The Effect of Recycled Geogrid Fibres on Asphalt Concrete Performance: A Case Study from Poland
"> Figure 1
<p>Number of respondents by province.</p> "> Figure 2
<p>Correspondence (space) analysis concerning question 1.</p> "> Figure 3
<p>Correspondence (space) analysis concerning question 2.</p> "> Figure 4
<p>Correspondence (space) analysis concerning question 3.</p> "> Figure 5
<p>Correspondence (space) analysis concerning question 4.</p> "> Figure 6
<p>Correspondence (space) analysis concerning question 5.</p> "> Figure 7
<p>Micro and macro glass fibres (one square equals one centimeter).</p> "> Figure 8
<p>Micro and macro glass fibres (one square equals one centimeter).</p> "> Figure 9
<p>Geogrid fibres after the ageing process and pavement operation (one square equals one centimeter). (<b>a</b>) new geogrid fibres after the ageing process in the Los Angeles drum; (<b>b</b>) single geogrid fibre after asphalt pavement milling process.</p> "> Figure 10
<p>Grain size curve of asphalt concrete (AC): (<b>a</b>) AC 16W KR3-4; (<b>b</b>) Grain size limit curves of AC 22W KR3-4.</p> "> Figure 11
<p>Materials used in this study.</p> "> Figure 12
<p>Flowchart of experiment setup.</p> "> Figure 13
<p>Gradient plot of the <span class="html-italic">p</span>-value of the tested asphalt concrete characteristics.</p> "> Figure 14
<p>Feature variability charts (experimental results): (<b>a</b>) WTS<sub>AIR</sub>; (<b>b</b>) PRD<sub>AIR.</sub></p> "> Figure 14 Cont.
<p>Feature variability charts (experimental results): (<b>a</b>) WTS<sub>AIR</sub>; (<b>b</b>) PRD<sub>AIR.</sub></p> "> Figure 15
<p>Graph of variation for the Sm at 13 °C (experimental results).</p> "> Figure 16
<p>Graph of variation for the ITSR (experimental results).</p> "> Figure 17
<p>Variation graph of V<sub>a</sub> (experimental results).</p> "> Figure 18
<p>Result of optimising the parameters of the recycled geogrid.</p> ">
Abstract
:1. Introduction
2. Survey
- Is it necessary to use RAP for asphalt mixtures?
- Is the geogrid in the RAP a technological problem?
- Has a problem been observed with the milling of the geogrid RAP?
- Does the geogrid contained in the RAP hinder technical acceptance?
- Indicate the observed grid size in the RAP and how it was removed.
3. Materials and Methods
3.1. Geogrid
3.2. Asphalt Concrete Design
3.3. Experimental Design and Modelling of Asphalt Concrete Properties Using a Generalised Linear Model (GLM)
3.4. Research Method
- Free space (Va),
- Stiffness modulus (Sm) at 13 °C,
- Water resistance (ITSR),
- Rutting resistance (WTSAIR, PRD AIR).
3.4.1. Void Content
3.4.2. Stiffness Modulus
3.4.3. Water Resistance
3.4.4. Resistance to Rutting
- proportional rut depth PRDAIR,
- rut growth rate WTSAIR.
4. Results
4.1. Evaluation of the Influence of Controlled Factors on the Properties of Asphalt Concrete
- MMA(AT) Mixture Type: 0—AC16W, 1—AC22W;
- Type of Geogrid (GT): 0—carbon mesh, 1—glass mesh.
4.2. Optimisation of the Quantity and Fibre Length of the Recycled Geogrid in Relation to the Type of Mineral and Asphalt Mixture
4.2.1. Utility Function Method
4.2.2. Optimal Criteria and Solutions
- AC16W (GP = 0.6%, GL <1 cm; 5 cm>) by 22%,
- AC22W (GP = 0.6%, GL (1 cm; 5 cm>) by approximately 9%.
- AC16W, GP = 1%, GL <1 cm; 5 cm>,
- AC22W, GP = 0.2%, GL <1 cm; 5 cm>.
5. Conclusions
- The findings of the survey indicate the necessity to undertake research on the issue of RAP contamination by geosynthetic materials. The allowable maximum concentration of less than 0.1% poses a substantial restriction on the feasibility of incorporating RAP contaminated with geogrids. Conversely, this study suggests notable enhancements in the properties of asphalt concrete when RAP integrated with geogrids is utilised, given that RAP is accurately identified.
- An important issue identified by the surveys is that reclaimed asphalt pavement (RAP) is frequently contaminated with geogrid segments exceeding 5 cm in length, which are not further analysed. If these segments constitute more than 0.1% of the RAP, the material is deemed unsuitable for subsequent use. Moreover, the survey emphasized the necessity for additional research to persuade designers and construction authorities to adopt RAP with geogrid on a broader scale.
- The tests carried out confirmed the hypothesis of a beneficial effect of geogrid contamination in the form of >0.1% w/w asphalt concrete. However, a precise recognition of its geometrical properties, its distribution in the asphalt concrete, and the material from which it is made are required here.
- The carbon mesh found in the destruction effectively increases the quality of the asphalt concrete in the binder course by 22% compared to the reference solution. This effect is possible if the fibres were dosed at a rate of 0.9% m/m and a length of no more than 5 cm. An increase in the quality of asphaltic concrete for the binder course based on the utility function is possible for mixtures with a maximum grain size of 16 mm and 22 mm.
- In the case of glass mesh, its accepted content in the composition must not exceed 1% for a mix with a maximum grain size of 16 mm and 0.2% in a mineral mix with a maximum grain size of 22 mm.
- The proposed GLZ model proved to be an effective tool for aggregate prediction of physical and mechanical characteristics for different asphalt mix variants and geogrid material types.
- The choice of mesh length in the waste should be confronted with the expected grain size of the asphalt concrete mineral mixture. It is a very good solution to maintain the rule used in fibre concretes that the fibre length should not be greater than three times the maximum aggregate grain size in the mineral mixture. Then, especially in the case of carbon mesh, a significant reduction in permanent deformation (WTSAIR) and an increase in ITSR much greater than in the case of the AC22W mix was achieved in the AC16W mix.
- The wear process of the geogrid in the RAP varies and depends on the material used. In the case of the glass geogrid, the level of absorption was higher than that of the carbon fibre mesh, resulting in an increase in the void content of the asphalt concrete. As a result, testing of the RAP contaminated with the geosynthetic material requires additional attention in recognising its suitability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topics European Parliament Sustainable Waste Management: What the EU Is Doing. Available online: https://www.europarl.europa.eu/topics/en/article/20180328STO00751/sustainable-waste-management-what-the-eu-is-doing (accessed on 18 October 2024).
- Polish Asphalt Pavement Association. Badanie dotyczące użycia destruktu asfaltowego w Polsce; Polskie Stowarzyszenie Wykonawców Nawierzchni Asfaltowych: Warszawa, Poland, 2022. [Google Scholar]
- Błażejowski, K.; Ostrowski, P.; Wójcik-Wiśniewska, M.; Baranowska, W. Mieszanki i Nawierzchnie z Orbiton Hima; ORLEN Asfalt: Plock, Poland, 2020. [Google Scholar]
- Gospodarka o obiegu zamkniętym: Definicja, znaczenie i korzyści. Available online: https://www.europarl.europa.eu/topics/pl/article/20151201STO05603/gospodarka-o-obiegu-zamknietym-definicja-znaczenie-i-korzysci-wideo (accessed on 18 October 2024).
- Judycki, J.; Jaskuła, P.; Pszczoła, M.; Alenowicz, M.; Dołżycki, B.; Jaczewski, M.; Ryś, D.; Stienss, M. Katalog Typowych Konstrukcji Nawierzchni Podatnych i Półsztywnych (Polish Catalogues for Flexible and Semi-Rigid Structures); General Directorate for National Roads and Motorways: Warsaw, Poland, 2014. [Google Scholar]
- Šrámek, J.; Kozel, M.; Remek, L.; Mikolaj, J. Evaluation of Bitumen Modification Using a Fast-Reacting SBS Polymer at a Low Modifier Percentage. Materials 2023, 16, 2942. [Google Scholar] [CrossRef] [PubMed]
- Błażejowski, K.; Styk, S. Technologia Warstw Asfaltowych, 1st ed.; Wydawnictwa Komunikacji i Łączności sp. z o.o.: Warszawa, Poland, 2004; ISBN 83-206-1540-2. [Google Scholar]
- European Asphalt Pavement Association. Asphalt in Figures 2022; European Asphalt Pavement Association: Brussels, Belgium, 2024; p. 13. [Google Scholar]
- Bastola, N.R.; Souliman, M.I.; Tripathi, A.; Pearson, A. Mechanistic Analysis and Economic Benefits of Fiber-Reinforced Asphalt Overlay Mixtures. J. Mater. Civ. Eng. 2020, 31, 04019142. [Google Scholar]
- Kassem, H.A.; Saleh, N.F.; Zalghout, A.A.; Chehab, G.R. Advanced Characterization of Asphalt Concrete Mixtures Reinforced with Synthetic Fibers. J. Mater. Civ. Eng. 2018, 30, 04018307. [Google Scholar] [CrossRef]
- Wu, S.; Haji, A.; Adkins, I. State of Art Review on the Incorporation of Fibres in Asphalt Pavements. Road Mater. Pavement Des. 2022, 24, 1–36. [Google Scholar] [CrossRef]
- Bugajski, M.; Grabowski, W. Geosyntetyki w Budownictwie Drogowym; Wydanie, I., Ed.; Wydawnictwo Politechniki Poznańskiej: Poznań, Poland, 1999; ISBN 83-7143-167-8. [Google Scholar]
- Błażejowski, K.; Wójcik-Wiśniewska, M.; Baranowska, W.; Ostrowski, P. Poradnik Asfaltowy; ORLEN Asfalt: Plock, Poland, 2018. [Google Scholar]
- Bueno, M.; Poulikakos, L.D. Chemo-Mechanical Evaluation of Asphalt Mixtures Reinforced With Synthetic Fibers. Front. Built Environ. 2020, 6, 41. [Google Scholar] [CrossRef]
- Morea, F.; Zerbino, R. Incorporation of Synthetic Macrofibres in Warm Mix Asphalt. Road Mater. Pavement Des. 2020, 21, 542–556. [Google Scholar] [CrossRef]
- Ameri, M.; Nemati, M.; Shaker, H.; Jafari, F. Experimental and Numerical Investigation of the Properties of the Hot Mix Asphalt Concrete with Basalt and Glass Fiber. Frat. Ed Integrità Strutt. 2019, 13, 149–162. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, S.; Yoo, D.-Y.; Shin, H.-O. Enhancing Mechanical Properties of Asphalt Concrete Using Synthetic Fibers. Constr. Build. Mater. 2018, 178, 233–243. [Google Scholar] [CrossRef]
- Klinsky, L.M.G.; Kaloush, K.E.; Faria, V.C.; Bardini, V.S.S. Performance Characteristics of Fiber Modified Hot Mix Asphalt. Constr. Build. Mater. 2018, 176, 747–752. [Google Scholar] [CrossRef]
- Bebkiewicz, K.; Chłopek, Z.; Kargulewicz, I.; Olecka, A.; Rutkowski, J.; Skośkiewicz, J.; Szczepański, K.; Walęzak, M.; Waśniewska, S.; Zakrzewska, D.; et al. Poland’s National Inventory Report 2023; Ministry of Climate and Environment Republic of Poland: Warsaw, Poland, 2023. [Google Scholar]
- PN-EN 13108-8; Mieszanki Mineralno-Asfaltowe–Wymagania–Część 8: Destrukt Asfaltowy. Polish Committee for Standardization: Warsaw, Poland, 2008.
- PN-EN 13108-1; Mieszanki Mineralno-Asfaltowe–Wymagania–Część 1: Beton Asfaltowy. Polish Committee for Standardization: Warsaw, Poland, 2016.
- General Directiorate for National Roads and Motorways. WT-2 Technical Guidelines 2: Asphalt Pavements for National Rtoads; Part I: Asphalt Mixes; General Directiorate for National Roads and Motorways: Warsaw, Poland, 2014. [Google Scholar]
- Morea, F.; Zerbino, R. Improvement of Asphalt Mixture Performance with Glass Macro-Fibers. Constr. Build. Mater. 2018, 164, 113–120. [Google Scholar] [CrossRef]
- Jahromi, S.G.; Khodai, A. Carbon Fiber Reinforced Asphalt Concrete. Mater. Sci. 2008, 33, 355–364. [Google Scholar]
- Shanbara, H.K.; Ruddock, F.; Atherton, W. A Laboratory Study of High-Performance Cold Mix Asphalt Mixtures Reinforced with Natural and Synthetic Fibres. Constr. Build. Mater. 2018, 172, 166–175. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, T.; Wang, L. Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder. Polymers 2019, 11, 542. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Karadelis, J.N. Establishing the Fiber Bridging Law by an Inverse Analysis Approach. J. Mater. Civ. Eng. 2016, 28, 04015105. [Google Scholar] [CrossRef]
- Vo, H.V.; Park, D.-W.; Seo, W.-J.; Yoo, B.-S. Evaluation of Asphalt Mixture Modified with Graphite and Carbon Fibers for Winter Adaptation: Thermal Conductivity Improvement. J. Mater. Civ. Eng. 2017, 29, 04016176. [Google Scholar] [CrossRef]
- Notani, M.A.; Arabzadeh, A.; Ceylan, H.; Kim, S.; Gopalakrishnan, K. Effect of Carbon-Fiber Properties on Volumetrics and Ohmic Heating of Electrically Conductive Asphalt Concrete. J. Mater. Civ. Eng. 2019, 31, 04019200. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, Q.; Porter, D.; You, Z. Investigation of Microwave Healing Performance of Electrically Conductive Carbon Fiber Modified Asphalt Mixture Beams. Constr. Build. Mater. 2016, 126, 1012–1019. [Google Scholar] [CrossRef]
- Gogolin, D. Effectiveness and Sustainability of Asphalt Reinforcements; S&P Clever Reinforcement GmbH: Frankfurt, Germany, 2015. [Google Scholar]
- Bundesministerium der Justiz. Gesetz Zur Förderung Der Kreislaufwirtschaft Und Sicherung Der Umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz-KrWG); Bundesministerium der Justiz: Berlin, Germany, 2012. [Google Scholar]
- Le Roux, B.; Rouanet, H. Multiple Correspondence Analysis; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; ISBN 978-1-4129-6897-3. [Google Scholar]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 22, 55. [Google Scholar]
- Hill, M.O. Correspondence Analysis: A Neglected Multivariate Method. Appl. Stat. 1974, 23, 340. [Google Scholar] [CrossRef]
- EN 15381:2008; Geotextiles and Geotextile-Related Products—Characteristics Required for Use in Pavements and Asphalt Overlays. British Standards Institution: London, UK, 2008.
- Dołżycki, B. Polish Experience with Cold In-Place Recycling. IOP Conf. Ser. Mater. Sci. Eng. 2017, 236, 012089. [Google Scholar] [CrossRef]
- Jaczewski, M.; Pszczola, M.; Alenowicz, J.; Rys, D.; Dolzycki, B.; Jaskula, P. Evaluation of Thermal Cracking Probability for Asphalt Concretes with High Percentage of RAP. Constr. Build. Mater. 2023, 400, 132726. [Google Scholar] [CrossRef]
- EN 12697-35; Bituminous Mixtures—Test Methods. British Standards Institution: London, UK, 2023.
- Anderson, V.L.; McLean, R.A. Design of Experiments: A Realistic Approach, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-315-14103-9. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Society. Ser. A 1972, 135, 370. [Google Scholar] [CrossRef]
- Box, G.E.P.; Draper, N.R. Empirical Model-Building and Response Surfaces; Empirical model-building and response surfaces; John Wiley & Sons: Oxford, UK, 1987; ISBN 0-471-81033-9. [Google Scholar]
- Dykstra, O. The Augmentation of Experimental Data to Maximize |X′X|. Technometrics 1971, 13, 682. [Google Scholar] [CrossRef]
- Dempster, A.P. Elements of Continuous Multivariate Analysis; Addison-Wesley Pub. Co.: Reading, MA, USA, 1969; ISBN 978-0-201-01485-3. [Google Scholar]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer Series in Statistics; Springer: New York, NY, USA, 1998; pp. 199–213. ISBN 978-1-4612-7248-9. [Google Scholar]
- Olson, C.L. Comparative Robustness of Six Tests in Multivariate Analysis of Variance. J. Am. Stat. Assoc. 1974, 69, 894–908. [Google Scholar] [CrossRef]
- Mazurek, G.; Bąk-Patyna, P. Application of Data Mining Techniques to Predict Luminance of Pavement Aggregate. Appl. Sci. 2023, 13, 4116. [Google Scholar] [CrossRef]
- Karim, M.R.; Ashiquzzaman Nipu, S.M.; Hossain Shawon, M.S.; Kumar, R.; Salman, S.; Verma, A.; Sherif, E.-S.M.; Islam, S.; Ammarullah, M.I. Machinability Investigation of Natural Fibers Reinforced Polymer Matrix Composite under Drilling: Leveraging Machine Learning in Bioengineering Applications. AIP Adv. 2024, 14, 045139. [Google Scholar] [CrossRef]
- EN 12697-8; Bituminous Mixtures. Test Methods. Determination of Void Characteristics of Bituminous Specimens. British Standards Institution: London, UK, 2018.
- EN 12697-5:2018; Bituminous Mixtures. Test Methods. Determination of the Maximum Density. British Standards Institution: London, UK, 2018.
- EN 12697-6:2020; Bituminous Mixtures. Test Methods. Determination of Bulk Density of Bituminous Specimens. British Standards Institution: London, UK, 2020.
- EN 12697-30:2018; Bituminous Mixtures. Test Methods. Specimen Preparation by Impact Compactor. British Standards Institution: London, UK, 2018.
- EN 12697-26:2018; Bituminous Mixtures. Test Methods. Stiffness. British Standards Institution: London, UK, 2018.
- EN 12697-12:2018; Bituminous Mixtures. Test Methods. Determination of the Water Sensitivity of Bituminous Specimens. British Standards Institution: London, UK, 2018.
- EN 12697-22; Bituminous Mixtures—Test Methods—Part 22: Wheel Tracking. British Standards Institution: London, UK, 2020.
- Lazić, Ž.R. Design of Experiments in Chemical Engineering: A Practical Guide; Wiley-VCH: Weinheim, Germany, 2004; ISBN 3-527-31142-4. [Google Scholar]
- Parzen, E.; Tanabe, K.; Kitagawa, G. (Eds.) Selected Papers of Hirotugu Akaike; Springer International Publishing: Cham, Switzerland, 1998; ISBN 978-1-4612-1694-0. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed.; Wiley series in probability and statistics; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-54281-1. [Google Scholar]
- Han, J.; Zhao, M.; Chen, J.; Lan, X. Effects of Steel Fiber Length and Coarse Aggregate Maximum Size on Mechanical Properties of Steel Fiber Reinforced Concrete. Constr. Build. Mater. 2019, 209, 577–591. [Google Scholar] [CrossRef]
- Shi, C.; Wang, J.; Sun, S.; Guan, C. Research on Basalt Fiber Oil/Asphalt Absorption Performance and Test Methods Suitable for Asphalt Mixture with Different Structures. Coatings 2024, 14, 204. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; Eighth edition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14692-7. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
Property | I.M. | Glass Geogrid G 100/100 | Carbon–Carbon Geogrid 100/100 |
---|---|---|---|
Breaking force—along | kN/m | ≥100 | ≥100 |
Breaking force—across | kN/m | ≥100 | ≥100 |
Maximum elongation—longitudinal | % | ≤3 | ≤1.5 |
Maximum elongation—lateral | % | ≤3 | ≤1.5 |
Mesh size—along | mm | 39 | 40 |
Mesh size—wide | mm | 39 | 40 |
Thermal resistance | °C | min. 265 | min. 2000 |
Surface mass | g/m2 | 450 (±30) | 95 (±7) |
Coverage | - | polymeroasfalt | polymeroasfalt |
Quantitative Variable | Levels | Qualitative Variable | Levels |
---|---|---|---|
Percentage of geogrid (GP), % | 0.2; 0.6; 1.0 | Type of geogrid (GT) | carbon; glass |
Geogrid fibre length (GL), cm | 1; 3; 5 | Asphalt mix type (AT) | AC16W; AC22W |
Case | Type of Geogrid (GT) | Type of Mixture (AT) | Percentage of Geogrid (GP) | Geogrid Fibre Length (GL) |
---|---|---|---|---|
1 | glass | AC16W | 0.2 | 1 |
2 | glass | AC16W | 0.6 | 3 |
3 | glass | AC16W | 1.0 | 5 |
4 | glass | AC22W | 0.2 | 1 |
5 | glass | AC22W | 1.0 | 5 |
6 | carbon | AC16W | 0.2 | 1 |
7 | carbon | AC16W | 0.6 | 3 |
8 | carbon | AC16W | 1.0 | 5 |
9 | carbon | AC22W | 0.2 | 1 |
10 | carbon | AC22W | 0.6 | 3 |
11 | carbon | AC22W | 1.0 | 5 |
12 | carbon | AC22W | 1.0 | 1 |
13 | carbon | AC16W | 0.2 | 5 |
14 | glass | AC22W | 0.2 | 5 |
L.P. | Effect | ITSR | PRDAIR | Sm13 | Va | WTSAIR |
---|---|---|---|---|---|---|
1. | Type of Geogrid (GT) | 16.147177 | NS | NS | NS | NS |
2. | Type of Geogrid (GT)*Geogrid fibre length [cm] (GL) | NS | NS | NS | NS | −0.004475610 |
3. | Type of Geogrid (GT)*Type of MMA mixture (AT) | NS | NS | 557.8295 | 0.6514006 | NS |
4. | Type of Geogrid (GT)*Share of Geogrid [%] (GP) | −19.006170 | NS | NS | NS | NS |
5. | Mixture type MMA (AT) | NS | 0.381250 | NS | −1.1005136 | 0.008934451 |
6. | Mixture type MMA (AT)*Percentage of geogrid [%] (GP) | NS | −1.031250 | 3349.8058 | NS | −0.024184451 |
7. | Percentage of geogrid [%] (GP) | NS | 4.468750 | NS | 4.4651024 | 0.105586890 |
8. | Percentage of geogrid [%]*Geogrid fibre length [cm] (GL) | 3.064244 | NS | −1120.2259 | NS | NS |
9. | Intercept | 86.561718 | 4.778125 | NS | 2.8895635 | 0.039696 |
R2 | 0.83 | 0.92 | 0.75 | 0.87 | 0.77 | |
RMSE | 7.0 | 0.4 | 2292 | 1.1 | 0.014 |
Quality Range | Interpretation |
---|---|
1.00 | Excellent value. |
1.00–0.83 | A very good value, representing the achievement of a quality material with remarkable optimisation properties. |
0.8–0.63 | It represents good above average quality. |
0.63–0.37 | Satisfactory value, acceptable under certain conditions. |
0.37–0.2 | An unacceptable value, which may increase the unreliability of the optimised product. |
Asymmetrical Function | Symmetrical Function |
---|---|
where ymin. ymax—the lower and upper range for the criteria defined; yi—the current result; the value from the range; n—an odd integer value (n = 1 assumed) | where ygood—accepted values above the cut-off value; yworse—cut-off value of results to be rejected; yi—current result |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
Va [%] | ITSR [%] | Sm (+13 °C) [MPa] | WTSAIR [mm/1000 Cycles] | PRDAIR [%] | |
Worse (di < 0.37) | 4.0 ÷ 7.0 | 0.9 | 10,300 | 0.15 | 7.0 |
Good (di > 0.63) | 0.95 | 14,000 | 0.1 | 5.0 |
Composite Quality According to Table 7 | Type | Type of Fibre (Recycled Geogrid) | |
---|---|---|---|
Carbon | Glass | ||
Good, above average | AC16W | fibre length ∈ <1 cm; 5 cm> share 0.6% | none |
AC22W | none | none | |
Satisfactory, acceptable under certain conditions | AC16W | fibre length ≈ 1 cm share ∈ <0.2%; 0.6%> | fibre length ∈ <1 cm; 5 cm> share ∈ <0.6%; 1%> |
AC22W | fibre length ∈ (1 cm; 5 cm> share ∈ <0.6%; 1%> | fibre length ∈ <1 cm; 5 cm> share ∈ <0.2%; 0.6%> |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, G.; Buczyński, P.; Kowalczyk, A. The Effect of Recycled Geogrid Fibres on Asphalt Concrete Performance: A Case Study from Poland. Materials 2024, 17, 5923. https://doi.org/10.3390/ma17235923
Mazurek G, Buczyński P, Kowalczyk A. The Effect of Recycled Geogrid Fibres on Asphalt Concrete Performance: A Case Study from Poland. Materials. 2024; 17(23):5923. https://doi.org/10.3390/ma17235923
Chicago/Turabian StyleMazurek, Grzegorz, Przemysław Buczyński, and Artur Kowalczyk. 2024. "The Effect of Recycled Geogrid Fibres on Asphalt Concrete Performance: A Case Study from Poland" Materials 17, no. 23: 5923. https://doi.org/10.3390/ma17235923
APA StyleMazurek, G., Buczyński, P., & Kowalczyk, A. (2024). The Effect of Recycled Geogrid Fibres on Asphalt Concrete Performance: A Case Study from Poland. Materials, 17(23), 5923. https://doi.org/10.3390/ma17235923