.T.; Wong, M.W.N. Effectiveness of insoles on plantar pressure redistribution. J. Rehabil. Res. Dev. 2004, 41, 767–774. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Philip, J.; Jayakumar, T.; Raj, B.; Rao, P.N.S.; Varalakshmi, M.; Mohan, V. Correlation between Plantar Foot Temperature and Diabetic Neuropathy: A Case Study by Using an Infrared Thermal Imaging Technique. J. Diabetes Sci. Technol. 2010, 4, 1386–1392. [Google Scholar] [CrossRef]
- Bus, S.A. Innovations in plantar pressure and foot temperature measurements in diabetes. Diabetes/Metab. Res. Rev. 2016, 32, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Sawacha, Z.; Guarneri, G.; Cristoferi, G.; Guiotto, A.; Avogaro, A.; Cobelli, C. Integrated kinematics-kinetics-plantar pressure data analysis: A useful tool for characterizing diabetic foot biomechanics. Gait Posture 2012, 36, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Bennetts, C.J.; Owings, T.M.; Erdemir, A.; Botek, G.; Cavanagh, P.R. Clustering and classification of regional peak plantar pressures of diabetic feet. J. Biomech. 2013, 46, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Kumari, V. Predictive modelling and analytics for diabetes using a machine learning approach. Appl. Comput. Inform. 2022, 18, 90–100. [Google Scholar] [CrossRef]
- Faruqui, S.H.A.; Du, Y.; Meka, R.; Alaeddini, A.; Li, C.; Shirinkam, S.; Wang, J. Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial. JMIR mHealth uHealth 2019, 7, e14452. [Google Scholar] [CrossRef]
- Sonia, J.J.; Jayachandran, P.; Md, A.Q.; Mohan, S.; Sivaraman, A.K.; Tee, K.F. Machine-Learning-Based Diabetes Mellitus Risk Prediction Using Multi-Layer Neural Network No-Prop Algorithm. Diagnostics 2023, 13, 723. [Google Scholar] [CrossRef]
- Rodriguez-León, C.; Villalonga, C.; Munoz-Torres, M.; Ruiz, J.R.; Banos, O. Mobile and Wearable Technology for the Monitoring of Diabetes-Related Parameters: Systematic Review. JMIR mHealth uHealth 2021, 9, e25138. [Google Scholar] [CrossRef]
- Vettoretti, M.; Cappon, G.; Facchinetti, A.; Sparacino, G. Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors. Sensors 2020, 20, 3870. [Google Scholar] [CrossRef]
- Zhou, H.; Myrzashova, R.; Zheng, R. Diabetes prediction model based on an enhanced deep neural network. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 148. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Pournik, O.; Shahrabi, J.; Khalili, D.; Azizi, F.; Hadaegh, F. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes Res. Clin. Pract. 2014, 105, 391–398. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Hadavandi, E.; Pournik, O.; Shahrabi, J.; Azizi, F.; Hadaegh, F. Decision tree-based modelling for identification of potential interactions between type 2 diabetes risk factors: A decade follow-up in a Middle East prospective cohort study. BMJ Open 2016, 6, e013336. [Google Scholar] [CrossRef] [PubMed]
- HD, S.; Sanskar, S.; Tiwari, P.; Kumar, K. Diabetes Prediction Using Machine Learning Algorithm. Int. J. Innov. Res. Inf. Secur. 2023, 9, 115–120. [Google Scholar] [CrossRef]
- Khanam, J.J.; Foo, S.Y. A comparison of machine learning algorithms for diabetes prediction. ICT Express 2021, 7, 432–439. [Google Scholar] [CrossRef]
- PyCaret-Low-Code Machine Learning. MIT License. Available online: https://pycaret.org/ (accessed on 14 April 2024).
- Bergmeir, C.; Hyndman, R.J.; Koo, B. A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 2018, 120, 70–83. [Google Scholar] [CrossRef]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sánchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Chen, R.; Dewi, C.; Huang, S.W.; Caraka, R. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Ghojogh, B.; Crowley, M. The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial. arXiv 2019, arXiv:1905.12787. [Google Scholar]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 281. [Google Scholar] [CrossRef]
Model | Type | Default Hyperparameters |
---|---|---|
Logistic Regression | Classification | C = 1.0, penalty = l2, solver = lbfgs, max_iter = 100 |
Random Forest Classifier | Classification | n_estimators = 100, criterion = gini, max_depth = None, min_samples_split = 2, min_samples_leaf = 1 |
K-Nearest Neighbors | Classification | n_neighbors = 5, weights = uniform, algorithm = auto |
Support Vector Machine (SVC) | Classification | C = 1.0, kernel = rbf, gamma = scale |
Gradient Boosting Classifier | Classification | n_estimators = 100, learning_rate = 0.1, max_depth = 3, min_samples_split = 2, min_samples_leaf = 1 |
Extra Trees Classifier | Classification | n_estimators = 100, criterion = gini, max_depth = None, min_samples_split = 2, min_samples_leaf = 1 |
Naive Bayes | Classification | No tunable parameters |
XGBoost Classifier | Classification | n_estimators = 100, learning_rate = 0.1, max_depth = 6, min_child_weight = 1, subsample = 1.0, colsample_bytree = 1.0 |
LightGBM Classifier | Classification | n_estimators = 100, learning_rate = 0.1, max_depth = −1, num_leaves = 31 |
Decision Tree Classifier | Classification | criterion = gini, max_depth = None, min_samples_split = 2, min_samples_leaf = 1 |
AdaBoost Classifier | Classification | n_estimators = 50, learning_rate = 1.0 |
Ridge Classifier | Classification | alpha = 1.0 |
Random Forest Regressor | Regression | n_estimators = 100, criterion = mse, max_depth = None, min_samples_split = 2, min_samples_leaf = 1 |
Gradient Boosting Regressor | Regression | n_estimators = 100, learning_rate = 0.1, max_depth = 3, min_samples_split = 2, min_samples_leaf = 1 |
Extra Trees Regressor | Regression | n_estimators = 100, criterion = mse, max_depth = None, min_samples_split = 2, min_samples_leaf = 1 |
XGBoost Regressor | Regression | n_estimators = 100, learning_rate = 0.1, max_depth = 6, min_child_weight = 1, subsample = 1.0, colsample_bytree = 1.0 |
LightGBM Regressor | Regression | n_estimators = 100, learning_rate = 0.1, max_depth = −1, num_leaves = 31 |
Decision Tree Regressor | Regression | criterion = mse, max_depth = None, min_samples_split = 2, min_samples_leaf = 1 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Extra Trees Regressor | 23.7315 | 839.6758 | 27.1971 | −0.4872 | 0.3569 | 0.3657 |
K Neighbors Regressor | 26.994 | 1024.495 | 30.2197 | −0.9288 | 0.3863 | 0.4422 |
Dummy Regressor | 27.1484 | 1107.591 | 31.1707 | −0.9942 | 0.3928 | 0.4359 |
Light Gradient Boost. Mch. | 27.1484 | 1107.591 | 31.1707 | −0.9942 | 0.3928 | 0.4359 |
Bayesian Ridge | 27.1514 | 1107.961 | 31.1748 | −0.9948 | 0.3929 | 0.436 |
Random Forest Regressor | 27.8012 | 1089.168 | 31.2258 | −1.0301 | 0.3966 | 0.4397 |
Gradient Boosting Regressor | 27.2654 | 1064.454 | 30.9733 | −1.0617 | 0.4079 | 0.4161 |
AdaBoost Regressor | 27.9178 | 1150.729 | 32.0767 | −1.0725 | 0.4172 | 0.4512 |
Extreme Gradient Boosting | 27.5578 | 1153.395 | 31.5512 | −1.094 | 0.4305 | 0.4192 |
Orthogonal Matching Pursuit | 27.5907 | 1232.316 | 32.613 | −1.216 | 0.4108 | 0.4602 |
Elastic Net | 30.3813 | 1469.462 | 34.6957 | −1.3458 | 0.4321 | 0.4989 |
Lasso Least Angle Regr. | 31.8224 | 1645.612 | 36.0818 | −1.5213 | 0.4541 | 0.5232 |
Lasso Regression | 31.8109 | 1646.714 | 36.0897 | −1.5227 | 0.454 | 0.5232 |
Ridge Regression | 32.7574 | 1845.964 | 37.4148 | −1.7363 | 0.4679 | 0.5401 |
Decision Tree Regressor | 30.4242 | 1434.073 | 36.7814 | −2.6933 | 0.4578 | 0.4362 |
Huber Regressor | 38.303 | 2300.472 | 43.3332 | −2.93 | 0.5605 | 0.5833 |
Linear Regression | 46.8023 | 3601.207 | 57.1221 | −7.4216 | 0.985 | 0.7242 |
Passive Aggressive Regr. | 48.2434 | 3274.756 | 51.2894 | −9.6462 | 0.5529 | 0.6799 |
Least Angle Regression | 43,123.6 | 3.15 × 1010 | 56,615.54 | −2.6 × 108 | 2.0646 | 421.0547 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Light Gradient Boost. Mach. | 59.1336 | 5961.295 | 69.5438 | −0.7524 | 0.3315 | 0.307 |
Dummy Regressor | 59.1336 | 5961.295 | 69.5438 | −0.7524 | 0.3315 | 0.307 |
Bayesian Ridge | 59.1476 | 5962.777 | 69.5575 | −0.754 | 0.3316 | 0.3071 |
Elastic Net | 65.731 | 7520.082 | 77.2534 | −1.6133 | 0.3521 | 0.327 |
Orthogonal Matching Purs. | 64.355 | 6624.744 | 74.2898 | −1.8195 | 0.349 | 0.3254 |
Extra Trees Regressor | 59.0005 | 5953.229 | 68.2479 | −2.8548 | 0.3307 | 0.3114 |
AdaBoost Regressor | 61.2344 | 6188.385 | 72.3118 | −3.0504 | 0.3522 | 0.3163 |
Random Forest Regressor | 65.8635 | 7280.352 | 78.2418 | −3.33 | 0.3709 | 0.3446 |
Ridge Regression | 70.6273 | 9422.834 | 84.8931 | −3.4673 | 0.3803 | 0.3492 |
Lasso Least Angle Regr. | 70.6124 | 9466.471 | 84.8651 | −3.5245 | 0.3794 | 0.3512 |
Lasso Regression | 70.8137 | 9498.548 | 85.0506 | −3.542 | 0.3805 | 0.3518 |
Gradient Boosting Regr. | 68.614 | 8445.285 | 84.826 | −4.0885 | 0.4049 | 0.367 |
K Neighbors Regressor | 74.8539 | 8246.182 | 87.825 | −7.5013 | 0.4041 | 0.3986 |
Huber Regressor | 86.2494 | 12,962.42 | 104.4957 | −8.203 | 0.4775 | 0.4194 |
Passive Aggressive Regr. | 97.7131 | 14,739.44 | 107.2971 | −10.8507 | 0.4947 | 0.4661 |
Extreme Gradient Boosting | 73.9059 | 9137.847 | 87.0243 | −12.7287 | 0.3982 | 0.3953 |
Decision Tree Regr. | 91.1842 | 14,836.03 | 109.1365 | −14.7182 | 0.509 | 0.4827 |
Linear Regression | 123.951 | 31,724.05 | 157.4115 | −16.7257 | 1.1418 | 0.5985 |
Least Angle Regr. | 1358.865 | 495,2249 | 1583.866 | −1376.8 | 1.5223 | 6.971 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Extra Trees Regr. | 42.6667 | 2665.684 | 48.1738 | −0.8203 | 0.2074 | 0.1917 |
Random Forest Regr. | 45.6522 | 2938.924 | 50.5072 | −1.0423 | 0.218 | 0.2057 |
AdaBoost Regr. | 45.5731 | 2933.01 | 51.091 | −1.1171 | 0.2212 | 0.2052 |
Extreme Gradient Boost. | 50.0482 | 3324.043 | 54.9778 | −1.3777 | 0.2399 | 0.2268 |
Bayesian Ridge | 45.1373 | 2821.918 | 50.9436 | −1.5651 | 0.2218 | 0.2073 |
Dummy Regressor | 45.1358 | 2821.794 | 50.9427 | −1.5652 | 0.2218 | 0.2073 |
Light Gradient Boost.Mach. | 45.1358 | 2821.794 | 50.9427 | −1.5652 | 0.2218 | 0.2073 |
Orthogonal Matching Purs. | 46.3616 | 2878.473 | 51.2707 | −1.6113 | 0.2229 | 0.2115 |
Gradient Boosting Regr. | 46.6507 | 3403.991 | 54.3723 | −1.6691 | 0.2319 | 0.2048 |
K Neighbors Regr. | 49.9279 | 3561.278 | 56.7779 | −1.8124 | 0.2451 | 0.231 |
Elastic Net | 46.6024 | 3122.97 | 53.1349 | −1.8358 | 0.2296 | 0.2069 |
Lasso Least Angle Regr. | 51.2852 | 4159.062 | 59.577 | −2.2904 | 0.2611 | 0.2229 |
Lasso Regression | 51.3096 | 4161.013 | 59.5913 | −2.2912 | 0.2612 | 0.223 |
Ridge Regression | 55.8088 | 5147.188 | 65.1659 | −2.866 | 0.3025 | 0.2412 |
Huber Regressor | 62.6196 | 8839.295 | 77.4237 | −5.3749 | 0.2903 | 0.2608 |
Decision Tree Regr. | 67.4958 | 6356.389 | 77.734 | −5.5824 | 0.3223 | 0.2948 |
Passive Aggressive Regr. | 75.5966 | 8443.785 | 86.2818 | −7.3284 | 0.3946 | 0.3159 |
Linear Regression | 100.326 | 20,864.63 | 119.8718 | −22.0593 | 0.435 | 0.4494 |
Least Angle Regr. | 1385.571 | 7,262,251 | 1595.164 | −5175.72 | 1.3363 | 6.3554 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Light Gradient Boost. Mach. | 24.3803 | 1179.303 | 29.9025 | −0.6947 | 0.3968 | 0.41 |
Dummy Regr. | 24.3803 | 1179.302 | 29.9026 | −0.6947 | 0.3968 | 0.41 |
Bayesian Ridge | 24.9298 | 1202.427 | 30.5468 | −0.8289 | 0.4033 | 0.416 |
Random Forest Regr. | 25.7203 | 1176.716 | 31.5095 | −1.4364 | 0.4089 | 0.41 |
AdaBoost Regr. | 25.1165 | 1214.541 | 31.2653 | −1.4662 | 0.4057 | 0.3773 |
Extra Trees Regr. | 26.0886 | 1220.183 | 32.2855 | −2.5147 | 0.4293 | 0.4204 |
K Neighbors Regr. | 29.2116 | 1556.675 | 36.5677 | −3.0332 | 0.4713 | 0.4735 |
Gradient Boosting Regr. | 26.5199 | 1303.739 | 33.9157 | −3.5019 | 0.4332 | 0.3903 |
Passive Aggressive Regr. | 28.393 | 1426.168 | 33.6168 | −4.4534 | 0.4424 | 0.4123 |
Extreme Gradient Boost. | 31.1872 | 1505.87 | 36.6103 | −4.625 | 0.4932 | 0.4867 |
Elastic Net | 30.5991 | 1644.279 | 37.4245 | −5.7394 | 0.4984 | 0.4812 |
Lasso Least Angle Regr. | 33.2624 | 1656.707 | 39.0917 | −12.0911 | 0.6536 | 0.5131 |
Decision Tree Regressor | 32.6131 | 1951.408 | 41.2692 | −12.3658 | 0.5654 | 0.5034 |
Lasso Regression | 33.5323 | 1677.464 | 39.3684 | −12.689 | 0.6416 | 0.5169 |
Huber Regressor | 36.7847 | 2045.709 | 42.9871 | −14.2362 | 0.5908 | 0.5723 |
Orthogonal Matching Purs. | 45.0718 | 3058.593 | 51.3642 | −30.2947 | 0.8606 | 0.687 |
Ridge Regression | 36.4573 | 2127.21 | 43.6394 | −32.8895 | 0.623 | 0.5588 |
Linear Regression | 38.0126 | 2422.576 | 45.5997 | −45.557 | 0.6342 | 0.5902 |
Least Angle Regr. | 5.46 × 1035 | inf | inf | −inf | 31.1333 | 6.62 × 1033 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Light Gradient Boost. Mach. | 37.8672 | 2304.44 | 46.2579 | −0.7488 | 0.6112 | 1.3117 |
Dummy Regressor | 37.8672 | 2304.44 | 46.2579 | −0.7488 | 0.6112 | 1.3117 |
Bayesian Ridge | 39.0378 | 2378.554 | 47.1246 | −0.818 | 0.6213 | 1.3153 |
Passive Aggressive Regr. | 41.3224 | 2650.283 | 49.1166 | −0.8453 | 0.6669 | 1.369 |
AdaBoost Regressor | 40.0842 | 2665.721 | 50.02 | −1.1158 | 0.6383 | 1.3454 |
Random Forest Regr. | 40.9052 | 2627.747 | 49.4219 | −1.1796 | 0.6472 | 1.301 |
K Neighbors Regr. | 43.6027 | 3003.919 | 52.6696 | −1.3401 | 0.6822 | 1.4252 |
Gradient Boosting Regr. | 46.0786 | 3136.678 | 53.7797 | −1.5054 | 0.6705 | 1.2397 |
Extra Trees Regr. | 42.7361 | 2879.329 | 52.3997 | −1.6931 | 0.6889 | 1.3874 |
Elastic Net | 46.6453 | 3320.467 | 55.4159 | −1.7926 | 0.7383 | 1.5432 |
Extreme Gradient Boost. | 50.896 | 3660.532 | 57.8543 | −1.9084 | 0.7317 | 1.4089 |
Huber Regressor | 51.3562 | 3689.396 | 59.3965 | −2.5813 | 0.8133 | 1.5922 |
Decision Tree Regr. | 60.6246 | 5272.278 | 69.8224 | −3.4066 | 0.8352 | 1.7657 |
Lasso Regr. | 51.0932 | 4061.626 | 60.3932 | −3.4134 | 0.9889 | 1.5364 |
Lasso Least Angle Regres. | 51.3896 | 4068.553 | 60.5001 | −3.6598 | 0.9164 | 1.5353 |
Orthogonal Matching Purs. | 49.5623 | 4642.656 | 62.5531 | −3.8977 | 0.8912 | 1.5586 |
Ridge Regression | 50.7713 | 4263.169 | 62.1715 | −4.1066 | 1.01 | 1.6337 |
Linear Regression | 53.8113 | 4777.258 | 65.7032 | −4.9478 | 1.0016 | 1.6863 |
Least Angle Regr. | 6.31 × 1035 | inf | inf | −inf | 23.5834 | 6.13 × 1033 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
Extra Trees Regr. | 21.6342 | 781.5449 | 24.3457 | −4.1466 | 0.3499 | 0.3726 |
Elastic Net | 23.205 | 975.5359 | 26.9775 | −4.509 | 0.3894 | 0.3974 |
Extreme Gradient Boost. | 22.6037 | 879.9069 | 26.2291 | −4.8219 | 0.3769 | 0.3893 |
Passive Aggressive Regr. | 17.9418 | 512.5657 | 20.8999 | −5.027 | 0.3086 | 0.2925 |
Bayesian Ridge | 19.1977 | 610.182 | 22.0609 | −5.2521 | 0.326 | 0.3344 |
AdaBoost Regressor | 21.5522 | 826.1589 | 24.9973 | −5.3733 | 0.358 | 0.3591 |
Huber Regressor | 25.1347 | 1149.741 | 29.2435 | −6.1187 | 0.4382 | 0.4092 |
Random Forest Regr. | 21.5135 | 782.1238 | 24.7137 | −6.4551 | 0.3547 | 0.3785 |
Gradient Boosting Regr. | 23.9051 | 1007.286 | 27.9547 | −6.6773 | 0.3961 | 0.393 |
Decision Tree Regr. | 26.5163 | 1247.107 | 31.3636 | −8.7018 | 0.455 | 0.4326 |
Light Gradient Boost. Mch. | 19.7522 | 641.3545 | 23.1027 | −9.1444 | 0.3378 | 0.3345 |
Dummy Regressor | 19.7522 | 641.3545 | 23.1027 | −9.1444 | 0.3378 | 0.3345 |
Lasso Least Angle Regr. | 28.9892 | 1527.706 | 33.0902 | −11.1096 | 0.4667 | 0.4874 |
Lasso Regression | 29.0708 | 1528.006 | 33.1449 | −11.2433 | 0.4685 | 0.4889 |
K Neighbors Regr. | 23.5397 | 834.7291 | 27.003 | −11.4923 | 0.3894 | 0.4338 |
Ridge Regression | 26.8591 | 1437.279 | 32.0659 | −12.3371 | 0.5478 | 0.4719 |
Linear Regression | 28.1566 | 1517.806 | 33.3176 | −16.3879 | 0.6098 | 0.4869 |
Orthogonal Matching Purs. | 29.692 | 1476.125 | 33.879 | −16.5291 | 0.6524 | 0.5192 |
Least Angle Regr. | 1.36 × 1036 | inf | inf | −inf | 62.5706 | 1.69 × 1034 |
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa |
---|---|---|---|---|---|---|
Extra Trees Classifier | 0.9375 | 1 | 0.875 | 1 | 0.9333 | 0.875 |
Random Forest Classifier | 0.75 | 0.875 | 0.625 | 0.8333 | 0.7143 | 0.5 |
Extreme Gradient Boosting | 0.75 | 0.8438 | 0.5 | 1 | 0.6667 | 0.5 |
Ada Boost Classifier | 0.625 | 0.7812 | 0.375 | 0.75 | 0.5 | 0.25 |
Gradient Boosting Classifier | 0.625 | 0.625 | 0.375 | 0.75 | 0.5 | 0.25 |
Naive Bayes | 0.6875 | 0.7734 | 0.625 | 0.7143 | 0.6667 | 0.375 |
Logistic Regression | 0.5625 | 0.6406 | 0.375 | 0.6 | 0.4615 | 0.125 |
Decision Tree Classifier | 0.625 | 0.625 | 0.375 | 0.75 | 0.5 | 0.25 |
Linear Discriminant Analysis | 0.6875 | 0.875 | 0.5 | 0.8 | 0.6154 | 0.375 |
Ridge Classifier | 0.6875 | 0.6875 | 0.5 | 0.8 | 0.6154 | 0.375 |
Quadratic Discriminant Analysis | 0.125 | 0.125 | 0.25 | 0.2 | 0.2222 | −0.75 |
K Neighbors Classifier | 0.4375 | 0.5391 | 0.625 | 0.4545 | 0.5263 | −0.125 |
SVM—Linear Kernel | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Light Gradient Boosting Machine | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Dummy Classifier | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa |
---|---|---|---|---|---|---|
Extra Trees Classifier | 0.8125 | 0.9375 | 0.875 | 0.7778 | 0.8235 | 0.625 |
Random Forest Classifier | 0.75 | 0.9375 | 0.75 | 0.75 | 0.75 | 0.5 |
Extreme Gradient Boosting | 0.75 | 0.9062 | 0.75 | 0.75 | 0.75 | 0.5 |
Ada Boost Classifier | 0.8125 | 0.9297 | 0.875 | 0.7778 | 0.8235 | 0.625 |
Gradient Boosting Classifier | 0.8125 | 0.7812 | 0.875 | 0.7778 | 0.8235 | 0.625 |
Naive Bayes | 0.875 | 0.875 | 0.75 | 1 | 0.8571 | 0.75 |
Logistic Regression | 0.8125 | 0.9375 | 0.875 | 0.7778 | 0.8235 | 0.625 |
Decision Tree Classifier | 0.8125 | 0.8125 | 0.875 | 0.7778 | 0.8235 | 0.625 |
Linear Discriminant Analysis | 0.8125 | 0.8984 | 1 | 0.7273 | 0.8421 | 0.625 |
Ridge Classifier | 0.9375 | 0.9375 | 1 | 0.8889 | 0.9412 | 0.875 |
Quadratic Discriminant Analysis | 0.4375 | 0.4375 | 0.625 | 0.4545 | 0.5263 | −0.125 |
K Neighbors Classifier | 0.8125 | 0.875 | 0.75 | 0.8571 | 0.8 | 0.625 |
SVM—Linear Kernel | 0.5 | 0.5 | 1 | 0.5 | 0.6667 | 0 |
Light Gradient Boosting Machine | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Dummy Classifier | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa |
---|---|---|---|---|---|---|
Extra Trees Classifier | 0.375 | 0.2969 | 0.5 | 0.4 | 0.4444 | −0.25 |
Random Forest Classifier | 0.3125 | 0.3281 | 0.375 | 0.3333 | 0.3529 | −0.375 |
Extreme Gradient Boosting | 0.4375 | 0.3594 | 0.375 | 0.4286 | 0.4 | −0.125 |
Ada Boost Classifier | 0.4375 | 0.5 | 0.25 | 0.4 | 0.3077 | −0.125 |
Gradient Boosting Classifier | 0.5 | 0.3594 | 0.5 | 0.5 | 0.5 | 0 |
Naive Bayes | 0.5 | 0.5938 | 0.625 | 0.5 | 0.5556 | 0 |
Logistic Regression | 0.6875 | 0.6719 | 0.75 | 0.6667 | 0.7059 | 0.375 |
Decision Tree Classifier | 0.375 | 0.375 | 0.375 | 0.375 | 0.375 | −0.25 |
Linear Discriminant Analysis | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 |
Ridge Classifier | 0.4375 | 0.4375 | 0.5 | 0.4444 | 0.4706 | −0.125 |
Quadratic Discriminant Analysis | 0.625 | 0.625 | 0.25 | 1 | 0.4 | 0.25 |
K Neighbors Classifier | 0.25 | 0.3359 | 0.375 | 0.3 | 0.3333 | −0.5 |
SVM—Linear Kernel | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Light Gradient Boosting Machine | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Dummy Classifier | 0.5 | 0.5 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerlein, E.A.; Calderón, F.; Zequera-Díaz, M.; Naemi, R. Can the Plantar Pressure and Temperature Data Trend Show the Presence of Diabetes? A Comparative Study of a Variety of Machine Learning Techniques. Algorithms 2024, 17, 519. https://doi.org/10.3390/a17110519
Gerlein EA, Calderón F, Zequera-Díaz M, Naemi R. Can the Plantar Pressure and Temperature Data Trend Show the Presence of Diabetes? A Comparative Study of a Variety of Machine Learning Techniques. Algorithms. 2024; 17(11):519. https://doi.org/10.3390/a17110519
Chicago/Turabian StyleGerlein, Eduardo A., Francisco Calderón, Martha Zequera-Díaz, and Roozbeh Naemi. 2024. "Can the Plantar Pressure and Temperature Data Trend Show the Presence of Diabetes? A Comparative Study of a Variety of Machine Learning Techniques" Algorithms 17, no. 11: 519. https://doi.org/10.3390/a17110519
APA StyleGerlein, E. A., Calderón, F., Zequera-Díaz, M., & Naemi, R. (2024). Can the Plantar Pressure and Temperature Data Trend Show the Presence of Diabetes? A Comparative Study of a Variety of Machine Learning Techniques. Algorithms, 17(11), 519. https://doi.org/10.3390/a17110519