An Efficient Beam Element Based on Quasi-3D Theory for Static Bending Analysis of Functionally Graded Beams
<p>The FG beam model.</p> "> Figure 2
<p>The comparison of the nondimensional transverse displacement <math display="inline"> <semantics> <mrow> <msup> <mi>w</mi> <mo>*</mo> </msup> <mo stretchy="false">(</mo> <mi>L</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> across the depth of FG SS beams subjected to a uniform load with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>.</p> "> Figure 3
<p>The comparison of the nondimensional shear stress <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics> </math> across the depth of FG SS beams subjected to a uniform load for different values of <math display="inline"> <semantics> <mi>p</mi> </semantics> </math> with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>.</p> "> Figure 3 Cont.
<p>The comparison of the nondimensional shear stress <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics> </math> across the depth of FG SS beams subjected to a uniform load for different values of <math display="inline"> <semantics> <mi>p</mi> </semantics> </math> with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>.</p> "> Figure 4
<p>The comparison of the nondimensional axial stress <math display="inline"> <semantics> <mrow> <msubsup> <mi>σ</mi> <mi>x</mi> <mo>*</mo> </msubsup> </mrow> </semantics> </math> across the depth of FG SS beams subjected to a uniform load for different values of <math display="inline"> <semantics> <mi>p</mi> </semantics> </math> with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Nondimensional maximum transverse deflection <math display="inline"> <semantics> <mrow> <msubsup> <mi>w</mi> <mrow> <mi>max</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics> </math> depends on the power-law index and length-to-thickness ratio of FG beams subjected to a uniform load, (<b>a</b>) SS beams, (<b>b</b>) CC beams, (<b>c</b>) CS beams and (<b>d</b>) CF beams.</p> "> Figure 6
<p>Nondimensional maximum transverse deflection <math display="inline"> <semantics> <mrow> <msubsup> <mi>w</mi> <mrow> <mi>max</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics> </math> as a function of the power-law index and length-to-thickness ratio of FG beams subjected to a uniform load, (<b>a</b>) SS beams, (<b>b</b>) CC beams, (<b>c</b>) CS beams and (<b>d</b>) CF beams.</p> "> Figure 6 Cont.
<p>Nondimensional maximum transverse deflection <math display="inline"> <semantics> <mrow> <msubsup> <mi>w</mi> <mrow> <mi>max</mi> </mrow> <mo>*</mo> </msubsup> </mrow> </semantics> </math> as a function of the power-law index and length-to-thickness ratio of FG beams subjected to a uniform load, (<b>a</b>) SS beams, (<b>b</b>) CC beams, (<b>c</b>) CS beams and (<b>d</b>) CF beams.</p> "> Figure 7
<p>Nondimensional axial stress <math display="inline"> <semantics> <mrow> <msubsup> <mi>σ</mi> <mi>x</mi> <mo>*</mo> </msubsup> <mo stretchy="false">(</mo> <mi>L</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> through the thickness of FG beams subjected to a uniform load with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics> </math>, (<b>a</b>) SS beams and (<b>b</b>) CC beams.</p> "> Figure 8
<p>Nondimensional shear stress <math display="inline"> <semantics> <mrow> <msubsup> <mi>τ</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> <mo>*</mo> </msubsup> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> across the depth of FG beams subjected to a uniform load with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> </mrow> </semantics> </math> (<b>a</b>) SS beams and (<b>b</b>) CC beams.</p> "> Figure 9
<p>The distribution across the thickness of nondimensional vertical displacement of FG beam subjected to a uniform load with <math display="inline"> <semantics> <mrow> <mi>L</mi> <mo>/</mo> <mi>h</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> </mrow> </semantics> </math> (<b>a</b>) SS beams and (<b>b</b>) CC beams.</p> "> Figure 10
<p>The deflection ratio of FG beams subjected to uniform load, (<b>a</b>) SS beams and (<b>b</b>) CC beams.</p> ">
Abstract
:1. Introduction
2. Functionally Graded Material
3. Governing Equations
4. Finite Element Formulation
5. Numerical Results and Discussion
5.1. Convergence Study
5.2. Validation Study
5.3. Static Behaviour of FG Beams
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anandakumar, G.; Kim, J.H. On the modal behavior of a three-dimensional functionally graded cantilever beam: Poisson’s ratio and material sampling effects. Compos. Struct. 2010, 92, 1358–1371. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Mokhtari, M. Free vibration analysis of a rotating Mori–Tanaka-based functionally graded beam via differential transformation method. Arab. J. Sci. Eng. 2016, 41, 577–590. [Google Scholar] [CrossRef]
- Sankar, B.V. An elasticity solution for functionally graded beams. Compos. Sci. Technol. 2001, 61, 689–696. [Google Scholar] [CrossRef]
- Zenkour, A.M. Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 2007, 77, 197–214. [Google Scholar] [CrossRef]
- Zhong, Z.; Yu, T. Analytical solution of a cantilever functionally graded beam. Compos. Sci. Technol. 2007, 67, 481–488. [Google Scholar] [CrossRef]
- Trinh, L.C.; Vo, T.P.; Thai, H.T.; Nguyen, T.K. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Compos. Part B 2016, 100, 152–163. [Google Scholar] [CrossRef]
- Kien, N.D. Large displacement behaviour of tapered cantilever Euler–Bernoulli beams made of functionally graded material. Appl. Math. Comput. 2014, 237, 340–355. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.J. Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression. Int. J. Mech. Sci. 2016, 122, 1–17. [Google Scholar] [CrossRef]
- Menaa, R.; Tounsi, A.; Mouaici, F.; Mechab, I.; Zidi, M.; Bedia, E.I. Analytical solutions for static shear correction factor of functionally graded rectangular beams. Mech. Adv. Mater. Structu. 2012, 19, 641–652. [Google Scholar] [CrossRef]
- Murin, J.; Aminbaghai, M.; Hrabovsky, J.; Kutis, V.; Kugler, S. Modal analysis of the FGM beams with effect of the shear correction function. Compos. Part B 2013, 45, 1575–1582. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Vo, T.P.; Thai, H.T. Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Compos. Part B 2013, 55, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Nam, V.H.; Vinh, P.V.; Chinh, N.V.; Thom, D.V.; Hong, T.T. A new beam model for simulation of the mechanical behaviour of variable thickness functionally graded material beams based on modified first order shear deformation theory. Materials 2019, 12, 404. [Google Scholar] [CrossRef] [PubMed]
- Shi, G. A new simple third-order shear deformation theory of plates. Int. J. Solids Struct. 2007, 44, 4399–4417. [Google Scholar] [CrossRef] [Green Version]
- Kadoli, R.; Akhtar, K.; Ganesan, N. Static analysis of functionally graded beams using higher order shear deformation theory. Appl. Math. Model. 2008, 32, 2509–2525. [Google Scholar] [CrossRef]
- Benatta, M.A.; Mechab, I.; Tounsi, A.; Adda Bedia, E.A. Static analysis of functionally graded short beams including warping and shear deformation effects. Comput. Mater. Sci. 2008, 44, 765–773. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, B.L.; Han, J.C. A higher-order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 2010, 80, 1197–1212. [Google Scholar] [CrossRef]
- Thai, H.T.; Vo, T.P. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int. J. Mech. Sci. 2012, 62, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.P.; Thai, H.T.; Nguyen, T.K.; Iman, F. Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica 2014, 49, 155–168. [Google Scholar] [CrossRef]
- Tinh, Q.B.; Thom, V.D.; Lan, H.T.T.; Duc, H.D.; Satoyuki, T.; Dat, T.P.; Thien-An, N.V.; Yu, T.T.; Sohichi, H. On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory. Compos. Part B 2016, 92, 218–241. [Google Scholar] [CrossRef]
- Vo, T.P.; Thai, H.T.; Nguyen, T.K.; Iman, F.; Lee, J. Static behaviour of functionally graded sandwich beams using a Quasi-3D theory. Compos. Part B 2015, 68, 59–74. [Google Scholar] [CrossRef]
- Neves, A.M.A.; Ferreira, A.J.M.; Carrera, E.; Roque, C.M.C.; Cinefra, M.; Jorge, R.M.N.; Soares, C.M.M. A Quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Part B 2012, 43, 711–725. [Google Scholar] [CrossRef]
- Neves, A.M.A.; Ferreira, A.J.A.; Carrera, E.; Cinefra, M.; Roque, C.M.C.; Jorge, R.M.N.; Soares, C.M.M. A Quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos. Struct. 2012, 94, 1814–1825. [Google Scholar] [CrossRef]
- Hebali, H.; Tounsi, A.; Houari, M.S.A.; Bessain, A.; Adda Bedia, E.A. New Quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 2014, 140, 374–383. [Google Scholar] [CrossRef]
- Mantari, J.L.; Soares, C.G. Generalized hybrid Quasi-3D shear deformation theory for the static analysis of advanced composite plates. Compos. Struct. 2012, 94, 2561–2575. [Google Scholar] [CrossRef]
- Mantari, J.L.; Soares, C.G. Four-unknown Quasi-3D shear deformation theory for advanced composite plates. Compos. Struct. 2014, 109, 231–239. [Google Scholar] [CrossRef]
- Thai, H.T.; Vo, T.P.; Bui, T.Q.; Nguyen, T.K. A Quasi-3D hyperbolic shear deformation theory for functionally graded plates. Acta Mech. 2014, 225, 951–964. [Google Scholar] [CrossRef]
- Fang, W.; Yu, T.; Lich, L.V.; Bui, T.Q. Analysis of thick porous beams by a Quasi-3D theory and isogeometric analysis. Compos. Struct. 2019, 221, 110890. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Nguyen, T.N.; Abdel-Wahab, M.; Bordas, S.P.A.; Hung, N.X.; Vo, T.P. A refined Quasi-3D isogeometric analysis for functionally graded microplates based on the modifed couple stress theory. Comput. Methods Appl. Mech. Eng. 2017, 313, 904–940. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, J.; Hu, H.; Bui, T.Q. A novel size-dependent Quasi-3D isogeometric beam model for two-directional FG microbeams analysis. Compos. Struct. 2019, 221, 76–88. [Google Scholar] [CrossRef]
- Farzam-Rad, S.A.; Hassani, B.; Karamodin, H. Isogeometric analysis of functionally graded plates using a new Quasi-3D shear deformation theory based on physical neutral surface. Compos. Part B 2017, 108, 174–189. [Google Scholar] [CrossRef]
- Tran, L.V.; Wahab, M.A.; Niiranen, J. A six-variable Quasi-3D model for static analysis of laminated composite plates using isogeometric analysis. Int. Conf. Numer. Model. Eng. 2018, 20, 135–142. [Google Scholar] [CrossRef]
- Carrera, E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 2003, 10, 215–296. [Google Scholar] [CrossRef]
- Carrera, E.; Petrolo, M.; Nali, P. Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section. Shock Vib. 2011, 18, 485–502. [Google Scholar] [CrossRef]
- Cerrera, E.; Zozulya, V.V. Carrera unified formulation (CUF) for the micropolar beams: Analytical solutions. Mech. Adv. Mater. Struct. 2019. [Google Scholar] [CrossRef]
- Giunta, G.; Belouettar, S.; Carrera, E. Analysis of FGM beams by means of classical and advanced theories. Mech. Adv. Mater. Struct. 2010, 17, 622–635. [Google Scholar] [CrossRef]
- Filippi, M.; Carrera, E.; Zenkour, A.M. Static analyses of FGM beams by various theories and finite elements. Compos. Part B 2015, 72, 1–9. [Google Scholar] [CrossRef]
- Chakraborty, A.; Gopalakrishnan, S.; Reddy, J.N. A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 2003, 45, 519–539. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Nguyen, Q.H.; Tran, T.T.; Bui, V.T. Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech. 2017, 228, 141–155. [Google Scholar] [CrossRef]
- Khan, A.A.; Alam, M.N.; Rahman, N.; Wajid, M. Finite element modelling for static and free vibration response of functionally graded beam. Lat. Am. J. Solids Struct. 2016, 13, 690–714. [Google Scholar] [CrossRef]
- Heyliger, P.R. A higher order beam finite element for bending and vibration problems. J. Sound Vib. 1988, 126, 309–326. [Google Scholar] [CrossRef]
- Kapuria, S.; Bhattacharyya, M.; Kumar, A.N. Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation. Compos. Struct. 2008, 82, 390–402. [Google Scholar] [CrossRef]
- Vo, T.P.; Thai, H.T.; Nguyen, T.K.; Maheri, A.; Lee, J. Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng. Struct. 2014, 64, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Moallemi-Oreh, A.; Karkon, M. Finite element formulation for stability and free vibration analysis of Timoshenko beam. Adv. Acoust. Vib. 2013, 2013, 841215. [Google Scholar] [CrossRef]
- Pascon, J.P. Finite element analysis of flexible functionally graded beams with variable Poisson’s ratio. Eng. Comput. 2016, 33, 2421–2447. [Google Scholar] [CrossRef]
- Yarasca, J.; Mantari, J.L.; Arciniega, R.A. Hermite-Lagrangian finite element formulation to study functionally graded sandwich beams. Compos. Struct. 2016, 140, 567–581. [Google Scholar] [CrossRef]
Length | Height | Source | Number of Elements | |||
---|---|---|---|---|---|---|
N = 2 | N = 4 | N = 8 | N = 16 | |||
160 | 12 | [40] | 30.838 | 32.368 | 32.742 | 32.823 |
Present | 31.566 | 32.191 | 32.509 | 32.666 | ||
80 | [40] | 3.9234 | 4.1105 | 4.1506 | 4.1567 | |
Present | 3.9987 | 4.0772 | 4.1160 | 4.1317 | ||
40 | [40] | 0.52266 | 0.54249 | 0.54540 | 0.54588 | |
Present | 0.52608 | 0.53570 | 0.53907 | 0.53880 | ||
12 | [40] | 0.023551 | 0.023741 | 0.023874 | 0.023931 | |
Present | 0.022902 | 0.022347 | 0.021967 | 0.021840 | ||
160 | 1 | [40] | 52968.0 | 55616.0 | 56278.0 | 56444.0 |
Present | 54302.8 | 55380.8 | 55931.1 | 56206.2 | ||
80 | [40] | 6621.8 | 6952.9 | 7035.6 | 7056.3 | |
Present | 6788.5 | 6923.3 | 6992.0 | 7026.4 | ||
40 | [40] | 828.15 | 869.53 | 879.87 | 882.44 | |
Present | 848.88 | 865.73 | 874.33 | 878.62 | ||
12 | [40] | 22.513 | 23.627 | 23.897 | 23.953 | |
Present | 23.036 | 23.492 | 23.723 | 23.836 |
Length | Height | Source | Number of Elements | |||
---|---|---|---|---|---|---|
N = 2 | N = 4 | N = 8 | N = 16 | |||
160 | 12 | [40] | 19.779 | 20.529 | 20.691 | 20.717 |
Present | 20.692 | 20.690 | 20.690 | 20.690 | ||
80 | [40] | 1.3011 | 1.3415 | 1.3478 | 1.3486 | |
Present | 1.3425 | 1.3422 | 1.3421 | 1.3421 | ||
40 | [40] | 0.096033 | 0.097481 | 0.097670 | 0.097703 | |
Present | 0.096067 | 0.096060 | 0.096022 | 0.096018 | ||
12 | [40] | 0.0022234 | 0.0022206 | 0.0022204 | 0.0022204 | |
Present | 0.0018828 | 0.0019482 | 0.0019524 | 0.0019523 | ||
160 | 1 | [40] | 33549.0 | 34873.0 | 35205.0 | 35287.0 |
Present | 35302.9 | 35302.9 | 35302.9 | 35302.9 | ||
80 | [40] | 2097.7 | 2180.4 | 2201.1 | 2206.3 | |
Present | 2207.0 | 2207.0 | 2207.0 | 2207.0 | ||
40 | [40] | 131.31 | 136.49 | 137.77 | 138.08 | |
Present | 138.09 | 138.09 | 138.09 | 138.09 | ||
12 | [40] | 1.0860 | 1.1267 | 1.1351 | 1.1364 | |
Present | 1.1347 | 1.1346 | 1.1346 | 1.1346 |
L/h | Source | ||||||
---|---|---|---|---|---|---|---|
5 | Li et al. [16] | 3.1657 | 6.2599 | 8.0602 | 9.7802 | 10.8979 | |
Vo [20] (Navier) | 3.1397 | 6.1338 | 7.8606 | 9.6037 | 10.7578 | ||
Vo [20] (FEM) | 3.1397 | 6.1334 | 7.8598 | 9.6030 | 10.7572 | ||
Present | 3.1388 | 6.1316 | 7.8570 | 9.5992 | 10.7526 | ||
20 | Li et al. [16] | 2.8962 | 5.8049 | 7.4415 | 8.8151 | 9.6879 | |
Vo [20] (Navier) | 2.8947 | 5.7201 | 7.2805 | 8.6479 | 9.5749 | ||
Vo [20] (FEM) | 2.8947 | 5.7197 | 7.2797 | 8.6471 | 9.5743 | ||
Present | 2.8938 | 5.7179 | 7.2770 | 8.6435 | 9.5698 |
L/h | Source | ||||||
---|---|---|---|---|---|---|---|
5 | Vo [20] (Navier) | 0.1352 | 0.0670 | 0.0925 | 0.0180 | −0.0181 | |
Vo [20] (FEM) | 0.1352 | 0.0672 | 0.0927 | 0.0183 | −0.0179 | ||
Present | 0.1351 | 0.0669 | 0.0924 | 0.0179 | −0.0183 | ||
20 | Vo [20] (Navier) | 0.0337 | −0.5880 | −0.6269 | −1.1698 | −1.5572 | |
Vo [20] (FEM) | 0.0338 | −0.5874 | −0.6261 | −1.1690 | −1.5560 | ||
Present | 0.0337 | −0.5880 | −0.6270 | −1.1696 | −1.5570 |
L/h | Source | ||||||
---|---|---|---|---|---|---|---|
5 | Li et al. [16] | 3.8020 | 5.8837 | 6.8812 | 8.1030 | 9.7063 | |
Vo [20] (Navier) | 3.8005 | 5.8812 | 6.8818 | 8.1140 | 9.7164 | ||
Vo [20] (FEM) | 3.8020 | 5.8840 | 6.8860 | 8.1190 | 9.7220 | ||
Present | 3.7994 | 5.8793 | 6.8792 | 8.1101 | 9.7108 | ||
20 | Li et al. [16] | 15.0130 | 23.2054 | 27.0989 | 31.8112 | 38.1372 | |
Vo [20] (Navier) | 15.0125 | 23.2046 | 27.0988 | 31.8137 | 38.1395 | ||
Vo [20] (FEM) | 15.0200 | 23.2200 | 27.1100 | 31.8300 | 38.1600 | ||
Present | 15.0079 | 23.1970 | 27.0884 | 31.7987 | 38.1176 |
L/h | Source | ||||||
---|---|---|---|---|---|---|---|
5 | Li et al. [16] | 0.7500 | 0.7500 | 0.6787 | 0.5790 | 0.6436 | |
Vo [20] (Navier) | 0.7233 | 0.7233 | 0.6622 | 0.5840 | 0.6396 | ||
Vo [20] (FEM) | 0.7291 | 0.7291 | 0.6661 | 0.5873 | 0.6439 | ||
Present | 0.7233 | 0.7233 | 0.6622 | 0.5839 | 0.6396 | ||
20 | Li et al. [16] | 0.7500 | 0.7500 | 0.6787 | 0.5790 | 0.6436 | |
Vo [20] (Navier) | 0.7432 | 0.7432 | 0.6809 | 0.6010 | 0.6583 | ||
Vo [20] (FEM) | 0.7466 | 0.7466 | 0.6776 | 0.6036 | 0.6675 | ||
Present | 0.7454 | 0.7457 | 0.6828 | 0.6022 | 0.6595 |
L/h | Boundary Condition | Source | |||||
---|---|---|---|---|---|---|---|
5 | CC | Vo [20] | 0.8327 | 1.5722 | 2.0489 | 2.6929 | 3.1058 |
Present | 0.8367 | 1.5787 | 2.0568 | 2.7039 | 3.1193 | ||
CF | Vo [20] | 28.5524 | 56.2002 | 71.7295 | 86.1201 | 95.7582 | |
Present | 28.5743 | 56.2359 | 71.7607 | 86.1492 | 95.7903 | ||
20 | CC | Vo [20] | 0.5894 | 1.1613 | 1.4811 | 1.7731 | 1.9694 |
Present | 0.5894 | 1.1612 | 1.4806 | 1.7726 | 1.9689 | ||
CF | Vo [20] | 27.6217 | 54.6285 | 69.5266 | 82.4836 | 91.2606 | |
Present | 27.6087 | 54.6051 | 69.4911 | 82.4327 | 91.1965 |
Boundary Condition | p | L/h = 5 | L/h = 10 | L/h = 20 | L/h = 100 |
---|---|---|---|---|---|
SS | 0 | 5.9637 | 5.5917 | 5.4983 | 5.4684 |
1 | 9.4520 | 8.9008 | 8.7625 | 8.7182 | |
2 | 10.8090 | 10.1178 | 9.9444 | 9.8888 | |
5 | 12.1559 | 11.2427 | 11.0136 | 10.9402 | |
10 | 13.1998 | 12.1936 | 11.9411 | 11.8602 | |
CC | 0 | 1.5898 | 1.2166 | 1.1200 | 1.0877 |
1 | 2.4783 | 1.9253 | 1.7823 | 1.7344 | |
2 | 2.8903 | 2.2046 | 2.0270 | 1.9676 | |
5 | 3.3827 | 2.4869 | 2.2545 | 2.1770 | |
10 | 3.6885 | 2.7014 | 2.4453 | 2.3599 | |
CS | 0 | 2.8431 | 2.4121 | 2.3013 | 2.2650 |
1 | 4.4681 | 3.8293 | 3.6651 | 3.6114 | |
2 | 5.1625 | 4.3680 | 4.1635 | 4.0966 | |
5 | 5.9291 | 4.8883 | 4.6201 | 4.5323 | |
10 | 6.4522 | 5.3055 | 5.0099 | 4.9132 | |
CF | 0 | 54.2912 | 52.8297 | 52.4566 | 52.3199 |
1 | 86.3563 | 84.1912 | 83.6384 | 83.4359 | |
2 | 98.2871 | 95.5870 | 94.8959 | 94.6463 | |
5 | 109.4815 | 105.9308 | 105.0199 | 104.6959 | |
10 | 118.7523 | 114.8445 | 113.8429 | 113.4858 |
Boundary Condition | p | L/h = 5 | L/h = 10 | L/h = 20 | L/h = 100 |
---|---|---|---|---|---|
SS | 0 | 3.7994 | 7.5229 | 15.0080 | 74.9791 |
1 | 5.1277 | 10.1431 | 20.2300 | 101.0602 | |
2 | 5.6251 | 11.1138 | 22.1592 | 110.6870 | |
5 | 6.3879 | 12.6061 | 25.1275 | 125.5017 | |
10 | 7.2947 | 14.4105 | 28.7315 | 143.5145 | |
CC | 0 | 1.3158 | 2.5271 | 5.0069 | 24.9844 |
1 | 1.7824 | 3.4099 | 6.7496 | 33.6740 | |
2 | 1.9604 | 3.7389 | 7.3948 | 36.8820 | |
5 | 2.2314 | 4.2440 | 8.3871 | 41.8189 | |
10 | 2.5409 | 4.8479 | 9.5884 | 47.8209 | |
CS | 0 | 1.9797 | 3.7881 | 7.4945 | 37.3702 |
1 | 2.6694 | 5.1069 | 10.1027 | 50.3710 | |
2 | 2.9383 | 5.6014 | 11.0697 | 55.1718 | |
5 | 3.3561 | 6.3638 | 12.5573 | 62.5539 | |
10 | 3.8300 | 7.2728 | 14.3568 | 71.5291 | |
CF | 0 | −3.7207 | −7.5172 | −15.0722 | −75.4217 |
1 | −5.0080 | −10.1282 | −20.3126 | −101.6530 | |
2 | −5.4757 | −11.0879 | −22.2441 | −111.3295 | |
5 | −6.1993 | −12.5682 | −25.2212 | −126.2416 | |
10 | −7.0995 | −14.3779 | −28.8453 | −144.3695 |
Boundary Condition | p | L/h = 5 | L/h = 10 | L/h = 20 | L/h = 100 |
---|---|---|---|---|---|
SS | 0 | 0.7233 | 0.7370 | 0.7454 | 0.8112 |
1 | 0.7233 | 0.7370 | 0.7455 | 0.8143 | |
2 | 0.6857 | 0.6989 | 0.7068 | 0.7660 | |
5 | 0.6513 | 0.6640 | 0.6714 | 0.7199 | |
10 | 0.6821 | 0.6954 | 0.7031 | 0.7536 | |
CC | 0 | 0.3330 | 0.1316 | −0.2769 | −4.4717 |
1 | 0.3322 | 0.1283 | −0.2900 | −4.7991 | |
2 | 0.3060 | 0.1198 | −0.2567 | −4.1445 | |
5 | 0.2809 | 0.1137 | −0.2160 | −3.3285 | |
10 | 0.2937 | 0.1179 | −0.2275 | −3.4354 | |
CS | 0 | 0.3727 | 0.0596 | −0.5617 | −6.8939 |
1 | 0.3710 | 0.0544 | −0.5814 | −7.3858 | |
2 | 0.3419 | 0.0525 | −0.5203 | −6.3910 | |
5 | 0.3148 | 0.0542 | −0.4483 | −5.1543 | |
10 | 0.3290 | 0.0550 | −0.4717 | −5.3222 | |
CF | 0 | −0.2182 | −1.5237 | −4.0538 | −29.8114 |
1 | −0.2231 | −1.5435 | −4.1329 | −31.7882 | |
2 | −0.2098 | −1.4184 | −3.7546 | −27.6572 | |
5 | −0.1921 | −1.2813 | −3.3351 | −22.5588 | |
10 | −0.2071 | −1.3524 | −3.5048 | −23.3207 |
Boundary Condition | p | L/h = 5 | L/h = 10 | L/h = 20 | L/h = 100 |
---|---|---|---|---|---|
SS | 0 | 0.1351 | 0.0675 | 0.0337 | 0.0065 |
1 | 0.0499 | −0.2005 | −0.5512 | −2.9963 | |
2 | 0.0389 | −0.2557 | −0.6781 | −3.6571 | |
5 | 0.0375 | −0.3064 | −0.8035 | −4.3225 | |
10 | 0.0788 | −0.2659 | −0.7435 | −4.0561 | |
CC | 0 | 0.1351 | 0.0675 | 0.0337 | 0.0065 |
1 | 0.1501 | −0.0001 | −0.1504 | −0.9923 | |
2 | 0.1611 | −0.0112 | −0.1890 | −1.2118 | |
5 | 0.1820 | −0.0174 | −0.2255 | −1.4326 | |
10 | 0.2145 | 0.0055 | −0.2008 | −1.3429 | |
CS | 0 | 0.1342 | 0.0657 | 0.0300 | −0.0121 |
1 | 0.1217 | −0.0535 | −0.2554 | −1.5158 | |
2 | 0.1265 | −0.0760 | −0.3165 | −1.8471 | |
5 | 0.1405 | −0.0942 | −0.3763 | −2.1831 | |
10 | 0.1752 | −0.0674 | −0.3438 | −2.0545 | |
CF | 0 | 0.1314 | 0.0601 | 0.0189 | −0.0678 |
1 | 0.3459 | 0.3915 | 0.6329 | 2.9244 | |
2 | 0.4008 | 0.4682 | 0.7696 | 3.5814 | |
5 | 0.4653 | 0.5492 | 0.9077 | 4.2336 | |
10 | 0.4791 | 0.5346 | 0.8575 | 3.9489 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.N.; Hong, T.T.; Vinh, P.V.; Thom, D.V. An Efficient Beam Element Based on Quasi-3D Theory for Static Bending Analysis of Functionally Graded Beams. Materials 2019, 12, 2198. https://doi.org/10.3390/ma12132198
Nguyen HN, Hong TT, Vinh PV, Thom DV. An Efficient Beam Element Based on Quasi-3D Theory for Static Bending Analysis of Functionally Graded Beams. Materials. 2019; 12(13):2198. https://doi.org/10.3390/ma12132198
Chicago/Turabian StyleNguyen, Hoang Nam, Tran Thi Hong, Pham Van Vinh, and Do Van Thom. 2019. "An Efficient Beam Element Based on Quasi-3D Theory for Static Bending Analysis of Functionally Graded Beams" Materials 12, no. 13: 2198. https://doi.org/10.3390/ma12132198
APA StyleNguyen, H. N., Hong, T. T., Vinh, P. V., & Thom, D. V. (2019). An Efficient Beam Element Based on Quasi-3D Theory for Static Bending Analysis of Functionally Graded Beams. Materials, 12(13), 2198. https://doi.org/10.3390/ma12132198