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Abstract: Human Activity Recognition (HAR) is a rapidly evolving field with the potential to
revolutionise how we monitor and understand human behaviour. This survey paper provides a
comprehensive overview of the state-of-the-art in HAR, specifically focusing on recent techniques
such as multimodal techniques, Deep Reinforcement Learning and large language models. It explores
the diverse range of human activities and the sensor technologies employed for data collection. It
then reviews novel algorithms used for Human Activity Recognition with emphasis on multimodal-
ity, Deep Reinforcement Learning and large language models. It gives an overview of multimodal
datasets with physiological data. It also delves into the applications of HAR in healthcare. Addi-
tionally, the survey discusses the challenges and future directions in this exciting field, highlighting
the need for continued research and development to fully realise the potential of HAR in various
real-world applications.

Keywords: HAR; multimodal; LLMs; deep reinforcement learning

1. Introduction

Human Activity Recognition (HAR) involves using different techniques to determine
what a person is doing from observations of sensory information of the person’s body
and conditions of the surrounding environment [1] and also inferring the person’s goal
and mental status [2]. It is the automatic detection and recognition of human activities
using data collected from various sensors. These activities can range from simple actions
like standing or sitting to more complex activities like eating, cooking, or commuting to
work [3].

HAR is a fast-evolving field that can change how we monitor and understand hu-
man behaviour. It is used in multiple domains such as sports, gaming, health monitor-
ing, robotics, human–computer interaction, security, surveillance, and entertainment [4].
The monitoring of vital health parameters like blood pressure, respiration rate, electro-
cardiograph (ECG) patterns, and pulse rate is crucial to personal health systems and
telemedicine techniques [5]. These data are important in the application of HAR in health-
based use cases.

This survey aims to provide an overview of the state-of-the-art in HAR, focusing on
new techniques such as multimodality, Deep Reinforcement Learning (DRL) and the use
of large language models (LLMs) in HAR. It explores the wide range of human activities
and the various sensor technologies used for data collection. It examines the various
recent algorithms for activity recognition and available datasets with physiological data.
Also, the applications of HAR in healthcare are discussed as well as the challenges and
future directions.

This survey paper uses a systematic literature review methodology to identify and
analyse recent and relevant research on HAR with a focus on multimodality, DRL, and
LLMs. For this survey, three primary data sources were used: IEEE Xplore, SCOPUS, and
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Google Scholar. The search was limited to articles published in English between 2019 and
2024, which captured novel and recent advancements in the topic area. The decision to
limit the survey to publications between 2019 and 2024 was to capture the most recent
algorithms in HAR, especially ones that have not been captured by already existing surveys.
Publications not accessible either due to the website being unavailable or being part of paid
content were excluded from this study. Redundant publications (for instance conference
proceedings already extended in a journal article) were also excluded.

Publications with novel algorithms were selected for this survey with emphasis on
multimodality, DRL, and LLMs. Multimodal HAR algorithms are important for capturing
the complex nature of human activities, and there are various research works that have
attempted to harness its potential. Traditionally, HAR models use supervised learning
and require large and annotated datasets which are computationally expensive to acquire.
While some of the sensors can acquire a ton of data, researchers are limited to only the
data they can afford to label. With DRL and LLM, such large data can be labelled with
less computational cost and even unlabelled and semi-labelled datasets can be used in
building HAR models. This is important because HAR models are limited to their training
datasets and the more robust their dataset, the more robust the model would be. For future
research in the area of HAR, these three methodologies will aid in the development of
robust, user-centred, and more accurate HAR systems which can be personalised especially
for use in healthcare applications. The publications reviewed are grouped firstly based on
the type of sensors used and then based on the algorithm used.

1.1. Review of Related Works

There have been survey papers on HAR with a focus on different areas like Wearable
Sensor-based HAR [6], HAR in ambient smart living environments [2,7] and deep learning-
based HAR [4,8,9]. This section analyses some of those survey papers and highlights the
gap this survey paper aims to bridge.

Wang et al. [6] discussed sensor modalities in HAR, classifying them as Wearable
Sensor-based HAR (WSHAR), Ambient Sensor-based HAR (ASHAR) and Hybrid Sensor-
based HAR (HSHAR). The survey focused on wearable sensor modality-centred HAR in
healthcare and discussed the various steps involved in WSHAR, including sensor selec-
tion and placement, data collection and preprocessing, feature extraction and selection,
and classification algorithms. Manoj and Thyagaraju [7] reviewed the application of deep
learning approaches to HAR and vital health sign monitoring in ambient assisted living
environments. They highlighted the importance of ambient sensors in recognising complex
human activities, especially in ambient assisted living environments. The paper also dis-
cussed different health vitals like respiration rate, body temperature, heart rate, etc., and
the use of wearable and ambient sensors to monitor them.

Nweke et al. [10] provided an analysis of data fusion techniques and classifier systems
for HAR with a focus on wearable and mobile devices. The authors highlighted the
importance of integrating data from multiple sensors to reduce uncertainty and enhance the
accuracy of HAR systems. They discussed different data fusion techniques and highlighted
the advantages of deep learning in automatic feature extraction. Hussain et al. [3] presented
an overview of HAR research conducted between 2010 and 2018 with a focus on device-free
solutions. In the survey paper, a new taxonomy is proposed to classify HAR into three main
categories: action based, motion based, and interaction based [3]. The authors discussed the
latest research in each category and highlighted key attributes and design approaches. They
also highlighted some applications of HAR in various areas and discussed future research
issues and challenges such as recognising complex activities, addressing environmental
interference, security, and privacy issues, and so on.

Chen et al. [8] conducted a comprehensive overview of deep learning techniques
in sensor-based HAR and proposed a new taxonomy of deep learning methods given
the challenges of HAR. The paper discussed various deep learning architectures, such as
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), and their
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applications in addressing challenges like feature extraction, annotation scarcity, and class
imbalance. They emphasised the growing importance of HAR due to the increasing
prevalence of smart devices and the Internet of Things (IoT) [8]. The paper also outlined the
typical HAR process and identified challenges in HAR and compared different solutions
for these challenges. The authors also suggested some directions for future research such
as the use of deep unsupervised transfer learning and the need for a standardisation of
the state of the art.

Li et al. [9] reviewed deep learning-based human behaviour recognition methods.
Their survey was mainly on human behaviour recognition based on two-stream, 3D con-
volutional and hybrid networks. They highlighted the importance of the availability of
large-scale annotated datasets and reviewed some of the available datasets. They also
pointed out some issues with the available datasets such as occlusion, which is when other
people or objects obstruct the person being recognised, and the large amount of time and
resources needed to properly label a large dataset.

Diraco et al. [2] provided an overview of current HAR research in smart living
and also provided a road-map for future advances in HAR. The authors delved into the
multifaceted domain of HAR within the context of smart living environment. The paper
identified five key domains important for the successful deployment of HAR in smart living:
sensing technology, real-time processing, multimodality, resource-constrained processing,
and interoperability [2]. It emphasised the importance of HAR in enabling a seamless
integration of technology into our daily lives and enhancing our overall quality of life.

Nikpour et al. [4] discussed the advantages of Deep Reinforcement Learning (DRL)
in HAR, such as its ability to adapt to different data modalities and learn without explicit
supervision. The authors explained that DRL, a machine learning technique where agents
learn through interaction with an environment, can improve the accuracy and efficiency of
HAR systems by identifying the most informative parts of sensor data, such as video frames
or body joint locations. The authors also acknowledged the challenges of DRL, like the need
for large amounts of interaction data and the high computational cost. They also suggested
future research directions such as multiagent reinforcement learning, unsupervised and
few-shot activity recognition and computational cost optimisation [4].

While some survey papers point out the potential of HAR in healthcare [2,6] and
even the use of sensors to monitor health vitals [7], they do not discuss the importance
of health vitals datasets nor the combination of other sensor data and health vital data in
HAR. With the recent advances in technology, it is important to stay up to date, and some
of the available surveys do not cover these recent research areas [3,6,7]. More recent survey
papers are focused on specific areas like the application of HAR in smart homes [2] or the
use of deep learning models [4,8,9]. This survey paper aims to bridge that gap.

1.2. Contributions of This Review Paper

This survey paper aims to close these research gaps by focusing on more recent papers
and more recent technologies like the use of multimodal techniques, DRL, and LLMs, and
exploring the integration of physiological data in HAR and its application in healthcare. It
also specifically reviews the available datasets with physiological and inertial data that can
be used for future work in this field.

The main contributions of this review paper are described below:

1. Analysis of human activities and sensors used for the recognition of human activities.
2. Review of recent vision and non-vision HAR publications.
3. Review of recent HAR algorithm with focus on multimodal techniques, DRL, and LLMs.
4. Review of multimodal datasets with physiological data.
5. Discussion on the applications of HAR in healthcare.
6. Discussion on the challenges and future directions for HAR.

Table 1 shows a comparison of our review paper and other review papers. The compar-
ison is based on six factors: the range of years that the papers reviewed cover, the datasets
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reviewed (if any), the review of recent methodologies (DRL, multimodality, and LLMs) in
HAR, and whether HAR applications in healthcare were analysed.

Our review paper provides a very recent review of new methodologies (DRL, mul-
timodality, and LLMs) in HAR. It highlights the role these new methodologies can play
in advancing the task of HAR. In the detection of complex human activities, multimodal
HAR models are shown to demonstrate improved performance over the single-modal
ones, and DRL can be used to improve the result of multimodal fusion. LLMs can be used
in the annotation of large datasets and in developing of personalised HAR systems and
models that better understand and predict human behaviour using contextual information
and user preferences. DRL is also shown to improve feature extraction and human–robot
interactions. It can also be used to adjust the movement of robots in homes for better HAR.
In addition, our paper provides a review of multimodal datasets with physiological data
which can be further utilised in the application of multimodal HAR in healthcare. We also
look at applications of HAR in healthcare and directions for future research.

Table 1. Comparison with other review papers.

Paper Year of Most Recent
Reviewed Paper Dataset DRL Multimodality LLMs Applications

in Healthcare

Wang et al.
[6] 2019 Reviewed datasets No No No Yes

Manoj and
Thyagaraja
[7]

2019 No review of datasets No No No Yes

Nweke et al.
[10] 2018 No review of datasets No Yes No No

Hussain et al.
[3] 2010–2019 A brief review

of datasets No No No No

Chen et al.
[8] 2020 Reviewed datasets No Yes No No

Li et al. [9] 2021
Reviewed
vision-based
HAR Datasets

No
Vision-based
multimodal-
ity reviewed

No Yes

Diraco et al.
[2] 2023 Reviewed datasets No Yes No No

Nikpour et al.
[4] 2023 Reviewed datasets Focused on

DRL in HAR No No No

Our Review
Paper 2019–2024

Reviewed
multimodal Datasets
in detail

Yes Yes Yes Yes

1.3. Organisation of This Review Paper

This review paper has ten sections. The first section gives an introduction to the
review paper and includes a review of related papers and the contributions of our review
paper. Section 2 provides a structured representation of human activities and sensors
used in HAR. In Section 3, a review of recent research on vision-based HAR is carried
out highlighting the most recent techniques like the skeleton data-based HAR. Section 4
contains a review of non-vision-based HAR and covers recent research for wearable sensors
and ambient sensors. Section 5 covers a review of multimodal, DRL, and LLM techniques
in HAR. Section 5.1 highlights the different ways multimodality has been proposed in HAR,
including fusion techniques. Multimodal datasets with physiological data are reviewed
comprehensively in Section 6. Section 7 highlights the applications of HAR in healthcare.
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Section 8 discusses the challenges faced by HAR and future research directions. Finally,
Section 9 concludes the review paper.

2. Human Activities and HAR Sensors
2.1. Human Activities

This section provides a structured representation of different human activities, en-
abling better analysis of these activities. A Unified Modelling Language (UML) diagram is
used to illustrate the relationship and attributes of these activities. Figure 1 shows the UML
diagram of the different types of activities and their attributes. Human activities can be sim-
ple or complex. Complex human activities (CHA) are made up of multiple simultaneous
or overlapping actions like cooking or cleaning, while simple human activities (SHA) are
single repeated actions such as walking or sitting [11]. Complexity is used as an attribute
in the UML diagram to show whether an activity is complex or simple. These activities
can also be carried out alone or with other people. This is important to consider when
discussing social activities and is represented by the attribute no_of_persons, which is an
integer showing the number of people involved in that particular activity. Other attributes
that human activities have include location, duration, start, and end time.

There are five basic types of human activities: physical activities, intellectual activities,
social activities, recreational activities [12], and daily activities. Intellectual activities include
activities like reading, writing, working at a desk, and most other activities around school
or office work. Physical activities include exercises and other activities that require a lot
of energy expenditure [13]. Social activities are activities that require communicating and
interacting with others [14]. Recreational activities are activities undertaken for pleasure,
leisure, or relaxation. Daily activities are activities carried out regularly that do not fit into
the other four types such as cooking, cleaning, and eating.

Each type of activity has attributes that are relevant to them based on the task of
HAR. With physical activities, health vitals such as heart rate and pulse rate are relevant.
Specific activities like swimming have attributes such as speed, stroke rate [15], and body
temperature. Activities like jogging, running, biking and swimming all have the attribute
speed. Some activities can be classified under more than one type, like walking, which is a
physical activity but can also be classified as a daily activity. For the human activity UML
model, activities are classified based on the type they best fit into.
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Figure 1. UML diagram of human activities.
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2.2. HAR Sensors

This subsection provides a structured framework to categorise and understand the
range of sensors employed in HAR. The type of sensor used in HAR is important, as it in-
fluences the kind of data collected and the activities that can be recognised. The initial focus
of HAR studies was on activity recognition from images and videos, but later researchers
started to explore tracking human behaviour using ambient and wearable sensors [6]. HAR
sensors can be grouped into ambient, movement/inertial, and health/physiological sen-
sors. These sensors have attributes of sensitivity, accuracy, range, resolution, and precision.
Figure 2 shows the UML diagram of sensors used in the task of HAR.

Movement sensors are used to sense a person’s body motion and return values for x, y,
and z axis. Movement sensors include accelerometers, gyroscopes, and magnetometers [16].
Most smartphones and smartwatches contain an accelerometer and gyroscope and have
been used in different HAR research [17]. These movement sensors are the basis for a lot
of non-vision HAR tasks and are generally considered non-invasive because they can be
found in smartwatches or smartphones, and other wearable devices.

Ambient sensors gather information about the environment like humidity, sound,
temperature, etc. In HAR, ambient sensors are used in smart home environments. Sensors
like pressure sensors are used to detect when the participant sits or lies down, and proximity
sensors are used to determine the relative position of the occupants in a smart home
environment. Vision sensors are also ambient sensors because they gather information
about the environment. Location sensors such as GPS are also found in this category.

Physiological sensors measure health vitals such as heart rate, blood pressure, body
temperature, etc. [16]. Photoplethysmography (PPG) sensors are used to detect blood
volume through the skin and can be used to estimate blood pressure [18]. They are used
in smartwatches to estimate the heart rate of the wearer [19]. Electrocardiogram (ECG)
sensors measure the electrical activity of the heart and can also be found on smartwatches.
Electroencephalogram (EEG) sensors are used to monitor brain signals, and there are
wearable devices with EEG such as Emotiv insight, mindwave, Interaxon Muse and Neuro-
Tracker [20]. Some of these wearable devices with physiological sensors are designed to be
worn as headsets, caps, or over-the-ear devices, which makes them non-invasive and easy
to use.

Manufacturers of smartwatches have started incorporating additional sensors such
as physiological sensors in these devices [21]. Smartphones too now have a wide array of
sensors. There are also other wearable devices with some of these sensors like over-the-ear
wearable devices or chest straps used to measure health vitals. The availability of these
non-invasive wearable devices with the necessary sensors has made the deployment of
HAR applications more feasible.



Algorithms 2024, 17, 434 8 of 35

Figure 2. UML diagrams of sensors used in HAR.
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3. Vision-Based HAR

Vision-based HAR is one of the earlier approaches to HAR [3]. It involves applying
computer vision techniques to the task of HAR. It usually requires the use of images
acquired by visual sensing technologies. It focuses on recognising appearance-based
behaviour [22]. With the advancement in computer vision, research on vision-based
HAR has also become popular. This section will review recent HAR papers pertaining to
computer vision.

The use of the Convolutional Neural Network (CNN) is popular in computer vision
problems, and this is no different in HAR. Researchers have proposed different versions
of CNN models and also in combination with other models. In 2020, Basavaiah and
Mohan proposed a feature extraction approach that combines Scale-Invariant Feature
Transform (SIFT) and optical flow computation, and then used a CNN-based classification
approach [23]. They analysed the model’s performance on the Weizmann and KTH datasets,
and it had an accuracy of 98.43% and 94.96% respectively.

Andrade-Ambriz et al. proposed using a Temporal Convolutional Neural Network
(TCNN) which leverages spatiotemporal features for vision-based HAR using only short
videos [24]. Their proposed model is based on a feature extraction module that contains a
three-dimensional convolutional layer and a two-dimensional LSTM layer and then two
fully connected layers, which are used for classification. They used the Kinect Activity
Recognition Dataset (KARD), Cornell Activity Dataset (CARD-60), and the MSR Daily
Activity 3D Dataset to evaluate the performance of their model. They used only the RGB
images from these datasets. The model achieved 100% accuracy for the KARD and CAD-60
datasets and 95.6% accuracy for the MSR Daily Activity 3D dataset. They also compared
their results with those of other papers and showed that their model performed better.
In 2023, Parida et al. proposed the use of a hybrid CNN with LSTM model for vision-based
HAR [25]. Their proposed model uses CNN for filtering features and LSTM for sequential
classification, and then fully connected layers are used for feature mapping. They trained
and validated their model on the UCF50 dataset, and it had an accuracy of 90.93%, which
was better than the CNN and LSTM models.

Some researchers have proposed using skeleton data for HAR due to its robustness to
circumstance and illumination changes [26]. Graphical Convolutional Networks (GCNs) are
favoured by researchers for this task [27]. In 2019, Liu et al. proposed the structure-induced
GCN [28] which carries out spectral graph convolution on a constructed inter-graph of mini-
graphs of specific parts of the human skeleton. They evaluated their model on the NTU
RGB+D and HDM05 datasets, and it had an accuracy of 89.05% and 85.45%, respectively.
In 2020, Cheng et al. proposed a Decoupling GCN (DC-GCN), which uses a decoupling
aggregation mechanism and DropGraph instead of dropout for regularisation [26]. They
validated their model on the NTU-RGBD, NTU-RGBD-120, and Northwestern-UCLA
datasets and carried out ablation studies to show the efficacy of the DC-GCN. The result
of their experiments showed that the DC-GCN exceeds the performance of other graph
models with less computational cost.

In 2022, Jiang et al. proposed a novel Inception Spatial Temporal GCN (IST-GCN),
which they trained and validated on the NTU RGB+D [29]. The model uses multiscale
convolution to improve the GCN based on the inception structure. The model had an
accuracy of 89.9% using x-subject validation and 96.2% using x-view, which is better than
other skeleton HAR models. More research has also been performed with the combination
of skeleton data with other modalities of data.

Most recently in 2024, Lovanshi et al. proposed a Dynamic Multiscale Spatiotemporal
Graph Recurrent Neural Network (DMST-GRNN), which uses multiscale graph convo-
lution units (MGCUs) to represent the interconnections of the human body [30]. Their
model is an encoder–decoder framework with the MGCUs as encoders and Graph-Gated
Recurrent Unit Lite (GGRU-L) used as the decoder. They trained and validated their model
on the Human3.6M and CMU Mocap datasets. Average mean angle errors were used to
measure the accuracy of the model, and it outperformed baseline models for both datasets.



Algorithms 2024, 17, 434 10 of 35

Vision-based HAR has experienced better accuracy in recent multimodal research, which
uses RGB-D data rather than just RGB data [31]. RGB-D images, which provide more data
such as depth information, other data such as the skeleton image, and additional context
information, have also been explored by researchers. The prevalence of depth cameras like
the Microsoft Kinect has also increased the availability of multimodal vision data [32]. These
multimodal approaches are reviewed in Section 5.1. Vision-based HAR has also been known
to face some issues such as occlusion, privacy issues and the effect of lighting conditions,
which is one of the reasons for the growth in popularity of non-vision HAR approaches.

Table 2 summarises the recent literature concerning vision-based HAR. There are some
commonly used performance metrics for evaluating classification algorithms. They include
confusion matrix, accuracy, recall, precision, F1-score, and specificity. Most of the papers
reviewed used accuracy to measure the performance of their model. Hence, for the purpose
of comparison, accuracy is used to compare the different models reviewed. The accuracy of
a model measures the ratio of correctly predicted outputs to the total number of outputs.
The formula for accuracy is given as

(Accuracy = (TP + TN)/(TP + TN + FP + FN)) (1)

where TP is True Positives, TN is True Negatives, FP is False Positives and FN is False
Negatives. Ref. [24] proposed a Temporal Convolutional Neural Network and achieved
100% accuracy on the KARD dataset, while [25] proposed a hybrid CNN with LSTM model
and achieved an accuracy of 90.93%. There has also been some research on HAR using
skeleton data, and one of the common datasets for evaluating these models is the NTU
RGB+D. It has two validation views: x-subject and x-view. In x-subject, the validation
data are collected from different subjects from those of the training data, while in x-view,
the training and validation data are obtained from various camera views [33]. The DC-
GCN model [26] achieved an accuracy of 90.8% on the x-subject validation, while IST-GCN
model [29] obtained an accuracy of 89.9% on the same. On the x-view validation of NTU
RGB+D, the DC-GCN model had an accuracy of 96.6%, while IST-GCN had an accuracy
of 96.2%.

In real-world environments, vision HAR faces challenges like changing light con-
ditions, activities that look similar (like walking vs. jogging), and actions happening at
different speeds. Factors such as illumination and lighting environment can affect image
quality, which is the foundation of vision-based HAR [31]. HAR can be difficult when there
are distractions or movement in the background. These factors can make it hard for the
models to work as well as they would in controlled settings [34]. There is also the issue of
privacy and the invasive nature of vision sensors. Due to these issues, non-vision sensors
have become popular for HAR tasks.

Table 2. Vision-based Human Activity Recognition papers.

S/N Paper Dataset Model Accuracy Contribution to
Knowledge

1

Human activity
recognition using
Temporal
Convolutional
Neural Network
architecture [24]

1. KARD
2. CARD-60
3. MSR Daily

Activity 3D

TCNN
1. 100%
2. 100%
3. 95.6%

Proposed a TCNN
that uses
spatiotemporal
features and takes
only a short video
(2 s) as input.

2

A novel approach for
Human Activity
Recognition using
vision based
method [25]

UCF50 hybrid CNN with
LSTM 90.93%

Integrated CNN with
LSTM, where CNN
extracts the spatial
characteristics and
LSTM is used to learn
the temporal
information
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Table 2. Cont.

S/N Paper Dataset Model Accuracy Contribution to
Knowledge

3

Si-GCN:
Structure-induced
Graph Convolution
Network for
skeleton-based action
recognition [28]

1. NTU RGB+D
2. HDM05

SI-GCN 1. 89.05%
2. 85.45%

Constructed
inter-graph of
mini-graphs of
specific parts of the
human skeleton to
show the interactions
between human parts

4

Decoupling GCN
with DropGraph
Module for
skeleton-based action
recognition [26]

1. NTU-RGBD
2. NTU-RGBD-

120
3. Northwestern-

UCLA

DC-GCN

1. X-sub: 90.8%
and x-view:
96.6%.

2. X-sub: 86.5%
and x-view:
88.1%.

3. 95.3%

Proposed an
Attention-guided
DropGraph (ADG) to
relieve the prevalent
overfitting problem
in GCNs.

5

Inception Spatial
Temporal Graph
Convolutional
Networks for
skeleton-based action
recognition [29]

NTU RGB+D IST-GCN x-sub: 89.9%,
x-view: 96.2%

Improved GCN and
TCN based on the
Inception structure
using the idea of
multiscale
convolution to better
extract spatial and
temporal features.

6

3D skeleton-based
human motion
prediction using
dynamic multiscale
spatiotemporal graph
recurrent neural
networks [30]

1. CMU Mocap
2. Human3.6M DMST-GRNN

Average Mean Angle
Errors (MAE):

1. 0.19 for 80 ms
and 1.20 for
1000 ms

2. 0.25 for 80 ms
and 1.43 for
1000 ms

Proposed a
multiscale approach
to spatial and
temporal graphs
using multiscale
graph convolution
units (MGCUs) to
describe the human
body’s semantic
interconnection.

4. Non-Vision-Based HAR

Recent research in HAR has shifted towards the non-vision-based approach [3], and
a variety of non-vision sensors such as movement sensors are now popular for use in
HAR [35]. This is because movement sensor technology is more low cost and considered
less invasive [36]. Ambient sensors are also used in smart homes for HAR. There are also
instances of the integration of non-vision sensors to enhance vision-based HAR [37]. These
instances are also covered in Section 5.1. This section will review the recent papers focusing
on non-vision sensor technology for HAR.

Long Short-Term Memory (LSTM) models are popular for non-vision HAR tasks
because they are designed to capture temporal dependencies in sequential data such as
accelerometer and gyroscope data. Khan et al. classified two activities (walking and brisk
walking) using an LSTM model [38]. They collected their data using an accelerometer,
gyroscope, and magnetometer, which were then used to train and test their model. They
used different sensor combinations to train and test the model. Then, they compared the
performance of the different combinations and found that the combination of acceleration
and angular velocity had the highest accuracy of 96.5%. The sensor input of only magnetic
field gave the lowest accuracy of 59.2%.
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Hernandez et al. proposed the use of a Bidirectional LSTM (BiLSTM) model for
inertial-based HAR [39]. They collected data from 30 volunteers wearing a smartphone
(Samsung Galaxy S II) on the waist using the embedded inertial sensors. Their proposed
BiLSTM model had the best accuracy of 100% in identifying the laying-down position and
85.8% as its worst accuracy in identifying standing. They compared their model with other
existing models and it performed competitively.

In 2023, Mekruksavanich and Jitpattanakul proposed a one-dimensional pyramidal
residual network (1D-PyramidNet) [21] which they based on Han’s deep pyramidal resid-
ual networks (DPRNs). The model was trained on the Daily Human Activity (DHA)
dataset, and the results were compared with other baseline deep learning models (CNN,
LSTM, BiLSTM, GRU, and BiGRU). The authors used the Bayesian optimisation approach
to fine-tune the hyper-parameters of the models being compared. The 1D-PyramidNet
achieved an accuracy of 96.64% and an F1-score of 95.48%, which was higher than the other
baseline models.

Following the successes in using CNN models in vision-based HAR, researchers have
proposed adjusting CNN models or combining them with other models to accommodate
the nature of non-vision/time series data. In 2022, Deepan et al. proposed the use of a
one-dimensional Convolutional Neural Network (1D-CNN) for non-vision based HAR [37].
They collected and processed the Wireless Sensor Data Mining (WISDM) dataset using a
wearable sensor. They trained and validated their model on the dataset and it showed high
accuracy, precision, recall, and F1-score.

In 2020, Mekruksavanich and Jitpattanakul proposed using a CNN-LSTM model which
eliminates the need for the manual extraction of features [40]. They also used Bayesian
optimisation to tune the hyper-parameters and trained their model on the WISDM dataset.
They compared the performance of their model with that of baseline CNN and LSTM
models, and it performed better with an accuracy of 96.2%.

In 2023, Choudhury and Soni proposed a 1D Convolution-based CNN-LSTM model [41].
They used their own calibrated dataset and the MotionSense and mHealth datasets to train
and test the model. They also compared their model with baseline ANN and LSTM models,
and their model performed better with an accuracy of 98% on their calibrated dataset.
On the MotionSense dataset, it achieved 99% accuracy and 99.2% on the mHealth dataset.
Abdul et al., in 2024, modified the 1D CNN-LSTM by making it a two-stream network [42],
and their hybrid model achieved 99.74% accuracy on the WISDM dataset.

In 2024, El-Adawi et al. proposed a hybrid HAR system that combines Gramian
Angular Field (GAF) with DenseNet [43], specifically the DenseNet169 model. The GAF
algorithm turns the time series data into two-dimensional images. Then, DenseNet is used
to classify these data. They used the mHealth dataset to train and test their model. Then,
they compared its performance with other models and obtained an accuracy of 97.83% and
F1-score of 97.83%.

Choudhury and Soni proposed a model to recognise complex activities using elec-
tromyography (EMG) sensors [44]. They proposed a lightweight CNN-LSTM model, which
they trained and tested on the EMG Physical Action Dataset [45]. They compared the
performance of their model against Random Forest (RF), Extreme Gradient Boosting (XGB),
Artificial Neural Network (ANN), and Convolutional Neural Network-Gated Recurrent
Unit (CNN-GRU) models. Their proposed lightweight CNN-LSTM performed better with
the highest accuracy of 84.12% and average accuracy of 83%. They also performed an
ablation study and showed the importance of integrating CNN, LSTM, and the dropout
layers, as the model performed better with these layers than without.

With the increase in the popularity of smart homes, HAR within these homes becomes
an important task, especially for health monitoring [46]. Ambient non-vision sensors are
generally considered more acceptable due to comfortability and privacy [47]. In 2019,
Natani et al. used variations of Recurrent Neural Networks (RNNs) to analyse ambient
data from two smart homes with two residents each [46]. They applied Gated Recurrent
Unit (GRU) and LSTM models to the Activity Recognition with Ambient Sensing (ARAS)
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dataset and used a Generative Adversarial Network (GAN) to generate more data. They
compared the results of the GRU and LSTM models on 10, 30 days, and 50 days of data and
found that the GRU generally performed better than the LSTM models. In 2021, Diallo and
Diallo compared the performance of three models (Multilayer Perceptron (MLP), RNN and
LSTM) on HAR task in an ambient home environment [48]. They evaluated their models
on the ARAS dataset and found that they performed well on more frequent activities but
were not efficient on rare activities. Also, their MLP model had the best performance on
the dataset.

One of the problems faced by HAR in smart home environments is the labelling of
the data. To solve this problem, Niu et al. propose the use of multisource transfer learning
to transfer a HAR model from labelled source homes to an unlabelled target home [47].
They first generated transferable representations (TRs) of the sensors in the labelled homes.
Then, an LSTM HAR model was built based on the TR and then deployed to the unlabelled
home. They conducted experiments on four homes in the CASAS dataset (HH101, HH103,
HH105, and HH109) to validate their proposed method. Their experiments showed that
their method outperformed HAR models which are based on only common sensors or
single-source homes.

HAR becomes even more complicated when there is more than one resident in the
house and the activities of residents overlap. To address this issue, Jethanandani et al.
proposed the classifier chain method of multilabel classification [49], which considers
underlying label dependencies. They used K-Nearest Neighbour as the base classifier and
evaluated the proposed method on the ARAS dataset using 10-fold cross-validation. Their
method was able to recognise the 27 activities in the dataset and the resident performing it.

Table 3 shows a summary of the papers reviewed in this section. On the WISDM
dataset, a movement sensor dataset, ref. [42] in 2024 achieved the highest model accuracy
of 99.74% using a multi-input CNN-LSTM model showing the efficiency of multimodality.
More multimodal methods are discussed in Section 5.1. For ambient sensors and the smart
home environment, using the ARAS dataset, ref. [48] achieved an accuracy of between 0.91
and 0.92 using MLP, RNN, and LSTM models for both houses in the dataset, while ref. [49]
achieved a higher accuracy of 0.931 in house B using the classifier chain method of the
Multilabel the Classification (MLC) technique with KNN as the base classifier. Some work
has also been conducted with datasets that have physiological data. On the mHealth
dataset, which has movement sensors and physiological sensors (ECG), ref. [43] used
GAF-DenseNet and achieved 97.83% accuracy, and ref. [41] achieved an accuracy of 99.2%.
In 2023, ref. [44] collected a new EMG dataset and obtained an accuracy of 83% on the HAR
task using a 1D CNN-LSTM model.

Table 3. Non-vision HAR reviewed papers.

S/N Paper Dataset Sensors Model Accuracy Contribution to
Knowledge

1

Classification of
Human Motion
Activities using
Mobile Phone
Sensors and Deep
Learning Model [38]

New dataset of
walking and
brisk walking

Accelerometer,
gyroscope and
magnetometer

DNN model
(LSTM) 96.5%

Investigated the best
combination of
sensor data (found
acceleration and
angular velocity to
give the
highest accuracy).

2

Human Activity
Recognition on
Smartphones Using a
Bidirectional LSTM
Network [39]

UCI HAR Accelerometer
and gyroscope BiLSTM 92.67%

Used a grid search to
identify the
best architecture.
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Table 3. Cont.

S/N Paper Dataset Sensors Model Accuracy Contribution to
Knowledge

3

Efficient Recognition
of Complex Human
Activities Based on
Smartwatch Sensors
Using Deep
Pyramidal Residual
Network [21]

DHA Accelerometer 1D-
PyramidNet 96.64%

Introduced
the 1D-PyramidNet
model which uses an
incremental strategy
for feature
map expansion.

4

An Intelligent Robust
One Dimensional
HAR-CNN Model for
Human Activity
Recognition using
Wearable Sensor
Data [37]

WISDM Accelerometer HAR-CNN
model 95.2%

Proposed a 1D
HAR-CNN model
and collected a
new dataset

5

Smartwatch-based
Human Activity
Recognition Using
Hybrid LSTM
Network [40]

WISDM Accelerometer
and gyroscope

CNN-LSTM
model 96.2%

Proposed a 2-layer
CNN-LSTM model
and tuned the
hyper-parameters
using Bayesian
optimisation.

6

Enhanced Complex
Human Activity
Recognition System:
A Proficient Deep
Learning Framework
Exploiting
Physiological Sensors
and Feature
Learning [44]

New HAR
dataset using
EMG sensors

8-channel
EMG sensors

1D
CNN-LSTM 83%

Proposed a
lightweight model.
Used physiological
sensor (EMG).
Collected a new HAR
dataset with EMG.

7

An Efficient and
Lightweight Deep
Learning Model for
Human Activity
Recognition on Raw
Sensor Data in
Uncontrolled
Environment [41]

New
Calibrated
Dataset,
MotionSense
and mHealth
datasets.

Accelerator
and gyroscope

1D
CNN-LSTM

98% on new
dataset. ,
MotionSense
dataset: 99%
and mHealth:
99.2%

Proposed a Conv1D
based CNN-LSTM
model and developed
a framework for DL
based HAR on
sensor data.
Also collected and
calibrated a new
HAR dataset.

8

Compressed Deep
Learning Model For
Human Activity
Recognition [42]

WISM Accelerator
and gyroscope

Multi-input
CNN-LSTM 99.74%

Introduced a
multi-input
CNN-LSTM model
with dual
input streams

9

Wireless body area
sensor networks
based Human
Activity Recognition
using deep
learning [43]

mHealth

ECG,
accelerometer,
gyroscope and
magnetometer

GAF-
DenseNet169 97.83%

Proposed using GAF
to transform 1D time
series data to
2D images
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Table 3. Cont.

S/N Paper Dataset Sensors Model Accuracy Contribution to
Knowledge

10

Deep Learning for
Multiresident
Activity Recognition
in Ambient Sensing
Smart Homes [46]

ARAS
multiresident
dataset

Force sen-
sor/pressure
mat, photocell,
contact sensors,
proximity
sensors,
infrared
receiver,
temperature
sensors and
sonar distance
sensor

RNN models
(GRU and
LSTM)

88.21% for
GRU and
86.55% for
LSTM

Used GAN to
generate more data
and compared the
performance of GRU
and LSTM models.

11

Human Activity
Recognition in Smart
Home using Deep
Learning Models [48]

ARAS

Force sen-
sor/pressure
mat, photocell,
contact sensors,
proximity
sensors,
infrared
receiver,
temperature
sensors and
sonar distance
sensor

MLP, RNN and
LSTM

LSTM 0.92 R1
and 0.91 R2
RNN 0.91 R2
and R1
MLP 0.92 R1
and 0.92 R2

Compared the
performance of three
models on the
ARAS dataset

12

Multisource Transfer
Learning for Human
Activity Recognition
in Smart Homes [47]

CASAS dataset
(HH101,
HH103, HH105
and HH109)

Motion sensor,
Door sensor,
Wide-area
sensor

TRs-LSTM

TRs method
performed
better than
transferring
HAR model
based on only
common
sensors

Proposed
transferring HAR
models from a
labelled home to an
unlabeled one using
Transferable sen-
sor representations

13

Multi-Resident
Activity Recognition
using Multilabel
Classification in
Ambient Sensing
Smart Homes [49]

ARAS multires-
ident dataset

Force sen-
sor/pressure
mat, photocell,
contact sensors,
proximity
sensors,
infrared
receiver,
temperature
sensors and
sonar distance
sensor

Classifier
Chain method
of the Multi
Label
Classification
(MLC)
technique with
KNN as base
classifier

0.931 in House
B and 0.758 in
House A

Proposed an
approach which uses
the correlation
between activities to
recognise activities
and the resident
carrying them out.

5. Recent HAR Algorithms

HAR has evolved significantly over time, driven by advancements in research and
technology. Research on HAR dates as far back as the 1990s [50]. Early HAR research was
on rule-based systems, which used hand-crafted rules for simple activity recognition [51].
Then, the early 2000s saw an increase in statistical methods such as feature engineering for
HAR [52] followed by machine learning algorithms. Identifying human activities using
machine learning (ML) often relies heavily on manually extracting specific features [53].
This reliance on human knowledge can be limiting. These ML models need significant
preprocessing which can be time-consuming [54]. Some of the popular ML algorithms
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include K-Nearest Neighbour, Random Forest, Support Vector Machine, Hidden Markov
and Gaussian Mixture [55].

The 2010s saw the start of research on deep learning for HAR. Researchers turned
to deep learning algorithms which automate feature extraction to reduce the time for
preprocessing and improve the accuracy of HAR models. Deep learning architectures,
particularly Convolutional Neural Networks, Recurrent Neural Networks, and Long Short-
Term Memory networks, have gained significant traction in the field of HAR [53]. These
deep learning algorithms can automatically learn abstract patterns from raw sensor data
during training, eliminating the need for manual feature extraction. They are also able to
handle more complex activities effectively. However, they require a large amount of data
for training. Over time, different deep learning algorithms have been proposed for the task
of HAR, such as DenseNet [35], TCNN [24], CNN-LSTM models [25,42,44], DC-GCN [26],
IST-GCN [29], DMST-GRNN [30], and DEBONAIR [11].

In recent years, in addition to DL algorithms, there has been some research using multi-
modal techniques, DRL and LLMs. This section will focus on these three recent algorithms.

5.1. Multimodal HAR

Multimodal approaches to HAR stem from the need to accurately and properly track
human activities, especially considering the complexity of human movements, which can
pose a challenge to single-modality HAR methods [56]. Also, the advancement in smart
objects, wearable sensors, and IoT technology has enabled the collection of multimodal
data [57].

The different sensor outputs that can be combined include RGB-D images, skeleton
data, inertial data, wearable sensor data (smartwatches, in-ear sensors, etc.), and ambient
sensor data [56–61]. Some researchers have also explored combining different forms of
the same modality like RGB images with skeleton images [61], acceleration with angular
velocity [62], and so on. Multimodal HAR will allow for the proper integration of phys-
iological data into HAR, which would enhance the efficiency of the application of HAR
in healthcare.

Some researchers have proposed using additional sensors to refine the activities’ con-
text. Bharti et al. [58] proposed using a combination of movement sensors and ambient
environment sensors, where the ambient sensors will provide context of the activities
detected from the movement sensors. They leveraged movement sensors, ambient environ-
ment sensors, and location context to develop a multimodal HAR model. They used an
ablation test to show that their model gave the highest accuracy with the different sensors
integrated than when alone. Mekruksavanich et al. [63] also proposed adding location
context data to their model to improve its accuracy. They tested their model on the DHA
dataset and it outperformed other standard models.

Rashid et al. proposed combining smartwatch and earbuds for HAR [56]. They col-
lected data from 44 subjects (24 males and 20 females) from a controlled in-lab environment
and an in-home environment. Then, they trained and tested five different classifier models.
Their result showed an overall improvement in the detection of the activities with a combi-
nation of both smartwatch data and earbud data. Although smartwatch data were overall
more useful, earbuds data showed better performance in detecting moving data.

Hnoohom et al. proposed a model based on the combination of data from a smartwatch
and smart-shoes embedded with accelerometers [64]. In their paper, they present a deep
residual network model called HARNeXt, which they trained and tested on the 19NonSens
dataset [65]. They ran three experiments using their proposed model and three baseline
models (CNN, LSTM, and CNN-LSTM). The first experiment used only the sensor data
from the smart-shoes, the second used only data from the smartwatch, and the third used
data from both the smart-shoes and the smartwatch. Their proposed model performed
better than the baseline models in all three experiments. It had an accuracy of 79.55%,
93.26%, and 97.11%, respectively, for the different experiments. The confusion matrix of the
third experiment also showed an accuracy of more than 90% for all activities.
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Due to the varied nature of the data being combined in multimodal systems, re-
searchers have proposed the use of parallel streams of models combined using fusion. This
has allowed for the creation of multimodal HAR models which can take as inputs a variety
of data like video and audio, images and inertia data, RGB images and depth/skeletal
images, and so on. The individual component models can then be chosen and adapted
based on the type of data that will be fed into them. This accounts for the differences in
the sensor data and allows for feature extraction from different dimensions [66]. Fusion is
then used to combine the outputs of the component models. Fusion can happen at the data
level, feature level, or classifier level [11,62].

In vision-based HAR, the use of parallel stream networks with fusion has been pro-
posed in different ways by researchers [9,59–61,67]. In 2020, Kumrai et al. proposed a
parallel stream network with one stream for the skeleton information using an LSTM
model and the other for the RGB Image using a VGG-16 model. The outputs from these
streams were then concatenated and processed through densely connected layers [61].
In 2021, Zehra et al. proposed the use of ensemble learning with Multiple CNNs [68].
They compared the performance of different ensembles of three 1D CNN models with the
performance of the single models and found that the ensembles had a higher accuracy.
Also in 2021, Das et al. proposed a Multimodal Human Activity Recognition Ensemble
Network (MMHAR-EnsemNet) which uses multiple streams to process information from
the skeleton and RGB data in addition to the accelerometer and gyroscope data [67]. They
trained and validated their model on the UTD-MHAD and Berkeley-MHAD datasets. They
compared the model’s performance using different combinations of the inputs, and the
model had the highest accuracy when all four modalities were used.

In 2022, Guo et al. proposed a three-stream model that uses reinforcement learning for
data fusion [69]. Their model took as input data the RGB image, skeleton and depth data
from the NTU RGB and HMDB51 datasets. They proposed that each modal datum cannot be
weighed equally because they have different representation abilities for various actions [69].
Thus, using reinforcement learning to determine the fusion weights would account for this
variability. They trained and tested their model on the NTU RGB and HMDB51 datasets
and performed ablation studies to show the effectiveness of their reinforcement learning
multimodal data fusion method.

Lin et al. proposed the combination of cameras and movement sensors for the health
monitoring of people with mobility disabilities [57]. Their model took as inputs the skeleton
sequence from the camera and the inertial sequence from the movement sensors. Two
component models, ALSTGCN and LSTM-FCN, were used to process the skeleton sequence
and inertial sequence, respectively. An Adaptive Weight Learning (AWL) model was used
to fuse the skeleton and inertial features optimally. They tested their model on two public
datasets, C-MHAD and UTD-MHAD, and on M-MHAD, which is a novel dataset created
by them. They compared the model with other state-of-the-art single-modality models,
and it performed better [57].

Some researchers have also proposed combining non-vision inputs in multiple stream
models. Zhang et al. proposed a multistream HAR model called 1DCNN-Att-BiLSTM,
which combines a one-dimensional CNN, an attention mechanism, and a bidirectional
LSTM [66]. The sensor inputs are processed in parallel and fed into the 1DCNN and
BiLSTM models connected in series. An attention mechanism was used to select important
features. Then, a fully connected layer was used for the fusion of the feature data obtained
from each channel. A softmax layer was used for the final output. They tested their model
on the Shoaib AR, Shoaib SA and HAPT datasets. Their focus was on the combination
of three sensor types: accelerometer, gyroscope, and magnetometer. They compared the
performance of their model to other models and demonstrated its superior performance.
In their work, they also compared the performance of various sensor combinations, and
showed that the accelerometer and gyroscope sensor combination performed better than
the accelerometer and magnetometer or gyroscope and magnetometer combination [66].
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Muhoza et al. proposed a position-aware HAR model using a multimodal Deep
Convolutional Neural Network (DCNN) [70]. They proposed that forming a body network
using data from sensors on different positions on the body would improve activity recog-
nition. They treated each position independently by passing them through an ensemble
of Convolutional Neural Networks (CNNs) before fusion. The fusion block is made up
of fully connected layers that concatenate the outputs from the CNN blocks. Using the
Leave-Subjects-Out Hold Out (LSOHO) method, they trained and validated their model
on the SHO [71] and mHealth [72] datasets. Their result showed an overall improvement
compared to simple multiposition and single-position models.

Shi et al. proposed a Distributed Sensors Fusion Network (DSFNet) [62]. The model
has two branches: an angular velocity-based branch and an acceleration-based branch.
Angular velocity and acceleration are taken from the inertial sensors on different positions
on the body and fed into the corresponding branch of the model. The feature maps from
both branches are expanded into a vector and fed into a classification network, which
then outputs the classification score for the different categories. They evaluated their
model on the Comprehensive Multimodal Human Action Dataset (CZU-MHAD) [73],
and it showed competitive performance. They performed an ablation study and showed
improved performance by the post-fusion model compared to the pre-fusion model [62].

Chen et al. proposed a multimodal deep learning model for recognising Complex
Human Activities called DEBONAIR (deep learning-based multimodal complex human ac-
tivity recognition) [11]. They classified their input data into three based on their properties:
fast-changing and simple data, fast-changing and complex data and slow-changing data.
They proposed using different sub-networks to process each type of data. Then, a depth
concatenation operation was applied to the output of the sub-networks, and a convolutional
layer was used to fuse the features. Two LSTM layers were used to learn sequential informa-
tion from the fused features, and a final fully connected layer was used to generate the prob-
ability distribution for the Complex Human Activities (CHA). DEBONAIR was evaluated
on the lifelog dataset and the PAMAP2 dataset using weighted F1-score. It was compared
to different models (Hierarchy [74], Non-hierarchy [75], SADeepSense [76], DeepSense [77],
Channel-based Late Fusion [78], and DeepConvLSTM [79]) and it scored higher.

Mahmud et al. proposed the use of a Deep Multistage LSTM model to integrate
features from multiple sensors for HAR [80]. Their proposed model first extracts tem-
poral features from each sensor datum, which is then aggregated and optimised before
being fed into the final activity prediction layer. They tested the model on a dataset from
Physionet [81] and compared the effect of the different sensors against the performance
of integrating multiple sensors. Their result showed that the integration of multimodal
features led to an improvement in accuracy.

Multimodal HAR has been shown to demonstrate improved performance over single-
modality HAR [11,56,58,67]. It allows for combining different data types as each stream of
the model can be adapted to a particular data type. Table 4 shows a summary of some of
the multimodal HAR models that have been proposed in recent literature. Almost all of
them had an accuracy of over 91% in the experiments conducted, and where ablation tests
were performed, they showed that the multimodality increased the accuracy of the models.
Its application in healthcare would allow for combining inertial data and vital health data
for a more robust HAR solution.

However, one of the issues faced by this method is the availability of multimodal
datasets. This is largely due to the novelty of the method; with an increase in interest in this
methodology, there will also be an increase in the availability of datasets. Section 6 covers
some of the available multimodal datasets. Quality multimodal datasets have to ensure
that the data are not misaligned, which can be caused by the heterogeneity of the different
data types. It is also computationally intensive to process long sequences of multimodal
data, and it requires complex fusion techniques. Research in this area should focus on
finding optimal solutions to these issues.
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Table 4. Multimodal Human Activity Recognition papers.

S/N Paper Dataset Model Accuracy Contribution to
Knowledge

1

Human Activity
Recognition Through
Ensemble Learning
of Multiple
Convolutional
Neural Networks [68]

WISDM Ensemble of three
CNN models 93.66%

Proposed an
ensemble of
CNN models

2

MMHAR-EnsemNet:
A multimodal
Human Activity
Recognition
Model [67]

UTD-MHAD and
Berkeley-MHAD MMHAR-EnsemNet

0.991 on
UTD-MHAD and
0.996 on
Berkley-MHAD

Proposed a novel
deep learning based
ensemble model
called
MMHAR-EnsemNet

3

A Deep
Reinforcement
Learning Method For
Multimodal Data
Fusion in Action
Recognition [69]

NTU RGB and
HMDB51

Twin Delayed Deep
Deterministic (TD3)
for data fusion

94.8% on NTU
RGB+D and 70.3% on
HMDB51 dataset

Proposed a
reinforcement
learning based
multimodal data
fusion method.

4

Adaptive multimodal
Fusion Framework
for Activity
Monitoring of People
With Mobility
Disability [57]

C-MHAD,
UTD-MHAD and
M-MHAD

ALSTGCN and
LSTM-FCN models
using an Adaptive
Weight Learning
(AWL) features
fusion.

91.18% and the recall
rate of falling activity
is 100%

Proposed a deep and
supervised adaptive
multimodal fusion
method (AMFM) and
collected a new
multimodal human
activity dataset,
the H-
MHAD dataset.

5

A multichannel
hybrid deep learning
framework for
multisensor fusion
enabled Human
Activity
Recognition [66]

Shoaib AR, Shoaib
SA and HAPT
datasets

1DCNN-Att-BiLSTM
99.87% on Shoaib SA,
99.42% on Shoaib AR
and 98.73% on HAPT

Proposed a
multistream HAR
model called
1DCNN-Att-BiLSTM
and also compared
the performance
on various
sensor combinations.

6

Multiposition
Human Activity
Recognition using a
multimodal Deep
Convolutional
Neural Network [70]

Shoaib and mHealth

Multichannel 1D
CNN models fused
using a fully
connected layer.

97.84% on Shoaib
and 91.77% on
mHealth

Proposed a
multimodal deep
CNN capable of
recognizing different
activities using
accelerometer data
from several
body positions.

7

DSFNet: A
Distributed Sensors
Fusion Network
for Action
Recognition [62]

CZU-MHAD DSFNet
Ranging from 91.10%
to 100% on different
experimental settings

Proposed
a distributed sensors
fusion network
(DSFNet) for
multisensor
data which
uses one-to-many
dependencies for
acceleration
and local–global
features for
angular velocity
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Table 4. Cont.

S/N Paper Dataset Model Accuracy Contribution to
Knowledge

8

Deep learning-based
multimodal complex
Human Activity
Recognition using
wearable devices [11]

Lifelog and PAMAP2 DEBONAIR
F1-score of 0.615 on
lifelog and 0.836 on
PAMAP2 dataset.

Proposed
using different
sub-networks to
process fast-changing
and simple,
fast-changing and
complex and
slow-changing data.

9

Human Activity
Recognition From
multimodal Wearable
Sensor Data Using
Deep Multistage
LSTM Architecture
Based on
Temporal Feature
Aggregation [80]

Wrist PPG data
from Physionet

Deep Multistage
LSTM

Average F1 score
of 0.839

Proposed individual
LSTM streams for
temporal extraction
of each data type.

5.2. HAR Using Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) has recently emerged as a promising alternative
or addition to traditional supervised learning approaches to HAR. DRL is a combination of
deep learning and reinforcement learning. Reinforcement learning is a reward-oriented
learning technique that is based on trial and error.

Guo et al. proposed using DRL for data fusion in a multimodal system and performed
an ablation study to show the effectiveness of this DRL-based data fusion [69]. Dong et al.
proposed using DRL in attention-aware sampling for HAR. Their proposed method in-
volves training an attention model using DRL to identify the key frames in a video and
discard the irrelevant ones [82]. They evaluated the performance of their method on the
UCF101 and HMDB51 datasets and it performed competitively. In the same vein, Wu et al.
proposed a Multiagent Reinforcement Learning (MARL) framework that uses DRL to
identify relevant frames for the task of HAR [83]. In their paper, they proposed using
multiple agents, where each agent picks a series of frames encoded into a vector which
are then fed into a policy network. When a frame is selected as relevant, a classification
model then classifies the activity being carried out on that frame. They examined MARL
with various architectures (BN-Inception, Inception-V3, ResNet-101, ResNet-152 and C3D)
and it improved the overall accuracy of all the models. They also compared its perfor-
mance on the ActivityNet, YouTube Birds and YouTube Cars datasets in comparison to
other state-of-the-art models. They found that the method with ResNet-152 outperformed
other models.

In 2021, Nikpour and Armanfard proposed a Joint Selection Deep Reinforcement
Learning (JSDRL) framework that selects the key joints in the skeleton data of a video
and uses that for Human Activity Recognition [32]. It formulates the problem as a joint
selection problem and uses DRL to find the best solution. It selects and filters out the
relevant joints, thus enhancing the classifier’s performance and reducing training time.
They compared the performance of three models (BiLSTM, CNN, and decoupling graph
Convolutional Neural Networks with dropGraph module (DCGCN)) with and without the
JSDRL framework on the NTU-RGBD and UT-Kinect Datasets, and the models performed
better with the framework than without. The framework achieved the highest accuracy
when paired with DCGCN.

Zhang et al. also proposed a DRL framework called the Dynamic Key Feature Selection
Network (DKFSN) for feature extraction on time-series sequential data [84]. The DKFSN
uses a reinforcement agent to select the best deep features to optimise recognition and
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disregard the ones that negatively affect recognition. The baseline classification model
used for the framework is the BiLSTM with fully connected layers, and it was validated
on the Opportunity and UCI HAR datasets. From their experiments, the baseline model
had an accuracy of 89.16% on the opportunity dataset, while the DKFSN had an accuracy
of 89.74%. On the UCI HAR dataset, the baseline model had an accuracy of 92.06%, while
the DKFSN had an accuracy of 93.82%.

In 2019, Zhang and Li proposed a DRL-based human activity prediction algorithm
in a smart home environment [85]. They proposed the use of Deep Q-Network (DQN) for
recognising and predicting human activities in a smart home environment. They compared
the performance of their proposed methodology to more traditional methods (bag, set and
list approaches) and found that the DQN neural network performed better than the others.

In 2019, Raggioli and Rossi proposed a DRL framework that adaptively positions
the home robot in a way that does not distract or discomfort the user [86]. They used a
DNN with LSTM for activity recognition which had a 97.4% accuracy on the PAMAP2
dataset. Their proposed DRL framework had an 82% success rate for the simulated episodes.
Kumrai et al. in 2020 also proposed using DRL to control the movement of a home robot to
maximise its recognition of human activities [61]. They used a deep Q-network (DQN) to
automatically control the movement of the home robot. The agent was trained to maximise
the confidence value of the HAR model. The HAR model used in their work is a dual-stream
network that takes skeleton data and cropped images fed into LSTM and VGG-16 streams
respectively. The streams are then concatenated, and the recognised activity is outputted
with a confidence value. A virtual environment was used to evaluate the proposed DRL
method. In the same vein, Ghadirzadeh et al. also proposed a DRL framework that aligns
the action of a robot based on the recognised action of the human [87].

DRL is a promising technique for improving HAR. It has been used to improve the
results for the fusion of multistream models [69], adjust the movement of robots in smart
homes for better HAR [61,86], improve human–robot interactions [87] and increase the
efficiency of feature extraction [32,83,84]. There are ethical challenges to the use of DRL
in real-world applications such as its compliance with legal standards and issues around
privacy and algorithmic bias. It also has a black-box nature, which makes interpretability
of the algorithm difficult, and this limits its clinical applicability. While DRL trained in
simulated environments might perform well, they may not perform well in real-world
environments. These challenges highlight the need for more research in this area to improve
the applicability of DRL in HAR.

5.3. HAR Using Large Language Models

With the boom of Artificial Intelligence, LLMs have been at the forefront of more recent
research in business, cyber security, finance and healthcare [88]. The task of HAR is not left
out of this trend. This subsection reviews some of these papers. While supervised learning
might achieve high accuracy in HAR tasks, it requires a large amount of annotated data,
which is expensive and time intensive [89]; with LLMs, this can be avoided or mitigated.

Kim et al. evaluated twelve LLMs on various health prediction tasks including
HAR and presented a fine-tuned LLM model, HealthAlpaca [90]. They used four public
datasets—PMData, LifeSnaps, GLOBEM, and AW_FB—for prompting and fine-tuning
the LLMs. Their fine-tuned model achieved the highest accuracy in 8 out of the 10 tasks
considered including HAR. They also performed an ablation study that showed the impor-
tance of context enhancement strategies (combining health knowledge, user context and
temporal information).

Ji et al. proposed using a zero-shot human activity recogniser, HARGPT, which
takes raw sensor data with a simple prompt and yields a recognition outcome [91]. They
used well-known LLMs such as ChatGPT, Google Gemini, and LLaMA2-70b with a chain-
of-thought (CoT) prompt design. They validated their models on the Capture24 and
HHAR datasets, and they achieved an average accuracy of 80%. The authors compared
the performance of GPT4 to various baseline models (Random Forest, SVM, DCNN, and
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LIMU-LSTM). The baseline models achieved over 90% accuracy on the seen datasets but
on unseen data, GPT4-CoT surpassed them with F1 scores of 0.795 on Capture24 and 0.790
on the HHAR dataset.

Gao et al. proposed a model called LLMIE_UHAR that uses Iterative Evolution and
LLM [89]. Their proposed model first selects valuable data from the large unlabelled dataset
using a clustering algorithm. The selected data points are then changed into prompts which
are then used as input into the LLM, which annotates them. The annotated data are then
used to train a neural network. Their model integrates clustering algorithm, LLMs, and the
neural network to enhance the HAR task. They validated their model on the ARAS dataset
and it achieved an accuracy of 96%.

In 2021, Xu et al. developed LIMU-BERT (lite BERTlike self-supervised representation
learning model for mobile IMU data), which makes use of unlabelled data [92]. Their model
is based on BERT (Bidirectional Encoder Representations from Transformers), which is a
language representation model. They validated their model on four datasets: HHAR, UCI,
MotionSense and Shoaib datasets. The LIMU-BERT model achieved an average accuracy
of 0.929 and F1 score of 0.921 on all datasets, which was higher than other baseline models
(DCNN, DeepSense, R-GRU, and TPN). In 2024, Imran et al. developed LLaSa (Large
Language and Sensor Assistant), which combines LIMU-BERT and Llama [93]. In their
paper, they also introduced SensorCaps, a movement sensors activity narration dataset and
OpenSQA, a question–answer dataset. These datasets were created using movement sensor
data from HHAR, UCI-HAR, MotionSense and Shoaib datasets. The model was evaluated
first as a closed-ended zero-shot task on five datasets (HHAR, UCI-HAR, MotionSense,
Shoaib, and SHL) and then as an open-ended task on PAMAP2 dataset. Its performance
was compared to that of non-fine-tuned and fine-tuned GPT-3.5-Turbo and it performed
much better.

Fang et al. developed PhysioLLM, which integrates contextual data to physiological
data from a wearable to provide personalised understanding of health data and suggesting
actions to achieve personal health goals [94]. They used two LLMs in their system, one to
generate insights from the data and another for the conversation side of the system. Both
LLMs are based on OpenAI’s GPT-4-turbo model. They validated their system using a user
study of the sleep pattern of 24 Fitbit watch users and their system outperformed the Fitbit
App and a generic LLM. Two sleep experts also carried out a preliminary valuation of the
system and they concluded that the system gave valuable, actionable health advice.

LLMs can be used in the annotation of large datasets and in the developing of per-
sonalised HAR systems and models that better understand and predict human behaviour
using contextual information and user preferences. However, LLMs face some issues such
as ethical issues concerning bias and privacy [90]. Due to the black-box nature of LLMs, it
is also difficult to assess their clinical validity. There is also the problem of hallucination,
where the model makes up an answer that is incorrect or that does not exist. In order
to maximise LLMs in HAR, it is necessary to explore solutions to these issues, such as
incorporating explainable Artificial Intelligence (AI) methods and fine-tuning these models
to specific use cases to avoid hallucination.

6. HAR Datasets with Physiological Data

The availability of high-quality datasets is important for developing and evaluating
any HAR model. Traditionally, HAR relies on motion data from wearable inertial or
ambient sensors or image data from vision sensors. Some of the notable datasets are
Weizmann [95], KTH Action dataset [96], Kinect Activity Recognition Dataset [97], Cornell
Activity Dataset [98], MSR Daily Activity 3D Dataset [99], UCF50 [100], HDM05 [101], NTU
RGBD [102], NTU RGBD-120 [103], Northwestern-UCLA, Human 3.6M [104], CMU Mocap,
WISDM [105], Daily Human Activity (DHA), ARAS [106], CASAS, OPPORTUNITY [107],
and UCI HAR [108].

However, research has shown that physiological data can improve the accuracy of
HAR models [75], especially when applied to healthcare use cases. While numerous
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datasets for HAR with motion data exist, datasets incorporating physiological data are
relatively limited. While these sensors offer precious insight into movement patterns, they
fail to capture the physiological and contextual aspects of human activities [17]. Researchers
have recently recognised this limitation and started integrating health vitals with traditional
motion data. This section will review selected HAR datasets with physiological data
incorporated. These datasets include PAMAP2 [109], ETRI lifelog [17], mHealth [110], EMG
physical action, 19NonSense, and Wrist PPG During Exercise [81] datasets.

PAMAP2 was introduced as a new dataset for physical activity monitoring and bench-
marked on several classification tasks [109]. The dataset contains over 10 h of data col-
lected from 9 subjects (8 males and 1 female) performing 18 activities. The activities
included 12 protocol activities (lie, sit, stand, walk, run, cycle, Nordic walk, iron, vacuum
clean, rope jump, and ascend and descend stairs) and 6 optional activities (watch TV,
computer work, drive car, fold laundry, clean house, and play soccer) [109]. Three Inertial
Measurement Units (IMUs) and a heart rate monitor were used to capture data. The IMUs
were attached with straps on the dominant arm and ankle and the third one was attached
with the heart rate monitor on the chest. The dataset was made publicly available on
the internet.

ETRI lifelog dataset was collected from 22 participants (13 males and 9 females) over
28 days using a variety of sensors, including smartphones, wrist-worn health trackers,
and sleep-quality monitoring sensors [17]. The dataset includes physiological data (photo-
plethysmography (PPG), electrodermal activity (EDA), and skin temperature), behavioural
data (accelerometer, GPS, and audio) and self-reported labels of emotional states and sleep
quality. The authors demonstrated the feasibility of the dataset by using it to recognise
human activities and extract daily behaviour patterns [17]. They suggested that the dataset
can be used to understand the multifaceted nature of human behaviour and its relationship
to physiological, emotional, and environmental factors. The dataset contains over 2.26 TB
of data with 590 days of sleep quality data and 10,000 h of sensor data.

The mHealth dataset includes body motion and vital signs recordings from 10 partic-
ipants performing 12 physical activities [110]. The data were collected using Shimmer2
wearable sensors placed on the chest, wrist, and ankle. The sensor on the chest contains
a 2-lead ECG. The activities range from simple ones like standing still or lying down to
more complex ones like cycling or running. The publicly available dataset can be used to
develop and evaluate activity recognition models.

Wrist PPG During Exercise is a publicly available dataset of PPG signals collected
during exercise. The dataset includes PPG signals from the wrist, electrocardiography
(ECG) signals from the chest, and motion data from a 3-axis accelerometer and a 3-axis
gyroscope [81]. The PPG signals were recorded during walking, running, and cycling at
two different resistance levels. The dataset is intended for use in developing and validating
signal processing algorithms that can extract the heart rate and heart rate variability from
PPG signals during exercise.

The 19NONSens (Non-obstructive Sensing) dataset is a human activity dataset col-
lected using a smartwatch and an e-shoe [65]. The dataset was collected from 12 subjects
doing 18 activities in indoor and outdoor contexts. The smartwatch, Samsung Gear S2,
was equipped with accelerometer, gyroscope, heart rate sensor, a thermal, and a light
sensor, while the e-shoe had an accelerometer embedded in the sole. The subjects wore
the smartwatch on their preferred hand and performed the 18 activities, which included
9 indoor activities and 9 outdoor activities.

The EMG Physical Action dataset contains a dataset of 20 physical actions performed
by four subjects (3 males and 1 female) [45]. The data were collected using EMG sen-
sors with 8 electrodes. The subjects were recorded using Delsys EMG apparatus while
performing 10 aggressive and 10 normal physical actions.

PPG-DaLiA is a publicly available multimodal dataset recorded from 15 subjects wear-
ing a wrist and a chest-worn device while performing daily life activities [111]. The chest-
worn device provides ECG data, respiration data, and three-axis acceleration data, while
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the wrist-worn device provides body temperature, blood volume, electrodermal activity
data, and acceleration data. Table 5 provides an overview of the datasets reviewed.

Table 5. HAR datasets with physiological data.

S/N Dataset No. of Participants Sensors Used Activities

1 PAMAP2 9 accelerometer, gyroscope, heart
rate, magnetometer

lying, sitting, standing, walking,
running, cycling, Nordic walking,
watching TV, computer work, car
driving, ascending stairs,
descending stairs, vacuum cleaning,
ironing, folding laundry, house
cleaning, playing soccer,
rope jumping

2 ETRI lifelog
Dataset 22 GPS, PPG, accelerometer, gyroscope,

heart rate, magnetometer, skin temp

Sleep, personal care, work, study,
housework, caregiving, media,
entertainment, sports, hobby, free
time, shopping, regular activity,
transport, meal, social

3 Wrist PPG
During Exercise 23 ECG, PPG, accelerometer,

gyroscope, magnetometer
walking, running, easy bike riding
and hard bike riding

4 PPG-DaLiA 15 ECG, PPG, accelerometer
Sitting still, Ascending/Descending
stairs, table soccer, cycling, driving
car, lunch break, walking, working

5 EMG Physical
Action Dataset 4 EMG

Bowing, Clapping, Handshaking,
Hugging, Jumping, Running,
Seating, Standing, Walking,
Waving, and aggressive actions,
such as Elbowing, Front kicking,
Hammering, Headering, Kneeing,
Pulling, Punching, Pushing,
Side-kicking, and Slapping.

6 19NonSense
dataset 12 accelerometer, gyroscope, heart rate,

light sensor, themal sensor

Brushing, Washing hand, slicing,
peeling, upstair, downstair, mixing,
wiping, sweeping floor, turning
shoulder, turning knee, turning
haunch, turning ankle, walking,
kicking, running, cycling

7 mHealth dataset 10 accelerometer, gyroscope,
2-lead ECG

Standing still, Sitting and relaxing,
Lying down, Walking, Climbing
stairs, Waist bends forward, Frontal
elevation of arms, Knees bending
(crouching), Cycling, Jogging,
Running, Jump front and back.

7. Applications of HAR in Healthcare

HAR can be applied in different sectors; however, healthcare research is of paramount
importance [112]. Human health and well-being can be greatly improved through the
recognition of human activities. In healthcare, there are numerous applications of HAR.
Some of these applications are highlighted in this section.

7.1. Assistive Healthcare for Elderly People

HAR is valuable in providing assistive healthcare for elderly or vulnerable groups
especially those living alone. There is an increasing population of elderly people [113], and
they are vulnerable to diseases and home accidents. However, access to healthcare services
requires them going to hospitals, which might not always be feasible. With the incorpora-
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tion of health vital sensors in wearable devices, their health vitals can be monitored in the
comfort of their homes without interrupting their everyday routine.

Wearable HAR devices can also be used to detect potential issues such as a fall or a
decline in physical activities for this vulnerable group. In the event of a fall, caregivers and
the necessary healthcare personnel can be notified for prompt intervention. It can also be
used to identify and mitigate potential fall risks using gait patterns and balance. This is
especially important because falls are one of the main causes of injuries and even death in
the elderly [114].

However, these wearable sensors would depend on the elderly to wear them always,
which might not always be convenient [115]. Also there is a question of the accuracy of
some of these sensors, especially with healthcare applications where there is very little
room for error. Generally, the adoption of new technology is not always easy for the elderly;
using HAR systems that rely less on them operating it might be the best course of action.
Also with the increase in more comfortable wearable systems, some of which are integrated
into smartwatches, adoption by the elderly population should also increase.

Smart homes with cameras or other ambient sensors, like those modelled in the ARAS
and CASAS datasets, can be used by caregivers and healthcare practitioners to monitor
the health status of the elderly and detect abnormalities in their pattern of activities. This
can be used to monitor adherence to medication schedule and even in the early detection
of cognitive decline (Alzheimer’s and dementia). This method would eradicate having to
depend on the elderly to wear the sensors; however, there is still the issue of privacy and
data protection. With the HAR system monitoring their every move, it could be considered
invasive, and some might feel like their independence is being taken away.

For independent elderly people, quick intervention is important in the event of an
accident, and this is dependent on quick reporting or the detection of issues, and HAR-
based systems can help achieve this. However, the adoption of HAR in the assistive
healthcare of the elderly depends on issues such as privacy and data protection being
adequately handled.

7.2. Mental Health Issues

HAR has the potential to detect mental health issues (anxiety, depression, and dys-
thymia) and even monitor symptoms of mental health issues by analysing daily activity
and sleeping patterns. Mental health issues is usually characterised by a change in the
pattern of daily activities, with the patient becoming less interested in certain activities.
Less physical activity has generally been associated with people dealing with mental health
issues. People with anxiety are likely to experience or carry out certain anxiety behaviours
such as biting their nails, pulling their hair, pacing, and so on. They might also experience
diarrhoea or constipation. Insomnia is also one of the symptoms of mental health issues.
These activities can be detected by HAR systems, and this can be the foundation of a
HAR-based mental health support system.

People with major depressive disorder and who are at risk of self-harm can also
be monitored using HAR-based systems. While current mental health detection and
monitoring depends on self reporting, it is flawed because it relies on the patient being
able to accurately, and without bias, report their activities. However, with HAR systems,
these activities can be automatically and accurately detected, and it gives the mental health
professional accurate information to work with.

The detection and monitoring of mental health issues using wearable or ambient
sensors has been a long-standing research goal [116]. One of the limitations faced in this
research area is the availability of large datasets and also the lack of uniformity in the data
collected. This is a problem that needs to be tackled for the adoption of HAR systems in
the detection and monitoring of mental health issues.
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7.3. Personalised Health Recommendations

HAR can be used to provide personalised recommendations on healthy habits. Main-
taining a healthy lifestyle is individualistic because it is affected by things like physical
habits, job, genetics, and social habits. The daily nutritional requirements for a professional
athlete would be different from that of an office worker. Underlying health conditions can
also influence the nutritional needs of the user. A personalised nutrition monitoring or
recommender system based on HAR would ensure that these peculiarities and differences
are considered when it comes to the nutrition needs of the user.

A HAR-based exercise recommender system can be personalised based on the activities
of the user. This can be useful for people with Parkinson’s and other motor-generative
diseases, as personalised exercises can be used to augment medication [117]. For athletes,
this system can be used to emphasise weak spots in their training regimen. Personal
trainers can also used this for more personalised exercise recommendation. These health
recommendations can also change in response to changes in the user’s pattern of activities.
This allows for dynamic health recommendations that change with changes in the need of
the user.

7.4. Early Detection of Diseases

HAR, especially combined with physiological data, can be used for the early detection
of diseases. For instance, peripheral neuropathy can be detected early using gait analysis.
Diabetic patients who are at risk for peripheral neuropathy can be monitored using the
HAR system with smart shoe sensors or other wearable devices.

Biomedical sensors such as ECG and EMG sensors can be used together with inertial
sensors to detect and monitor diseases, which can be helpful for caregivers and help
patients receive prompt help where necessary. This can also be applied in the detection of
strokes, pneumoconiosis and other diseases [118,119]. In the same vein, heart attacks can
be detected based on the patient’s health vitals and motions detected by a HAR system.
Healthcare practitioners can use a HAR-based system to detect and monitor some of these
diseases especially for people who are generally at risk due to genetics, age, underlying
health conditions, or lifestyle.

Most biomedical sensors like ECG sensors use probes or straps which are uncom-
fortable to wear, especially for everyday tasks. Although there has been progress in the
development of wearable biomedical sensors such as over-the-ear ECG sensors, there is still
a concern about the accuracy and adoption of these wearable biomedical sensors. There are
also limited datasets with these sensors due to the rarity of their use in HAR. More research
needs to be performed in this application area to fully realise the potential of HAR in the
early detection of diseases.

7.5. Monitoring of Physical Rehabilitation Performance

Physical therapists can use HAR to monitor the performance of their patients and
curate personalised rehabilitation plans for them. HAR systems can help them have a
holistic view of the performance of their patients and note areas of weakness with respect
to the patient’s everyday life. This means that they can curate a rehabilitation plan tailored
to each patient and also effectively monitor the progress of each patient. Physical therapy
usually involves constantly re-assessing the biomechanical abilities of the patient, and this
takes up a considerable amount of time in the recovery process [120]. With a HAR-based
rehabilitation system, the time for recovery would be reduced, with the time spent on
constant biomechanical assessment being eliminated or greatly reduced.

Patients carrying out rehabilitation in a familiar environment such as their home have
shown to improve their performance after being discharged [121]. However, physical
therapists may not be available to monitor their progress at home, and family members
lack the knowledge to properly monitor and guide them [122]. A HAR-based monitoring
system would allow the patients to carry out their rehabilitation at home and still receive
the needed guidance from their physical therapists.
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It is important to note that due to the fatal nature of mistakes in healthcare, these
suggested application areas are to complement the healthcare professionals and not to
replace their expertise.

8. Challenges and Future Directions
8.1. Challenges

HAR has a lot of potential, but it also faces some challenges which need to be addressed
for optimal performance and a wider adoption. Some of the challenges of HAR systems
are as follows.

8.1.1. Data Privacy and Security

HAR relies on the collection of personal data on people’s activities, which raises
concerns about the privacy of the data in HAR systems, user consent, and the potential
misuse of data. Data privacy is a crucial issue for any system that uses sensitive information
from the user, and HAR systems are no different. Due to the intrusive and sensitive nature
of data collected by HAR systems such as location, daily routines and biometric information,
it can be used for surveillance and potentially infringe on the user’s privacy rights. It is
also important that these data be handled securely because data breaches can have severe
consequences for users such as identity theft or financial loss.

These data concerns also make it difficult for user adoption. With users becoming
more aware and conscious of how their data are being used, without clear and user-friendly
privacy policies, it would be difficult to promote user adoption of HAR systems.

8.1.2. Data Collection and Labelling

HAR systems require a large amount of labelled data, and this can be time-consuming.
HAR models can only recognise activities contained in the dataset which they have been
trained on. Usually such datasets are labelled manually in real-time, or once the activity is
done [123]. This means that for a robust HAR model, a varied number of activities would be
needed in the dataset, and the labelling of such a large dataset would be time-consuming.

There is also the complexity of real-world human activities where activities sometimes
overlap or can happen simultaneously. Also, due to the diversity of human behaviour,
a single activity can be performed different ways by different people. This is not often
captured in datasets collected in a laboratory setting. A model trained on general data may
perform poorly for certain individuals due to this [124]. This is a challenge that needs to be
tackled in order to create robust HAR systems that can handle real-world complexities.

8.1.3. Accuracy and Reliability

While HAR models have achieved an overall high accuracy, there are still issues
with differentiating activities with subtle differences. For the real-life deployment of these
models, it is important to have highly accurate models, especially with health applica-
tions. There is also low accuracy in identifying complex activities in comparison to simple
activities. When there are limited training data, there is low recognition accuracy.

When there is data drift from what the model was trained on, there is reduced accuracy,
which means that the model would need to be re-trained on these new data. This makes it
difficult to implement reliable HAR systems that have to deal with real-world data. It is also
computationally expensive to have to re-train a new model every time there is data drift.

8.1.4. Ethical Considerations

HAR models trained on biased data will give discriminatory results. When the training
data do not represent the diverse population they are intended to serve, the resulting HAR
system becomes inherently biased against certain demographics, such as race, gender
or age. This could further reinforce existing healthcare disparities [125] and systematic
discrimination. HAR can also be used as a discriminatory tool against individuals based on
their activities or behaviours such as in granting or denying access to services like insurance.
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Most recent HAR systems use AI models. These AI models are black boxes, and
so it is difficult to ascertain how they arrive at the results, and this makes it difficult to
determine their clinical validity. When users can understand how these models work,
they are more likely to adopt these HAR systems. This also raises the ethical question of
accountability. It is not always clear who is to be held accountable in cases where AI-based
systems are deployed.

There are also the ethical concerns of reduced human autonomy, where HAR systems
could dictate what the user has to do, thus taking away the user’s autonomy [126]. It is
important that users can continue to maintain their autonomy and can choose to use or not
use these HAR systems.

8.1.5. Standardisation

There is a lack of a widely adopted standard for HAR data collection, communication
and model representation. There are also a diverse number of devices and sensors used for
HAR which use different communication protocols. This poses a challenge for integrating
HAR systems with the existing infrastructure.

Due to the absence of a standard, the HAR landscape is fragmented, and there are
inconsistent practices. There is no standard to how activities can be defined, and this can
lead to inconsistencies in data labelling and annotation. There is also no set protocol for
data collection. This lack of standardisation needs to be addressed for interoperability and
adoption of HAR systems.

8.2. Future Directions

There are many possibilities for HAR, but first research has to be carried out to address
its challenges. This section highlights some areas where future research work in HAR can
be focused on.

8.2.1. Explainable AI

Explainable AI techniques can be used to make AI models more transparent and
trustworthy. They provide valuable insights into the decision-making process of these
models. This will help users understand the reasoning behind the decisions of these AI
systems and promote the adoption of HAR technologies. It would also address certain
ethical concerns such as the possible of bias and discrimination. It would also allow
researchers to identify and rectify points of errors in HAR systems. Some of the techniques
for explainable AI include rule extraction, visualisation, attention mechanisms and feature
importance. Applying explainable AI techniques for HAR systems would help in its
adoption especially in healthcare.

8.2.2. Massive and Diverse Datasets

In order to develop more rounded models, there is a need to create massive and well-
annotated datasets, which would cover a wide range of activities and also involve a wide
demography of people. A diverse dataset would ensure that models trained on them are
less likely to exhibit bias. Ensuring proper representation of the data of people from diverse
demography ensures that the resultant HAR systems are unbiased. A massive dataset
ensures that the model can handle variability especially in HAR where individuals perform
activities differently. Annotations of such massive datasets can be expensive; however, with
LLMs and other non-supervised methods, the effort needed is greatly reduced.

8.2.3. Multimodality

The combination of data from different sensors (movement data, physiological data,
and context data) can create a more robust picture of human activity and highlight the
fine-grained differences between similar activities. This is also important when recognizing
complex activities which may have similarities in terms of body movement. Combining
different modalities provides complementary information for a more robust system. This
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can be used in healthcare applications of HAR, where an addition of physiological data can
help differentiate activities like a fall from the patient lying down. Also, context data such as
underlying medical conditions can also provide a richer understanding of certain activities.

Future research should focus on addressing the challenges involved in building robust
multimodal HAR systems. Some of these challenges include the increased computational
cost of developing multimodal systems, the availability of multimodal data, and the
synchronisation of multimodal datasets.

8.2.4. Personalised HAR

The development of personalised HAR will account for individual user preferences
and profiles. It will improve the accuracy of the HAR system by considering individual
bio-mechanics, activity preferences or environmental factors. Personalised HAR systems
can adapt to changes in user behaviour or environmental conditions. LLMs can be used
in this instance to adapt existing models to the patterns of individual users or develop
adaptive HAR models. Future research can be conducted on personalised and adaptive
HAR systems using LLMs.

8.2.5. Standardisation

For interoperability and reproducibility of HAR research, it is important to have
industry standards. This is especially important with the use of AI in HAR.These standards
should cover data collection and representation, communication, and model representation.
It should also provide a guideline that guides the ethical use of HAR systems.

Future research should be on developing metadata standards, clear annotation guide-
lines, API standards, data privacy guidelines, and ethical guidelines to improve the quality
of HAR research and promote the adoption of HAR technologies. Creating a unified stan-
dard for HAR requires joint effort form government bodies, research institutes, companies,
and industry experts. Sharing ideas and resources openly, through projects like open-source
initiatives and industry consortium, can provide the needed momentum for developing an
industry standard for HAR.

8.2.6. Privacy Policies and Security

It is important to implement detailed privacy policies such as a strong user consent
mechanism, data anonymisation where possible, and a clear data usage and storage policy.
Users should be clearly informed about what data will be collected, how they will be
used, and how they will be stored. This will ensure the protection of user data. There
should also be room for users to opt out of data collection for specific applications. Robust
security measures must be in place to protect the user data collected and ensure there is no
data breach.

9. Conclusions

HAR has gained popularity in different domains including sports, healthcare, robotics,
human–computer interaction, security, surveillance, and entertainment. This review paper
provides a comprehensive overview of the latest advancements in HAR with a focus on
multimodality, DRL, and LLMs. It explores the diverse range of human activities and
sensors used in Human Activity Recognition. Then, it surveys recent research on vision
and non-vision based HAR. Different multimodal techniques have also been explored in
this survey. Ablation studies performed in some of the papers reviewed showed that multi-
modal approach enhances the precision of HAR systems. Multimodal HAR systems can
distinguish between similar activities with subtle differences and adapt to environmental
conditions by combining multiple sensor data and even contextual information. They also
need multimodal datasets, and these datasets with physiological data are also reviewed
in this survey. The integration of DRL in HAR tasks represents a shift from traditional
supervised learning methods. It combines the strength of deep learning and reinforcement
learning and enables the HAR system to learn optimal policies through trial and error. This
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technique has been applied to identify key features in complex datasets, determine optimal
weights for the fusion of multimodal systems, and also improve the system’s adaptability
to new activities without extensively labelled data. LLMS have been introduced to the task
of HAR for their ability to understand and predict activities based on textual and sensor
data and also personalise their output based on individual preferences. They can be used
in the annotation of large datasets and refining models based on contextual information
and user preferences.

Despite the advances in the field of HAR, there still remain some challenges such as
data privacy, data collection and annotation, accuracy and reliability, ethical considerations,
and standardisation. In order to overcome some of these challenges, future research
should focus on explainable AI, collecting and annotating massive and diverse datasets,
multimodality, standardisation, and personalised HAR systems. This review highlights the
potential of multimodal techniques, DRL, and LLMs in advancing HAR. Future research
should continue to innovate and refine these techniques, paving the way for more user-
centred, accurate and reliable HAR systems that will thrive in real-world scenarios.
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