Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method
"> Figure 1
<p>Schematic view of sintered diffusion multiple method.</p> "> Figure 2
<p>Microstructures in the as-sintered state (<b>a</b>) and after annealing at 800 °C for 256 h (<b>b</b>). The monochrome images are backscattered electron images, and colored images are characteristic X-ray maps for the respective elements.</p> "> Figure 3
<p>Tetrahedral plots of compositions measured from the Cr–Mn–Fe–Co–Ni sintered diffusion multiple samples annealed at 970 °C (<b>a</b>) and 800 °C (<b>b</b>), respectively. The color scale shows the Ni–Co ratio.</p> "> Figure 4
<p>Schematic illustration of the concepts used to analyze composition data obtained from the sintered diffusion multiple samples of the A-B-C-D system: the relationship between measured compositions and point density, the former of which include apparent compositions (<b>a</b>), elemental cubes used to determine point density (<b>b</b>), and slope of point density (<b>c</b>) in the compositional space.</p> "> Figure 5
<p>Analysis results of SDM samples showing the point density (<b>a</b>) and the slope of point density (<b>b</b>) obtained at 970 °C and 800 °C, respectively. In the figure (<b>b</b>), tie lines obtained by the conventional method are shown together: segments with purple end points and triangles with blue vertices show two-phase and three-phase equilibria, respectively. The color scales show respective quantities, i.e., point density (<b>a</b>) and slope of point density (<b>b</b>). The numbers I, II, III, and I′ were labeled to regions where data points gather.</p> "> Figure 6
<p>Microstructures observed in samples prepared in the conventional method. The annealing temperature is 970 °C for (<b>a</b>–<b>c</b>) or 800 °C for (<b>d</b>–<b>f</b>). The compositions shown below each micrograph are those, in atomic fractions, measured by electron-probe microanalysis at green and red dots for respective phases in the images.</p> "> Figure 7
<p>The slope of point density at 970 °C, together with the phase boundary data at 1000 °C in the literature: two-phase equilibrium (i)–(j) [<a href="#B12-materials-18-00295" class="html-bibr">12</a>], (c)–(g), and (d)–(e) [<a href="#B13-materials-18-00295" class="html-bibr">13</a>], and three-phase equilibrium (a)–(b)–(f) [<a href="#B13-materials-18-00295" class="html-bibr">13</a>]. Black segments express tie lines.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Display of Raw Chemical Composition Data in the CrMnFeCoNi SDM Samples
3.2. Analysis to Identify the Compositional Range of Phases
3.3. Composition Ranges of Existing Phases in the Cr–Mn–Fe–Co–Ni System
4. Conclusions and Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375-377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater. Sci. 2021, 120, 100754. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, C.; Chen, S.L.; Zhu, J.; Cao, W.S.; Kattner, U.R. An understanding of high entropy alloys from phase diagram calculations. Calphad 2014, 45, 1–10. [Google Scholar] [CrossRef]
- Pickering, E.J.; Muñoz-Moreno, R.; Stone, H.J.; Jones, N.G. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 2016, 113, 106–109. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Pradeep, K.G.; Kuběnová, M.; Raabe, D.; Eggeler, G.; George, E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016, 112, 40–52. [Google Scholar] [CrossRef]
- Shahmir, H.; Mousavi, T.; He, J.; Lu, Z.; Kawasaki, M.; Langdon, T.G. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A 2017, 705, 411–419. [Google Scholar] [CrossRef]
- Klimova, M.V.; Shaysultanov, D.G.; Zherebtsov, S.V.; Stepanov, N.D. Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 2019, 748, 228–235. [Google Scholar] [CrossRef]
- Schuh, B.; Mendez-Martin, F.; Völker, B.; George, E.P.; Clemens, H.; Pippan, R.; Hohenwarter, A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015, 96, 258–268. [Google Scholar] [CrossRef]
- Ma, D.; Yao, M.; Pradeep, K.G.; Tasan, C.C.; Springer, H.; Raabe, D. Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater. 2015, 98, 288–296. [Google Scholar] [CrossRef]
- Zhao, J.C. Diffusion quadruples for the determination of quaternary phase diagrams applied to FeCoNiCr system. Scr. Metall. 1988, 22, 1825–1829. [Google Scholar] [CrossRef]
- Laplanche, G.; Berglund, S.; Reinhart, C.; Kostka, A.; Fox, F.; George, E.P. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 2018, 161, 338–351. [Google Scholar] [CrossRef]
- Bracq, G.; Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Joubert, J.-M.; Guillot, I. The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 2017, 128, 327–336. [Google Scholar] [CrossRef]
- Christofidou, K.A.; Pickering, E.J.; Orsatti, P.; Mignanelli, P.M.; Slater, T.J.A.; Stone, H.J.; Jones, N.G. On the influence of Mn on the phase stability of the CrMnxFeCoNi high entropy alloys. Intermetallics 2018, 92, 84–92. [Google Scholar] [CrossRef]
- Christofidou, K.A.; McAuliffe, T.P.; Mignanelli, P.M.; Stone, H.J.; Jones, N.G. On the prediction and the formation of the sigma phase in CrMnCoFeNix high entropy alloys. J. Alloys Compd. 2019, 770, 285–293. [Google Scholar] [CrossRef]
- Bloomfield, M.E.; Christofidou, K.A.; Jones, N.G. Effect of Co on the phase stability of CrMnFeCoxNi high entropy alloys following long-duration exposures at intermediate temperatures. Intermetallics 2019, 114, 106582. [Google Scholar] [CrossRef]
- Bloomfield, M.E.; Christofidou, K.A.; Monni, F.; Yang, Q.; Hang, M.; Jones, N.G. The influence of Fe variations on the phase stability of CrMnFexCoNi alloys following long-duration exposures at intermediate temperatures. Intermetallics 2021, 131, 107108. [Google Scholar] [CrossRef]
- Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Champion, Y. From high entropy alloys to diluted multi-component alloys: Range of existence of a solid-solution. Mater. Des. 2016, 103, 84–89. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Ma, K.H.; Wang, Q.; Shek, C.H. Compositional dependence of phase formation and mechanical properties in three CoCrFeNi-(Mn/Al/Cu) high entropy alloys. Intermetallics 2016, 79, 1–11. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Ma, K.H.; Yang, X.; Shek, C.H. Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100−)Co high entropy alloys. J. Alloys Compd. 2017, 695, 2945–2950. [Google Scholar] [CrossRef]
- Zhan, Y.Z.; Du, Y.; Zhuang, Y.H. Chapter four—Determination of phase diagrams using equilibrated alloys. In Methods for Phase Diagram Determination; Zhao, J.C., Ed.; Elsevier Science Ltd.: Oxford, UK, 2007; pp. 108–150. [Google Scholar]
- Zhao, J.C.; Zheng, X.; Cahill, D.G. High-throughput diffusion multiples. Mater. Today 2005, 8, 28–37. [Google Scholar] [CrossRef]
- Zhao, J.C. Chapter seven—Phase diagram determination using diffusion multiples. In Methods for Phase Diagram Determination; Zhao, J.C., Ed.; Elsevier Science Ltd.: Oxford, UK, 2007; pp. 246–272. [Google Scholar]
- Ikeda, T.; Yuta, A.; Seiya, N. Ayako, Ibaraki University, Hitachi, Ibaraki, Japan. 2025; In preparation. [Google Scholar]
- Ikeda, T.; Yuta, A.; Seiya, N.; Ryuta, Y. Ayako, Ibaraki University, Hitachi, Ibaraki, Japan. 2025; In preparation. [Google Scholar]
- Ikeda, A.; Ikeda, T. Efficient determination of phase diagrams of multicomponent systems by diffusion multiple method. In Proceedings of the Japan Institute of Metals and Materials 2016 Spring Meeting, Tokyo, Japan, 18–21 May 2016. [Google Scholar]
- Ohtani, H. 1.2 Phase diagrams of high entropy alloys and CALPHAD method. In High Entropy Alloys; Inui, H., Ed.; Uchida Rokakuho Publishing Co., Ltd.: Tokyo, Japan, 2020; pp. 6–15. (In Japanese) [Google Scholar]
- Keil, T.; Bruder, E.; Durst, K. Exploring the compositional parameter space of high-entropy alloys using a diffusion couple approach. Mater. Des. 2019, 176, 107816. [Google Scholar] [CrossRef]
- Takagiwa, Y.; Isoda, Y.; Goto, M.; Shinohara, Y. Conduction type control and power factor enhancement of the thermoelectric material Al2Fe3Si3. J. Phys. Chem. Solids 2018, 118, 95–98. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, D.; Yan, F.; Li, Y.; Lv, Q.; Zhu, W.; Wei, Z.; Chang, K.; Wang, K. From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions. Sci. Bull. 2020, 65, 1072–1077. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurishima, R.; Ikeda, A.; Ikeda, T. Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method. Materials 2025, 18, 295. https://doi.org/10.3390/ma18020295
Yurishima R, Ikeda A, Ikeda T. Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method. Materials. 2025; 18(2):295. https://doi.org/10.3390/ma18020295
Chicago/Turabian StyleYurishima, Ryuta, Ayako Ikeda, and Teruyuki Ikeda. 2025. "Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method" Materials 18, no. 2: 295. https://doi.org/10.3390/ma18020295
APA StyleYurishima, R., Ikeda, A., & Ikeda, T. (2025). Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method. Materials, 18(2), 295. https://doi.org/10.3390/ma18020295