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Abstract: Time series data typically exhibit high dimensionality and complexity, necessitating the use
of specific approximation methods to perform computations on the data. The currently employed
compression methods suffer from varying degrees of feature loss, leading to potential distortions
in similarity measurement results. Considering the aforementioned challenges and concerns, this
paper proposes a double mean representation method, SAX-DM (Symbolic Aggregate Approximation
Based on Double Mean Representation), for time series data, along with a similarity measurement
approach based on SAX-DM. Addressing the trade-off between compression ratio and accuracy in the
improved SAX representation, SAX-DM utilizes the segment mean and the segment trend distance to
represent corresponding segments of time series data. This method reduces the dimensionality of the
original sequences while preserving the original features and trend information of the time series
data, resulting in a unified representation of time series segments. Experimental results demonstrate
that, under the same compression ratio, SAX-DM combined with its similarity measurement method
achieves higher expression accuracy, balanced compression rate, and accuracy, compared to SAX-TD
and SAX-BD, in over 80% of the UCR Time Series dataset. This approach improves the efficiency and
precision of similarity calculation.

Keywords: time series; SAX; SAX-TD; SAX-BD; SAX-DM

1. Introduction

Time series data refer to a sequence of data points arranged in chronological order.
The widespread use of smartphones, various sensors, RFID, and other devices in recent
years has laid a solid foundation for the generation of massive amounts of time series
data. For efficient data mining and querying of time series data, it is crucial to employ
a rational and effective representation method. Time series data representation methods
can be broadly classified into four categories: data-adaptive representation methods, non-
data-adaptive representation methods, model-based representation methods, and data-
indicative representation methods, as described in Table 1. The content of this overview is
derived from the literature [1].

Table 1. Main representation methods of time series data.

Representation Publication Time Type Algorithm
Complexity

Method
Source

Discrete Fourier Transform (DFT) 1993 T1 O(n(log(n))) [2]
Discrete Wavelet Transform (DWT) 1999 T1 O(n) [3]
Discrete Cosine Transform (DCT) 1997 T1 N [4]

Partitioned Aggregation
Approximation (PAA) 2000 T1 O(n) [5]

Perceived Importance Points (PIPs) 2001 T1 N [6]
Chebyshev Polynomials (CHEBs) 2004 T1 N [7]
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Table 1. Cont.

Representation Publication Time Type Algorithm
Complexity

Method
Source

Indexable Piecewise Linear
Approximation (IPLA) 2007 T1 N [8]

Move Split Merge (MSM) 2013 T1 N [9]
Graphical-Content-Based DTW (SC

DTW) 2015 T1 N [10]

Singular Value Decomposition
(SVD) 1997 T2 O(Mn2) [4]

Piecewise Linear Approximation
(PLA) 1998 T2 O(n(log(n))) [11]

Piecewise Constant Approximation
(PCA) 2000 T2 N [12]

Adaptive Partitioning Constant
Approximation (APCA) 2002 T2 O(n) [13]

Symbolized Aggregate
Approximation (SAX) 2003 T2 O(n) [14,15]

SAX Based on Trend Distance
(SAX-TD) 2014 T2 N [16]

SAX Based on Boundary Distance
(SAX-BD) 2020 T2 N [17]

Hexadecimal Aggregate
Approximation (HAX) 2021 T2 N [18]

Point Aggregation Approximation
(PAX) 2021 T2 N [18]

Symbol Aggregation
Approximation Based on Distance

and Momentum
2022 T2 N [19]

Convergence Trend Symbol
Aggregation Approximation

(SAX-TI)
2023 T2 N [20]

Clipped Data 2005 T3 N [21]
Tree-Based Representation Method 2015 T3 N [22]
Hidden Markov Models (HMMs) 1998 T4 N [23]

Automatic Regression Model 2012 T4 N [24]
Representation Method Based on

Local Automatic Mode 2016 T4 N [25]

Grid-Based Representation Method 2019 T4 N [26]
Based on Random Forest and

Ranking Importance 2022 T4 N [27]

N: author not listed. T1: non-data-adaptive representation methods. T2: data-adaptive representation methods.
T3: data-indicative representation methods. T4: model-based representation methods.

(1) Data-adaptive representation methods express the original time series data as a
combination of arbitrary-length segments, aiming to minimize the error in global represen-
tation. For example, the commonly used Singular Value Decomposition (SVD) method [4] is
a typical data-adaptive representation method. It seeks c representative orthogonal vectors
of dimensionality k (c ≤ k) and maps the original time series data into a smaller space,
achieving dimensionality reduction. Another approach, the Piecewise Linear Approxima-
tion (PLA) method proposed by Keogh et al. in 1998 [11], fits the original time series data
using line segments. Furthermore, the improved Piecewise Constant Approximation (PCA)
method [12] approximates each time series data segment using a constant. Similarly, the
Adaptive Piecewise Constant Approximation (APCA) method [13] divides the original time
series data into variable-length segments and represents each segment using mean and
time-scale values. Symbolic Aggregate Approximation (SAX) [14,15] partitions the original
data and uses means to represent each segment. Then, based on the normal distribution
of the values in the time series data, the means are mapped to symbols, transforming the
complete time series data into a string.

Data-adaptive representation methods effectively capture the characteristics of the
original time series data. However, due to the unequal lengths of the segments, similarity
measurement based on this representation method becomes challenging.
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(2) In non-data-adaptive representation methods, the non-data-adaptive representa-
tion methods based on frequency domain transformation convert time series data from
the time domain to the frequency domain and represent the time series data using the
spectral information in the frequency domain. Commonly used methods include Discrete
Fourier Transform (DFT) [2], Discrete Wavelet Transform (DWT) [3], Discrete Cosine Trans-
form (DCT) [4], and others. These methods approximate the original time series data by
taking the first k coefficients after a certain transformation, achieving compression and
reducing the dimensionality of the time series data. Although parameter determination for
domain-transformation-based representation methods is challenging and requires extensive
parameter tuning experiments, non-data-adaptive methods based on piecewise approxima-
tion have also emerged. Examples include Piecewise Aggregate Approximation (PAA) [5],
Indexable Piecewise Linear Aggregation (IPLA) [8], and other methods. Non-data-adaptive
representation methods use equally sized segments to approximate the time series data.
While the approximation quality may not be as good as that of data-adaptive representation
methods, using such methods for similarity measurement is relatively straightforward
and simple.

Non-data-adaptive representation methods use equally sized segments to approximate
the time series data. Although the approximation quality may not be as good as that of
data-adaptive representation methods, using these methods for similarity measurement is
more direct and simpler.

(3) Model-based representation methods assume that time series data are stochas-
tic and use models such as AutoRegressive (AR) [24], AutoRegressive Moving Average
(ARMA) [25], and Hidden Markov Models (HMMs) [26] for fitting. This approach requires
the data to conform to certain assumptions and mathematical deduction theories; otherwise,
distortion may occur. Additionally, time series data are complex in structure and contain a
significant amount of noise, which poses significant challenges in constructing accurate
models.

(4) The aforementioned three types of representation methods allow users to cus-
tomize the data compression ratio (the ratio of the original sequence length to the processed
sequence length). However, determining this parameter is often challenging and can
significantly affect the quality of the approximation. In contrast, data-indicative representa-
tion methods can automatically define the compression ratio based on the original time
series data. Common methods in this category include data pruning [21] and tree-based
representation methods [22].

Among these, the SAX (Symbolic Aggregate Approximation) family of representation
methods has received significant attention from researchers. As a data-adaptive representa-
tion method, SAX is known for its simplicity and comprehensibility. Its implementation
mainly involves three steps: Z-normalizing the dataset, applying Piecewise Aggregate
Approximation (PAA) for dimensionality reduction, and finally, performing symbolic repre-
sentation. SAX has two important parameters: the dimensionality reduction parameter (w)
and the alphabet size (α). Figure 1 illustrates the process of symbolization approximation
for time series data of dimensionality 128. The original time series data are transformed
into a string of length 8, represented as “baabccbc,” which contains three characters (a, b, c).

However, considering the complexity and diversity of time series data, using only
the mean of time series data segments to represent their information may overlook some
important features, resulting in limited expressive power of SAX. Therefore, several im-
proved representation methods based on SAX have been proposed, such as SAX-TD [16]
and SAX-BD [17]. These methods enhance the accuracy of similarity measurement by
incorporating additional key feature information for each time series data subsegment
during compression and dimensionality reduction.
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The SAX-TD method represents the trend distance using the distance from the end-
point value to the mean, but it has limitations for sequences with complex variations. The
SAX-BD method represents the trend distance using the distance from the maximum and
minimum values to the mean, but it requires more symbol representations and has poor
dimensionality reduction performance.

In this paper, we propose a new method called SAX-DM, where “DM” stands for
Double Mean. To better quantify the trend of the subsegments, we further divide the
segments obtained by the PAA algorithm into two parts. We use the distance from the
mean of the left part to the overall mean as the symbol of trend distance, which intuitively
represents the trend of the subsegments. However, considering the issue of positive and
negative values, we represent the trend direction by the difference between the left mean
and the time average. Since the PAA algorithm has already normalized the time series data,
the range of the trend distance is ∆q ∈ [−1, 1].

Compared to SAX-TD and SAX-BD, SAX-DM provides a better representation of the
overall trend of time series data segments with complex variations. Additionally, SAX-DM
only adds an extra character on top of SAX, requiring fewer symbols. In our experiments,
we propose a novel similarity measurement method based on the SAX-DM representation.
The experimental results demonstrate that SAX-DM outperforms SAX-BD and SAX-TD
in terms of effectiveness. Furthermore, we prove that our novel distance measurement
method guarantees a lower bound on the Euclidean distance while maintaining a more
compact lower bound than the original SAX method.

2. Related Work

Assuming that time series data follow a normal distribution, according to mathemati-
cal principles, we can transform the original sequence data into a sequence that conforms
to the standard normal distribution. The SAX representation method draws inspiration
from this idea. It first segments the transformed sequence data and calculates the mean for
each segment. Then, these means are mapped to corresponding probability intervals based
on their magnitudes. If we assign a letter to each interval, we obtain a sequence of letters,
which forms the basis of the SAX. Through this process, the SAX is able to transform the
original continuous time series data into a discrete symbol sequence, thereby simplifying
the representation and processing of the data.

2.1. Distance Calculation by SAX

The implementation of SAX mainly consists of three steps: Z-normalization of the
dataset, dimensionality reduction using PAA, and finally symbolization. First of all, it
is common to normalize the time series data so that each time series has a mean of 0
and a variance of 1 because time series data with different offsets and amplitudes are not
directly comparable. Then, using a sliding-window approach, the original time series
data are divided into w equal-length subsequences, and each subsequence is represented
by its mean value. The normalized time series data follow a normal distribution, which
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provides mathematical support for dividing the probability distribution corresponding
to the time series data into equal area regions and can ensure that the probability of the
time series data falling into each interval is equal. The number of regions is determined
by the input parameter α, which also represents the size of the character set. Each region
is then represented by a symbol. Finally, based on the region in which the mean value
of each subsequence falls, the corresponding symbol for that region is used to replace
the subsequence, resulting in the symbolization approximation representation of the time
series data.

Assuming we have two time series data Q and C with the same length n, which is
divided into w time segments represented as q and c, Q̂ and Ĉ are the symbol strings
obtained after applying the SAX algorithm. The SAX distance between Q and C can be
calculated as the sum of the distance between each corresponding symbol and can be
expressed as follows:

MINDIST(Q̂, Ĉ) =
√

n
w

√
w

∑
i=1

(dist(q̂i, ĉi))2 (1)

2.2. Two Improvements of SAX Distance Measure for Time Series
2.2.1. SAX-TD

In order to enhance the accuracy of the SAX representation, it is important to preserve
the trend information of the time series data during the dimensionality reduction process.
For instance, the authors of reference [16] propose storing a value and a symbol in SAX to
improve the distance calculation. They introduce an improvement method called SAX-TD,
which utilizes the start and end points of segments to calculate the trend distance. There
are several scenarios for the trend variation of time series data segments, as illustrated in
Figure 2. In this figure, tl represents the left endpoint, which is the starting endpoint, and tr
represents the right endpoint, which is the end endpoint.
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The trend is indeed an important feature of time series data and plays a crucial role
in their classification and analysis. For instance, if the endpoint value is greater than the
starting point value, it indicates an upward trend, while the opposite suggests a downward
trend. To describe this trend more accurately, it is necessary to use the actual values instead
of the symbolized mapping when calculating the trend distance.

For the given time series data q and c, their trend distance is calculated as follows:

td(q, c) =
√
(∆q(ts)− ∆c(ts))

2 + (∆q(te)− ∆c(te))
2 (2)
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where ts and te represents the left and right endpoint values of the time series segment, ∆q(t)
represents the distance from the endpoint value to the average value of the line segment
in the sequence, and q(∆c(t) represents the corresponding distance of another sequence),
calculated using Formula (3):

∆q(t) = q(t)− q (3)

Although each segment has a starting point and an endpoint, in practice, the starting
point of the next segment is actually the endpoint of the previous segment. Therefore, it is
possible to embed the trend distance into the SAX symbolized sequence. As a result, the
time series data Q and C can be expressed using the following representation:

Q : ∆q(1)q̂1∆q(2)q̂2 . . . ∆q(w)q̂w∆q(w + 1)
C : ∆c(1)ĉ1∆c(2)ĉ2 . . . ∆c(w)ĉw∆c(w + 1)

q̂1, q̂2 . . . q̂w represents a sequence symbolized by SAX, and ∆q(1), ∆q(2), . . . , ∆q(x)
represents the trend of the time series data represented by the distance between the endpoint
values and the mean values. ∆q(x + 1) represents the change in the last point.

The distance measure formula for the time series data Q and C can be expressed
as follows:

TDIST(Q̂, Ĉ) =
√

n
w

√
w

∑
i=1

(dist(q̂i, ĉi))
2 +

w
n
(td(qi, ci))

2 (4)

where dist(q̂i, ĉi) represents the distance calculated using the SAX distance measure al-
gorithm, td(qi, ci) represents the distance calculated using Equation (2), n represents the
length of q and c, and w represents the number of time segments.

2.2.2. SAX-BD

Reference [17] and others suggest adding boundary distance as a new consideration
instead of trend distance and propose the algorithm SAX-BD. This algorithm considers
that, for each segmented time series fragment, there are maximum and minimum points,
and their distances to the mean value are referred to as the boundary distance. The average
of the segment’s boundary distances contributes to a more accurate measurement of the
different trends in the time series data. Details are provided below.

From Figure 3, we can observe that the maximum and minimum values within each
time segment serve as the boundaries. The boundary distance of a is denoted as ∆q(t)max
and ∆q(t)min, as shown in Equations (5) and (6):

∆q(t)max = q(t)max − q (5)

∆q(t)min = q(t)min − q (6)

In fact, the SAX-BD algorithm computes the trend changes (i.e., the boundary distance)
of a as ∆q(tmin) and ∆q(tmax), and these values are equivalent to ∆q(ts) and ∆q(te). There-
fore, it is evident that SAX-BD can also effectively distinguish between them. For cases a
and b, the distance calculated using SAX-TD is 0. However, in the SAX-BD approach, the
distance calculated using SAX-BD is not equal to 0, indicating the potential for differentia-
tion between these two sequences. Regarding the situations c and d, according to the TD
and BD methods, it is as follows:

for case c,
∆q(ts) = ∆q(t)max and ∆q(te) = ∆q(t)min (7)

for case d,
∆q(t)min − ∆q(te) 6= 0 and ∆q(t)max − ∆q(ts) 6= 0 (8)
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Similar to the SAX-TD distance measurement concept, the following SAX-BD distance
measurement formula can be used for temporal data Q and C:

BDIST(Q̂, Ĉ) =
√

n
w

√
w

∑
i=1

((dist(q̂, ĉ))2 +
w
n
(bd(qi, ci))

2) (9)
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3. Our Method, SAX-DM
3.1. SAX-DM Design and Analysis

In the SAX algorithm, expressing the information of a time series segment solely based
on its mean would overlook some important features, resulting in limited expressive power.
The SAX-TD method represents trend distance using the distance from the endpoints
to the mean, which has certain limitations for sequences with complex variations. The
SAX-BD method represents trend distance using the distance from the maximum and
minimum values to the mean, requiring more symbols for representation and resulting in
poor dimensionality reduction.

In this paper, we propose a new approach that utilizes the mean and trend of time
series subsegments as key information. To better quantify the trend of the subsegments,
we further divide the segments obtained through the PAA algorithm into two parts. The
distance from the mean of the left part to the overall mean is used as the trend distance,
which intuitively represents the trend of the subsegment. However, considering the issue
of positive and negative values, we use the difference between the left mean and the time
average mean to represent the trend. Since the PAA algorithm already normalizes the time
series data, the trend distance range is ∆q ∈ [−1, 1]. Figure 4 illustrates some examples
of determining the trend distance. When the left mean in the segment is smaller than
the overall mean, the trend is considered increasing, and the trend distance is positive, as
shown in example in Figure 4a. When the left mean in the segment is larger than the overall
mean, the trend is considered decreasing, and the trend distance is negative, as shown in
example in Figure 4b.



Algorithms 2023, 16, 347 8 of 19

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 20 
 

𝐵𝐷𝐼𝑆𝑇(𝑄, 𝐶መ) = ට𝑛𝑤 ඩ(൫𝑑𝑖𝑠𝑡(𝑞ො, �̂�)൯ଶ + 𝑤𝑛 ൫𝑏𝑑(𝑞, 𝑐)൯ଶ௪
ୀଵ ) (9)

3. Our Method, SAX-DM 
3.1. SAX-DM Design and Analysis 

In the SAX algorithm, expressing the information of a time series segment solely 
based on its mean would overlook some important features, resulting in limited 
expressive power. The SAX-TD method represents trend distance using the distance from 
the endpoints to the mean, which has certain limitations for sequences with complex 
variations. The SAX-BD method represents trend distance using the distance from the 
maximum and minimum values to the mean, requiring more symbols for representation 
and resulting in poor dimensionality reduction. 

In this paper, we propose a new approach that utilizes the mean and trend of time 
series subsegments as key information. To better quantify the trend of the subsegments, 
we further divide the segments obtained through the PAA algorithm into two parts. The 
distance from the mean of the left part to the overall mean is used as the trend distance, 
which intuitively represents the trend of the subsegment. However, considering the issue 
of positive and negative values, we use the difference between the left mean and the time 
average mean to represent the trend. Since the PAA algorithm already normalizes the time 
series data, the trend distance range is Δq ∈ [−1, 1]. Figure 4 illustrates some examples of 
determining the trend distance. When the left mean in the segment is smaller than the 
overall mean, the trend is considered increasing, and the trend distance is positive, as 
shown in example in Figure 4a. When the left mean in the segment is larger than the 
overall mean, the trend is considered decreasing, and the trend distance is negative, as 
shown in example in Figure 4b. 

a b

Δq

Δq

 
Figure 4. Schematic diagram of SAX-DM trend distance. (a) represents the trend distance calculated 
by the SAX-DM method for sequences with an upward trend. (b) represents the trend distance 
calculated by the SAX-DM method for sequences with a downward trend. 

Compared to SAX-TD and SAX-BD, SAX-DM can better represent the overall trend 
of time series data segments with complex variations, while requiring fewer symbols. For 
a segment with the mean value 𝑞ො, its trend distance Δq can be represented within the 
range [−1, 1]. Therefore, when dividing time series data into n parts, it can be expressed 
as follows:   ∆𝑞ଵ𝑞ොଵ∆𝑞ଶ𝑞ොଶ∆𝑞ଷ𝑞ොଷ … ∆𝑞𝑞ො   
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Compared to SAX-TD and SAX-BD, SAX-DM can better represent the overall trend of
time series data segments with complex variations, while requiring fewer symbols. For a
segment with the mean value q̂, its trend distance ∆q can be represented within the range
[−1, 1]. Therefore, when dividing time series data into n parts, it can be expressed as
follows:

∆q1q̂1∆q2q̂2∆q3q̂3 . . . ∆qn q̂n

3.2. Similarity Measurement Based on SAX-DM Expression Method

In this paper, the Euclidean distance is employed as the fundamental method for
measuring similarity. For a sequence approximated using SAX-DM, it can be viewed as
a point in a w-dimensional space. Therefore, the computation of similarity between time
series data can be transformed into calculating the distance between different points in this
w-dimensional space.

Before proceeding, let us review the method for calculating Euclidean distance on
the original time series data. Suppose we have two time series data, T = t1, t2, t3, . . . , tn,
S = s1, s2, s3, . . . , sn. The Euclidean distance between them is the straight-line distance
between the points represented by the two time series data objects in an n-dimensional
space. It can be calculated using the following formula:

ED(T, S) = 2

√
n

∑
i=1

(ti − si)
2 (10)

Due to the high-dimensional nature of time series data, calculating distances on the
original time series data can lead to significant memory pressure and a substantial number
of computations. This process is also susceptible to noise and deformations in the data.
Therefore, it is common to compress and reduce the dimensionality of the original time
series data and extract features. One popular method for compression and dimensionality
reduction is using Piecewise Aggregate Approximation (PAA). After applying PAA, the
similarity distance can be calculated using the following formula:

ED
(
T, S

)
= 2

√√√√ w

∑
j=1

(
tj − sj

)2 (11)

Each time series data subsegment uses the mean as a feature information:

ti =
w
n

n
w i

∑
j= n

w (i−1)+1
tj (12)
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In this article, trend distance is used to represent temporal data fragments. Firstly, a
representation based on trend distance is defined. For temporal data Q and C, the following
expressions are defined:

Q : ∆q1q̂1∆q2q̂2∆q3q̂3 . . . ∆qn q̂n
C : ∆c1 ĉ1∆c2 ĉ2∆c3 ĉ3 . . . ∆cn ĉn

According to the above expression, the formula for calculating the trend distance
based on the left mean value is defined as follows:

md(q, c) = 2
√
(∆q− ∆c)2 (13)

The distance measurement can be represented by the following equation:

MDIST
(
Q̂, Ĉ

)
=

√
n
w

√
w

∑
i=1

(
(dist(q̂i, ĉi))

2 +
w
n
(2×md(q̂i, ĉi))

2
)

(14)

In order to address the memory pressure and computational efficiency issues asso-
ciated with high-dimensional time series data, it is generally necessary to compress and
reduce the dimensionality of the original data and extract features. In this paper, the PAA
method is employed to segment the original time series data, and the average value and
change trend of subsegments are used as the key information for each subsegment. This
approach aims to improve the compression ratio of the approximate representation while
preserving the essential features of the original data as much as possible. Furthermore, by
considering the trend of temporal data changes, the similarity measurement method based
on the approximate representation proposed in this paper can calculate similarity more
accurately.

3.3. Lower Bound

The SAX algorithm, when applied for dimensionality reduction, offers one of its
most important features, that is providing a lower-bound distance measurement called the
boundary distance. The lower bound is useful to control errors and accelerate computa-
tions. However, when performing spatial queries on the dimensionally reduced original
sequence, there is a risk of false negatives. To reduce the occurrence of false negatives
after dimensionality reduction, it is important to design algorithms that satisfy a good
lower-bound property.

Next, we will prove that the distance we propose also serves as a lower bound for the
Euclidean distance.

The lower bound of the PAA distance for the Euclidean distance is given by the
following expression: √

∑n
i=1(qi − ci)

2 ≥
√

n
w

√
∑w

i=1

(
qi, ci)

2 (15)

To prove that DMIST is also a lower bound for the Euclidean distance, we reiterate
some of the proofs here. Let Q and C be the means of the time series data Q and C,
respectively. Firstly, we consider the single-frame case (i.e., w = 1), and according to
Equation (15), we can obtain

∑n
i=1(qi − ci)

2 ≥ n
(
Q− C

)2 (16)
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Recall that q is the average value of the temporal data, so qi can use qi = Q− ∆qi. This
also applies to each point c in ci. Equation (15) can be rewritten as follows:

n
(
Q− C

)2
+

n

∑
i=1

(∆qi − ∆ci)
2 ≥ n

(
Q− C

)2 (17)

Because ∑n
i=1 (∆qi − ∆ci)

2 ≥ 0 and (∆q(t)1 − ∆C(t)1)
2 + (∆q(t)2 − ∆C(t)2)

2, we can
obtain the following inequality (which clearly exists in the boundary distance ∆qi):

n

∑
i=1

(qi − ci)
2 ≥ (∆q(t)1 − ∆C(t)1)

2 + (∆q(t)2 − ∆C(t)2)
2 (18)

Substituting Equation (16) into Equation (17), we obtain

n
(
Q− C

)2
+

n

∑
i=1

(qi − ci)
2 ≥ n

(
Q− C

)2
+

n

∑
i=1

(md(qi, ci))
2 (19)

MINDIST conducted a lower-bound analysis of the PAA distance, namely,

n
(
Q− C

)2 ≥ n
(
Q̂− Ĉ

)2 (20)

In Equation (20), Q̂ and Ĉ are, respectively, the symbolic representations of Q and C in
the original SAX. By transitivity, the following inequality is correct:

n
(
Q− C

)2
+

n

∑
i=1

(∆qi − ∆ci)
2 ≥ n

(
dist

(
Q̂− Ĉ

))2
+ (md(qi, ci))

2 (21)

Recalling Equation (15), this means

n

∑
i=1

(∆qi − ∆ci)
2 ≥ n((dist

(
Q̂− Ĉ

)
)

2
+

1
n
(md(qi, ci))

2
) (22)

N frames can be obtained by applying a single-frame proof on each frame, namely,√
n

∑
i=1

(qi − ci)
2 ≥

√
n
w

√
w

∑
i=1

((dist(q̂, ĉ))2 +
w
n
(md(qi, ci))

2 (23)

The quality of the lower boundary distances is usually measured by the compactness
of the lower boundaries (TLB):

TLB =
Lower Bounding Distance(Q, C)

Euclidean Distance(Q, C)
(24)

The value of TLB is within the range [0, 1]. The higher the TLB value, the better the quality. Re-
calling the distance metric in the equation, we can obtain that TLB(BDIST) ≥ TLB(MINIDIST),
which means that SAX-DM has a tighter lower bound than the original SAX distance.

4. Experimental Validation

In this section, we compare the classification results of SAX-DM representation with
other representations on time series data through experiments. Firstly, we introduce
the experimental dataset, followed by an explanation of the experimental methodology
and parameter settings. Finally, we evaluate the advantages of SAX-DM based on the
comprehensive assessment of classification accuracy and error rate.



Algorithms 2023, 16, 347 11 of 19

4.1. Datasets

The evaluation of SAX-DM’s classification performance utilized the UCR Time Series
Archive [28], which is a widely used collection of time series datasets in the field of
time series data mining. This dataset was introduced in 2002 and has been continuously
expanded over time. Due to its inclusion of time series datasets from various domains,
it has become an important resource in the time series data mining community and is
recommended by researchers working with time series data.

Initially, the dataset contained only 16 datasets. However, since its introduction in 2002,
it has been expanded, and it currently includes 128 datasets. These datasets cover seven
different domains: Device, ECG, Image, Motion, Sensor, Simulated, and Spectro. After
careful analysis and verification of the data, it was found that some datasets had missing
values, with some missing data lengths exceeding half of their original data lengths. As the
similarity measurement method based on the approximate expression in this paper relies
on the concept of Euclidean distance and is applicable to equally sized time series data,
it cannot calculate the similarity between time series data of unequal lengths. Therefore,
some datasets were excluded from the analysis. In the end, this paper selected 100 datasets
from the UCR Time Series Archive, covering the aforementioned seven domains, for the
purpose of conducting time series data classification experiments. The list of datasets used
can be found in Table 2.

Table 2. List of time series datasets.

Id Type Name Train Test Class Length

1 Device ACSF1 100 100 10 1460
2 Image Adiac 390 391 37 176
3 Image ArrowHead 36 175 3 251
4 Spectro Beef 30 30 5 470
5 Image BeetleFly 20 20 2 512
6 Image BirdChicken 20 20 2 512
7 Simulated BME 30 150 3 128
8 Sensor Car 60 60 4 577
9 Simulated CBF 30 900 3 128
10 Traffic Chinatown 20 343 2 24
11 Sensor CinCECGTorso 40 1380 4 1639
12 Spectro Coffee 28 28 2 286
13 Device Computers 250 250 2 720
14 Motion CricketX 390 390 12 300
15 Motion CricketY 390 390 12 300
16 Motion CricketZ 390 390 12 300
17 Image DiatomSizeReduction 16 306 4 345
18 Image DistalPhalanxOutlineAgeGroup 400 139 3 80
19 Image DistalPhalanxOutlineCorrect 600 276 2 80
20 Image DistalPhalanxTW 400 139 6 80
21 Sensor Earthquakes 322 139 2 512
22 ECG ECG200 100 100 2 96
23 ECG ECGFiveDays 23 861 2 136
24 EOG EOGHorizontalSignal 362 362 12 1250
25 EOG EOGVerticalSignal 362 362 12 1250
26 Spectro EthanolLevel 504 500 4 1751
27 Image FaceAll 560 1690 14 131
28 Image FaceFour 24 88 4 350
29 Image FacesUCR 200 2050 14 131
30 Image FiftyWords 450 455 50 270
31 Image Fish 175 175 7 463
32 Sensor FordA 3601 1320 2 500
33 Sensor FordB 3636 810 2 500
34 HRM Fungi 18 186 18 201
35 Motion GunPoint 50 150 2 150
36 Motion GunPointAgeSpan 135 316 2 150
37 Motion GunPointMaleVersusFemale 135 316 2 150
38 Motion GunPointOldVersusYoung 136 315 2 150
39 Spectro Ham 109 105 2 431
40 Image HandOutlines 1000 370 2 2709
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Table 2. Cont.

Id Type Name Train Test Class Length

41 Motion Haptics 155 308 5 1092
42 Image Herring 64 64 2 512
43 Device HouseTwenty 40 119 2 2000
44 Motion InlineSkate 100 550 7 1882
45 EPG InsectEPGRegularTrain 62 249 3 601
46 EPG InsectEPGSmallTrain 17 249 3 601
47 Sensor InsectWingbeatSound 220 1980 11 256
48 Sensor ItalyPowerDemand 67 1029 2 24
49 Device LargeKitchenAppliances 375 375 3 720
50 Sensor Lightning2 60 61 2 637
51 Sensor Lightning7 70 73 7 319
52 Spectro Meat 60 60 3 448
53 Image MedicalImages 381 760 10 99
54 Traffic MelbournePedestrian 1194 2439 10 24
55 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80
56 Image MiddlePhalanxOutlineCorrect 600 291 2 80
57 Image MiddlePhalanxTW 399 154 6 80
58 Sensor MoteStrain 20 1252 2 84
59 ECG NonInvasiveFetalECGThorax1 1800 1965 42 750
60 ECG NonInvasiveFetalECGThorax2 1800 1965 42 750
61 Spectro OliveOil 30 30 4 570
62 Image OSULeaf 200 242 6 427
63 Image PhalangesOutlinesCorrect 1800 858 2 80
64 Sensor Phoneme 214 189 39 1024
65 Hemodynamics PigAirwayPressure 104 208 52 2000
66 Hemodynamics PigArtPressure 104 208 52 2000
67 Hemodynamics PigCVP 104 208 52 2000
68 Sensor Plane 105 105 7 144
69 Power PowerCons 180 180 2 144
70 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80
71 Image ProximalPhalanxOutlineCorrect 600 291 2 80
72 Image ProximalPhalanxTW 400 205 6 80
73 Device RefrigerationDevices 375 375 3 720
74 Spectrum Rock 20 50 4 2844
75 Device ScreenType 375 375 3 720
76 Spectrum SemgHandGenderCh2 300 600 2 1500
77 Spectrum SemgHandMovementCh2 450 450 6 1500
78 Spectrum SemgHandSubjectCh2 450 450 5 1500
79 Simulated ShapeletSim 20 180 2 500
80 Image ShapesAll 600 600 60 512
81 Device SmallKitchenAppliances 375 375 3 720
82 Simulated SmoothSubspace 150 150 3 15
83 Sensor SonyAIBORobotSurface1 20 601 2 70
84 Sensor SonyAIBORobotSurface2 27 953 2 65
85 Spectro Strawberry 613 370 2 235
86 Image SwedishLeaf 500 625 15 128
87 Image Symbols 25 995 6 398
88 Simulated SyntheticControl 300 300 6 60
89 Motion ToeSegmentation1 40 228 2 277
90 Motion ToeSegmentation2 36 130 2 343
91 Sensor Trace 100 100 4 275
92 ECG TwoLeadECG 23 1139 2 82
93 Simulated TwoPatterns 1000 4000 4 128
94 Simulated UDM 36 144 3 150
95 Sensor Wafer 1000 6164 2 152
96 Spectro Wine 57 54 2 234
97 Image WordSynonyms 267 638 25 270
98 Motion Worms 181 77 5 900
99 Motion WormsTwoClass 181 77 2 900
100 Image Yoga 300 3000 2 426

4.2. Experimental Methods and Parameter Settings

Since the SAX-DM, SAX, SAX-TD, and SAX-BD methods are all based on PAA for
segmenting time series data, they involve the parameter window size, denoted as “w.”
Additionally, the SAX, SAX-TD, and SAX-BD methods also involve the parameter symbol
table size, denoted as “alpha.” For each dataset, we defined a set of parameter settings
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according to the specifications shown in Table 3. The range for the parameter “w” was set
from 5 to 20, and the range for the parameter “alpha” was set from 3 to 16. For each dataset,
we compared the classification accuracy obtained with different parameter settings and
retained the best result for comparison. Furthermore, under the condition of achieving the
best classification accuracy for each method, we compared the length ratio of the original
sequence to the corresponding sequence obtained by different methods.

Table 3. Approximate expression method parameters.

Method Parameter

ED null
SAX-DM w ∈ [5, 20] α ∈ [3, 16]

SAX w ∈ [5, 20] α ∈ [3, 16]
SAX-TD w ∈ [5, 20] α ∈ [3, 16]
SAX-BD w ∈ [5, 20] α ∈ [3, 16]

4.3. Experimental Results and Analysis

We compared the classification accuracy and error rate of SAX-DM with those of ED,
SAX, SAX-TD, and SAX-BD. The experimental results show that in most of the datasets,
SAX-DM achieved comparable accuracy to SAX-TD and SAX-BD, with the additional
advantage of lower classification error rates.

Figure 5 presents the comparison results between the SAX-DM and ED methods.
Each point in the graph represents a dataset, where the x-axis represents the classification
accuracy using the ED method, and the y-axis represents the classification accuracy using
the SAX-DM method. Intuitively, the more points above the diagonal line, the more
datasets in which the SAX-DM achieved higher accuracy compared to the ED method.
After statistical analysis, it was found that SAX-DM had a slightly lower classification
accuracy than ED in 67% of the datasets. This is because the Euclidean distance, which
directly measures similarity on the original time series data without compression and
dimension reduction, achieves high accuracy but puts a significant burden on computer
memory and has lower computational efficiency. It is typically used as a comparative
method to assess the viability of an approach and is not directly used for data mining
tasks. Subsequent experiments on the data compression ratio did not require a comparison
with the ED method. Although the SAX-DM may perform worse or on par with the
Euclidean distance method in most datasets, the accuracy gap is within 0.1 for 80% of the
datasets, indicating that it achieves effective data dimension reduction while maintaining a
reasonably close accuracy level compared to the Euclidean distance method.

The comparison results between the SAX-DM and SAX methods in terms of classifica-
tion accuracy are shown in Figure 6. The x-axis represents the classification accuracy using
the SAX method, while the y-axis represents the classification accuracy using the SAX-DM
method. The results represent the average classification accuracy for both representation
methods under all α and w parameters, reflecting the overall classification performance.
The results are evident, as using the SAX-DM method for approximate representation
and similarity measurement in classification tasks yielded a higher accuracy in 98% of
the datasets.
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Compared to SAX, the SAX-DM further incorporates trend distance expression, allow-
ing for better representation of the trend characteristics in time series data. However, this
comes at the cost of sacrificing some data compression and dimension reduction rates. In
practical usage, different methods can be chosen based on the application’s requirements
for similarity accuracy in queries.

Figure 7 presents the comparison results between the SAX-DM and SAX-TD represen-
tation methods. From the figure, it can be observed that the two methods achieved similar
accuracy in the classification task. When considering the reasons behind this, SAX-TD
introduces a representation approach for capturing the trend by measuring the distance
between the left and right endpoint values and the overall mean of the time series data. It
combines this trend information with the mean value for symbolization. This approach is
almost identical to the feature extraction methodology used in this paper, but it has certain
limitations in practical applications. As the right endpoint value of one segment in time
series data can be used as the left endpoint value of the next segment, when the number
of segments is large, it is possible to approximate two symbols representing one segment.
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However, when the time series data have a small number of segments, the number of
symbols required for the approximation representation increases.

In contrast, the SAX-DM method proposed in this paper can represent any segment
of the time series data with two symbols, while still achieving a comparable classification
accuracy to SAX-TD. Therefore, the SAX-DM method is more suitable for subsequent
similarity query tasks on massive time series data. Additionally, the mean and trend
distance can be further encoded to enhance compression and dimensionality reduction,
thereby improving the compression ratio of the time series data approximation method.

The comparison results between the SAX-DM and SAX-BD methods are shown in
Figure 8. From the figure, it can be observed that the SAX-BD method performed better
in the classification task on 60% of the datasets, and its classification accuracy varied
significantly across different datasets. Considering the reasons behind this, the SAX-BD
method incorporates the left and right extreme values in addition to the mean value to
represent the time series data, while the SAX-DM method focuses on extracting the mean
feature. Therefore, there is a significant difference in the expression effect of these two
methods for data with smooth or drastic changes. Although SAX-BD achieves higher
classification accuracy, it uses three features for dimensionality reduction, resulting in a
lower compression ratio, which makes it unsuitable for subsequent similarity query tasks
on large-scale time series data.
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Figure 9 illustrates the comparison of classification error rates among the SAX, SAX-
TD, SAX-BD, and SAX-DM methods using the classic ECG dataset as experimental data.
Different α and w parameters were set for the evaluation. From the graph, it can be
observed that the α parameter had a negligible impact on the classification accuracy, while
the w parameter, when too large or too small, affected the accuracy. Based on the results
depicted in the graph, the optimal value for the w parameter can be chosen as 16.

Since comparing compression ratios alone cannot fully demonstrate the advantages
of expression methods, Figure 10 compares the classification accuracy of SAX, SAX-TD,
SAX-BD, and SAX-DM at the same compression ratio, using SAX’s compression ratio as
the benchmark. A higher value in the graph indicates better overall performance in terms
of compression ratio and accuracy. It is evident from the graph that SAX-DM method
performed exceptionally well and had a more convenient index item conversion method.
In general, the SAX-DM method is more suitable for similarity queries in time series data,
especially in scenarios that require a large number of iterations, as it effectively reduces
computer memory pressure and enhances data mining efficiency.
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Figure 10. SAX and its improved method accuracy and compression ratio.

5. Conclusions

The SAX-DM algorithm is proposed in this paper, taking into account the strengths
and limitations of SAX-TD and SAX-BD. SAX-TD has limitations in handling complex
sequences with varying patterns, while SAX-BD requires more symbols for representation.
Our novel representation method adds an additional character to the original SAX, allowing
for an intuitive representation of the change trend in subsegments. SAX-DM not only
uses fewer characters to represent time series but also employs a new boundary distance
measure to quantify time series similarity. Furthermore, we demonstrate that our distance
measure maintains a lower bound on the Euclidean distance. Using this distance measure
significantly reduces classification error rate, improves efficiency, and enhances accuracy in
similarity calculations.
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