Magnetocaloric Properties and Microstructures of HoB2 and Nb-Substituted HoB2
<p>Powder XRD patterns for HoB<sub>2</sub> (black) and Ho<sub>0.93</sub>Nb<sub>0.07</sub>B<sub>2</sub> (red) produced via arc melting, as listed in <a href="#materials-18-00866-t001" class="html-table">Table 1</a>. Peaks for the HoB<sub>2</sub> structure are indexed. Peaks for minor impurity phases are identified as + Ho; * Ho<sub>2</sub>O<sub>3</sub>; and ◊ HoB<sub>4</sub>.</p> "> Figure 2
<p>Micrographs of HoB<sub>2</sub> (top row) and Ho<sub>0.93</sub>Nb<sub>0.0.07</sub>B<sub>2</sub>, (bottom row) showing (<b>a</b>,<b>d</b>) BSE images of aggregates in polished sections, (<b>b</b>,<b>e</b>) Euler maps of these aggregates showing the preferred polar orientation of grains for HoB<sub>2</sub> and Ho<sub>0.93</sub>Nb<sub>0.0.07</sub>B<sub>2</sub>, respectively. (<b>c,f</b>) EBSD images for aggregates from the same areas in (<b>b</b>,<b>e</b>) showing HoB<sub>2</sub> (blue), Ho<sub>2</sub>O<sub>3</sub> (yellow), Ho (green), NbB<sub>2</sub> (orange), and void (black). Note the substantial difference in grain size for each sample. All images are at the same magnification (white scale bar = 50 µm).</p> "> Figure 3
<p>Magnetic properties of HoB<sub>2</sub> (left panel) and Ho<sub>0.93</sub>Nb<sub>0.0.07</sub>B<sub>2</sub> (right panel) showing (<b>a</b>,<b>b</b>) temperature dependence of sample magnetization under an applied magnetic field of 0.01 T using zero field cooling (ZFC) protocols and (<b>c</b>,<b>d</b>) the derivative of ZFC protocols to denote temperature dependence of <math display="inline"><semantics> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac bevelled="true"> <mrow> <mo>∂</mo> <mi>M</mi> </mrow> <mrow> <mo>∂</mo> <mi>T</mi> </mrow> </mfrac> </mstyle> </mrow> </semantics></math>. A small kink anomaly associated with a spin orientation phenomenon identified as T* is arrowed.</p> "> Figure 4
<p>Field dependence of magnetization for (<b>a</b>) HoB<sub>2</sub> and (<b>b</b>) Ho<sub>0.93</sub>Nb<sub>0.07</sub>B<sub>2</sub> at several temperatures below and above the Curie temperature. Arrott plots for (<b>c</b>) HoB<sub>2</sub> and (<b>d</b>) (Ho<sub>0.93</sub>Nb<sub>0.07</sub>)B<sub>2</sub> are obtained from the isothermal magnetization curves of <a href="#materials-18-00866-f004" class="html-fig">Figure 4</a>a and <a href="#materials-18-00866-f004" class="html-fig">Figure 4</a>b, respectively.</p> "> Figure 5
<p>(<b>a</b>) Magnetic entropy change, ΔS<sub>M</sub>, for selected applied magnetic fields up to ΔH = 10 T; horizontal dotted line represents a minimum value for a viable MCE at low temperatures [<a href="#B22-materials-18-00866" class="html-bibr">22</a>]. Filled symbols are HoB<sub>2</sub> and unfilled symbols are Ho<sub>0.93</sub>Nb<sub>0.07</sub>B<sub>2</sub> at 1 T (squares), 5 T (stars) and 10 T (circles), respectively. (<b>b</b>) Field dependence of RCP for HoB<sub>2</sub> (filled circle) and Ho<sub>0.93</sub>Nb<sub>0.07</sub>B<sub>2</sub> (unfilled circle) for applied magnetic fields up to 10 T, as well as other Ho compounds at 5 T and 10 T (HoAl<sub>2</sub>: square; HoNi: diamond; (Ho<sub>1-x</sub>Gd<sub>x</sub>)B<sub>2</sub>: triangle). The pink colour denotes operating region for permanent magnets and green denotes additional operating region for superconducting magnets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural and Microstructural Analysis
3.2. Magnetocaloric Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafari, M.; Botterud, A.; Sakti, A. Decarbonizing power systems: A critical review of the role of energy storage. Renew. Sustain. Energy Rev. 2022, 158, 112077. [Google Scholar] [CrossRef]
- Golombek, R.; Lind, A.; Ringkjøb, H.-K.; Seljom, P. The role of transmission and energy storage in European decarbonization towards 2050. Energy 2022, 239, 122159. [Google Scholar] [CrossRef]
- Oskouei, M.Z.; Şeker, A.A.; Tunçel, S.; Demirbaş, E.; Gözel, T.; Hocaoğlu, M.H.; Abapour, M.; Mohammadi-Ivatloo, B. A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network. Sustainability 2022, 14, 2110. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Al Ghafri, S.Z.S.; Munro, S.; Cardella, U.; Funke, T.; Notardonato, W.; Trusler, J.P.M.; Leachman, J.; Span, R.; Kamiya, S.; Pearce, G.; et al. Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities. Energy Environ. Sci. 2022, 15, 2690–2731. [Google Scholar] [CrossRef]
- Ratnakar, R.R.; Gupta, N.; Zhang, K.; van Doorne, C.; Fesmire, J.; Dindoruk, B.; Balakotaiah, V. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 2021, 46, 24149–24168. [Google Scholar] [CrossRef]
- Cipriani, G.; Di Dio, V.; Genduso, F.; La Cascia, D.; Liga, R.; Miceli, R.; Ricco Galluzzo, G. Perspective on hydrogen energy carrier and its automotive applications. Int. J. Hydrogen Energy 2014, 39, 8482–8494. [Google Scholar] [CrossRef]
- Kitanovski, A. Energy Applications of Magnetocaloric Materials. Adv. Energy Mater. 2020, 10, 1903741. [Google Scholar] [CrossRef]
- Archipley, C.; Barclay, J.; Meinhardt, K.D.; Whyatt, G.A.; Thomsen, E.C.; Holladay, J.D.; Cui, J.; Anderson, I.A.; Wolf, S. Methane Liquefaction with an Active Magnetic Regenerative Refrigerator. Cryogenics 2022, 128, 103588. [Google Scholar] [CrossRef]
- Zhang, F.; Taake, C.; Huang, B.; You, X.; Ojiyed, H.; Shen, Q.; Dugulan, I.; Caron, L.; van Dijk, N.; Brück, E. Magnetocaloric effect in the (Mn,Fe)2(P,Si) system: From bulk to nano. Acta Mater. 2022, 224, 117532. [Google Scholar] [CrossRef]
- Belo, J.H.; Pereira, A.M.; Ventura, J.; Oliveira, G.N.P.; Araújo, J.P.; Tavares, P.B.; Fernandes, L.; Algarabel, P.A.; Magen, C.; Morellon, L.; et al. Phase control studies in Gd5Si2Ge2 giant magnetocaloric compound. J. Alloys Compd. 2012, 529, 89–95. [Google Scholar] [CrossRef]
- Zeng, H.; Kuang, C.; Zhang, J.; Yue, M. Magnetocaloric effect of Gd5Si2Ge2 alloys in low magnetic field. Bull. Mater. Sci. 2011, 34, 825–828. [Google Scholar] [CrossRef]
- Wang, G.F.; Mu, L.J.; Zhang, X.F.; Zhao, Z.R.; Huang, J.H. Hydriding and dehydriding kinetics in magnetocaloric La(Fe,Si)13 compounds. J. Appl. Phys. 2014, 115, 143903. [Google Scholar] [CrossRef]
- Adapa, S.R.; Feng, T.S.; Ihnfeldt, R.V.; Chen, R.K. Optimisation of a packed particle magnetocaloric refrigerator: A combined experimental and theoretical study. Int. J. Refrig. 2024, 159, 64–73. [Google Scholar] [CrossRef]
- Zhu, Y.; Asamoto, K.; Nishimura, Y.; Kouen, T.; Abe, S.; Matsumoto, K.; Numazawa, T. Magnetocaloric effect of (ErxR1_x)Co2 (R = Ho, Dy) for magnetic refrigeration between 20 and 80 K. Cryogenics 2011, 51, 494–498. [Google Scholar] [CrossRef]
- Terada, N.; Mamiya, H. High-efficiency magnetic refrigeration using holmium. Nat. Commun. 2021, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Bykov, E.; Liu, W.; Skokov, K.; Scheibel, F.; Gutfleisch, O.; Taskaev, S.; Khovaylo, V.; Plakhotskiy, D.; Mejia, C.S.; Wosnitza, J.; et al. Magnetocaloric effect in the Laves-phase Ho1−xDyxAl2 family in high magnetic fields. Phys. Rev. Mater. 2021, 5, 095405. [Google Scholar] [CrossRef]
- Park, I.; Jeong, S. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet. Cryogenics 2017, 88, 106–115. [Google Scholar] [CrossRef]
- Tang, X.; Sepehri-Amin, H.; Terada, N.; Martin-Cid, A.; Kurniawan, I.; Kobayashi, S.; Kotani, Y.; Takeya, H.; Lai, J.; Matsushita, Y.; et al. Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction. Nat. Commun. 2022, 13, 1817. [Google Scholar] [CrossRef] [PubMed]
- Ihnfeldt, R.; Feng, T.; Chen, R.; Jin, S. Technical and Economic Analysis: Small Scale Cryogenic Magnetic Refrigeration Systems; Phase IIB Grant Award: DE-SC0015932; US Department of Energy: Washington, DC, USA, 2019.
- de Castro, P.B.; Terashima, K.; Yamamoto, T.D.; Iwasaki, S.; Saito, A.T.; Matsumoto, R.; Adachi, S.; Saito, Y.; El Massalami, M.; Takeya, H.; et al. Enhancement of giant refrigerant capacity in Ho1-xGdxB2 alloys (0.1 ≤ x ≤ 0.4). J. Alloys Compd. 2021, 865, 158881. [Google Scholar] [CrossRef]
- de Castro, P.B.; Terashima, K.T.; Yamamoto, T.D.; Hou, Z.; Iwasaki, S.; Matsumoto, R.; Adachi, S.; Saito, Y.; Song, P.; Takeya, H.; et al. Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature. NPG Asia Mater. 2020, 12, 35. [Google Scholar] [CrossRef]
- Bruker, K. Technical Reference Manual; Bruker AXS: Karlsruhe, Germany, 2014. [Google Scholar]
- Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M.; Conde, A. Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 2018, 93, 112. [Google Scholar]
- Kravchenko, S.E.; Kovalev, D.Y.; Vinokurov, A.A.; Dremova, N.N.; Ivanov, A.V.; Shilkin, S.P. Synthesis and Thermal Oxidation Stability of Nanocrystalline Niobium Diboride. Inorg. Mater. 2021, 57, 1005–1014. [Google Scholar] [CrossRef]
- Moze, O.; Kockelmann, W.; Brück, E.; Buschow, K.H.J. Neutron diffraction study of CeNi5Sn. J. Alloys Compd. 1998, 279, 110–112. [Google Scholar] [CrossRef]
- Whittle, K.R.; Hyatt, N.C.; Smith, K.L.; Margiolaki, I.; Berry, F.J.; Knight, K.S.; Lumpkin, G.R. Combined neutron and X-ray diffraction determination of disorder in doped zirconolite-2M. Am. Mineral. 2012, 97, 291–298. [Google Scholar] [CrossRef]
- Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Zhao, L.; Goldbach, A.; Bao, C.; Xu, H. Structural and Permeation Kinetic Correlations in PdCuAg Membranes. ACS Appl. Mater. Interfaces 2014, 6, 22408–22416. [Google Scholar] [CrossRef]
- Terada, N.; Terashima, K.; de Castro, P.B.; Colin, C.V.; Mamiya, H.; Yamamoto, T.D.; Takeya, H.; Sakai, O.; Takano, Y.; Kitazawa, H. Relationship between magnetic ordering and gigantic magnetocaloric effect in HoB2 studied by neutron diffraction experiment. Phys. Rev. B 2020, 102, 094435. [Google Scholar] [CrossRef]
- Banerjee, S.K. On a generalised approach to 1st and 2nd order magnetic transitions. Phys. Lett. 1964, 12, 16–17. [Google Scholar] [CrossRef]
- de Castro, P.B.; Terashima, K.; Yamamoto, T.D.; Iwasaki, S.; Matsumoto, R.; Adachi, S.; Saito, Y.; Takeya, H.; Takano, Y. Effect of Dy substitution in the giant magnetocaloric properties of HoB(2). Sci. Technol. Adv. Mater. 2021, 21, 849–855. [Google Scholar] [CrossRef]
- Liu, W.; Bykov, E.; Taskaev, S.; Bogush, M.; Khovaylo, V.; Fortunato, N.; Aubert, A.; Zhang, H.; Gottschall, T.; Wosnitza, J.; et al. A study on rare-earth Laves phases for magnetocaloric liquefaction of hydrogen. Appl. Mater. Today 2022, 29, 101624. [Google Scholar] [CrossRef]
- Mohamed, A.E.-M.; Hernando, B. Self-assembled impurity and its effect on magnetic and magnetocaloric properties of manganites. Ceram. Int. 2018, 44, 17044. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. Chapter 3—Natural Gas Liquefaction. In Handbook of Liquefied Natural Gas; Mokhatab, S., Mak, J.Y., Valappil, J.V., Wood, D.A., Eds.; Gulf Professional Publishing: Boston, MA, USA, 2014; pp. 147–183. [Google Scholar] [CrossRef]
- Yang, X.; Nielsen, C.P.; Song, S.; McElroy, M.B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 2022, 7, 955–965. [Google Scholar] [CrossRef]
- Park, I.; Lee, C.; Park, J.; Kim, S.; Jeong, S. Performance of the Fast-Ramping High Temperature Superconducting Magnet System for an Active Magnetic Regenerator. IEEE Trans. Appl. Supercond. 2017, 27, 4601105. [Google Scholar] [CrossRef]
- Zhou, X.; Shang, Y.; Luo, T.; Peng, Y.; Fu, H. Large rotating magnetocaloric effect of textured polycrystalline HoB2 alloy contributed by anisotropic ferromagnetic susceptibility. Appl. Phys. Lett. 2022, 120, 132401. [Google Scholar] [CrossRef]
- Iwasaki, S.; Yamamoto, T.D.; Baptista de Castro, P.; Terashima, K.; Takeya, H.; Takano, Y. Al substitution effect on magnetic properties of magnetocaloric material HoB2. Solid State Commun. 2022, 342, 114616. [Google Scholar] [CrossRef]
- Lai, J.; Bolyachkin, A.; Terada, N.; Dieb, S.; Tang, X.; Ohkubo, T.; Sepehri-Amin, H.; Hono, K. Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications. Acta Mater. 2022, 232, 117942. [Google Scholar] [CrossRef]
- Yamamoto, T.D.; Takeya, H.; de Castro, P.B.; Saito, A.T.; Terashima, K.; Numazawa, T.; Takano, Y. Effect of Non-Stoichiometry on Magnetocaloric Properties of HoB2 Gas-Atomized Particles. IEEE Trans. Magn. 2022, 58, 2501406. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. Ho (Holmium) Binary Alloy Phase Diagrams. In Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 2016; Volume 3. [Google Scholar]
- Kim, J.Y.; Cho, B.K.; Han, S.H. Anisotropic magnetic phase diagrams of HoB4 single crystal. J. Appl. Phys. 2009, 105, 07E116. [Google Scholar] [CrossRef]
- Fisk, Z.; Maple, M.B.; Johnston, D.C.; Woolf, L.D. Multiple phase transitions in rare earth tetraborides at low temperature. Solid State Commun. 1981, 39, 1189–1192. [Google Scholar] [CrossRef]
- Boutahar, A.; Moubah, R.; Hlil, E.K.; Lassri, H.; Lorenzo, E. Large reversible magnetocaloric effect in antiferromagnetic Ho2O3 powders. Sci. Rep. 2017, 7, 13904. [Google Scholar] [CrossRef] [PubMed]
- Shinde, K.P.; Nana, W.Z.; Tiena, M.V.; Lina, H.; Park, H.-R.; Yua, S.C.; Chung, K.C.; Kim, D.-H. Magnetocaloric effect in rare earth Ho2O3 nanoparticles at cryogenic temperature. J. Magn. Magn. Mater. 2020, 500, 166391. [Google Scholar] [CrossRef]
- Yamamoto, T.D.; Takeya, H.; Saito, A.T.; Terashima, K.; Baptista de Castro, P.; Numazawa, T.; Takano, Y. Gas-atomized particles of giant magnetocaloric compound HoB2 for magnetic hydrogen liquefiers. Appl. Phys. A 2021, 127, 301. [Google Scholar] [CrossRef]
- Rajivgandhi, R.; Chelvane, J.A.; Quezado, S.; Malik, S.K.; Nirmala, R. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho). J. Magn. Magn. Mater. 2017, 433, 169–177. [Google Scholar] [CrossRef]
- Yamamoto, T.A.; Nakagawa, T.; Sako, K.; Arakawa, T.; Nitani, H. Magnetocaloric effect of rare earth mono-nitrides, TbN and HoN. J. Alloys Compd. 2004, 376, 17–22. [Google Scholar] [CrossRef]
Sample ID | Starting Materials | Reactant Ratio | Products |
---|---|---|---|
HoB2 | Ho:B | 1:2 | HoB2 (92.1%), Ho2O3 (4.0%), Ho (3.9%) |
(Ho,Nb)B2 | Ho:Nb:B | 0.9:0.1:2 | HoB2 (72.1%), HoB4 (9.2%), Ho2O3 (4.6%), Ho (4.6%), HoB12 (3.8%), NbB2 (3.2%) |
Sample | a (Å) | c (Å) | Reference |
---|---|---|---|
HoB2 | 3.28296(2) | 3.81445(0.4) | This work |
Ho1−xNbxB2 | 3.26801(0.6) | 3.78415(0.1) | This work |
HoB2 | 3.2835(4) | 3.8186(14) | PDF# 04-003-0232 |
* NbB2 | 3.1049(3) | 3.2990(2) | PDF# 04-014-5978 |
Alloy | TC (K) | (Jkg−1K−1) | RCP (Jkg−1) | Reference | ||
---|---|---|---|---|---|---|
At 5 T | At 10 T | At 5 T | At 10 T | |||
HoB2 | 15 | 39.2 | - | 706 * | - | [41] |
HoB2 | 15.8 | 34.3 | 46.8 | 720 | 1474 | This work # |
Ho0.93Nb0.07B2 | 17.5 | 26.4 | 38.2 | 673 | 1337 | This work # |
Ho0.9Gd0.1B2 | 19 | 34.6 | - | 833 | - | [21] |
Ho0.6Gd0.4B2 | 30 | 20.2 | - | 889 | - | [21] |
HoAl2 | 29 | 21.5 | 30 * | 688 * | 1350 * | [17] |
HoNi | 36 | 17.4 | ~26 * | 750 | 1222 * | [48] |
HoN | 18 | 28.2 | - | 846 * | - | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbazi, M.; Dehghan Manshadi, A.; Shinde, K.; Mackinnon, I.D.R. Magnetocaloric Properties and Microstructures of HoB2 and Nb-Substituted HoB2. Materials 2025, 18, 866. https://doi.org/10.3390/ma18040866
Shahbazi M, Dehghan Manshadi A, Shinde K, Mackinnon IDR. Magnetocaloric Properties and Microstructures of HoB2 and Nb-Substituted HoB2. Materials. 2025; 18(4):866. https://doi.org/10.3390/ma18040866
Chicago/Turabian StyleShahbazi, Mahboobeh, Ali Dehghan Manshadi, Kiran Shinde, and Ian D. R. Mackinnon. 2025. "Magnetocaloric Properties and Microstructures of HoB2 and Nb-Substituted HoB2" Materials 18, no. 4: 866. https://doi.org/10.3390/ma18040866
APA StyleShahbazi, M., Dehghan Manshadi, A., Shinde, K., & Mackinnon, I. D. R. (2025). Magnetocaloric Properties and Microstructures of HoB2 and Nb-Substituted HoB2. Materials, 18(4), 866. https://doi.org/10.3390/ma18040866