Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling
<p>Surface morphology of starting elemental powders of (<b>a</b>) Al, (<b>b</b>) Fe, (<b>c</b>) Nb, and (<b>d</b>) Mn.</p> "> Figure 2
<p>XRD patterns of starting mixture powders of (<b>a</b>) Al–Fe–Nb and (<b>b</b>) Al–Fe–Nb–Mn.</p> "> Figure 3
<p>XRD patterns of (<b>a</b>) Al<sub>82</sub>Fe<sub>16</sub>Nb<sub>2</sub> and (<b>b</b>) Al<sub>82</sub>Fe<sub>14</sub>Nb<sub>2</sub>Mn<sub>2</sub> powders milled for different milling times.</p> "> Figure 4
<p>SEM micrographs of the Al<sub>82</sub>Fe<sub>16</sub>Nb<sub>2</sub> powders milled for (<b>a</b>) 1 h, (<b>b</b>) 2 h, (<b>c</b>) 5 h, and (<b>d</b>) 10 h.</p> "> Figure 5
<p>SEM micrographs of the Al<sub>82</sub>Fe<sub>14</sub>Nb<sub>2</sub>Mn<sub>2</sub> powders milled for (<b>a</b>) 1 h, (<b>b</b>) 2 h, (<b>c</b>) 5 h, and (<b>d</b>) 10 h.</p> "> Figure 6
<p>Hysteresis curves of Al<sub>82</sub>Fe<sub>16</sub>Nb<sub>2</sub> powders milled for different milling times.</p> "> Figure 7
<p>Hysteresis curves of Al<sub>82</sub>Fe<sub>14</sub>Nb<sub>2</sub>Mn<sub>2</sub> powders milled for different milling times.</p> "> Figure 8
<p>DSC curves of the powder compositions (<b>a</b>) Al<sub>82</sub>Fe<sub>16</sub>Nb<sub>2</sub> and (<b>b</b>) Al<sub>82</sub>Fe<sub>14</sub>Nb<sub>2</sub>Mn<sub>2</sub>. Powders were milled for 10 h, and DSC was performed after heating from room temperature to 800 °C.</p> "> Figure 9
<p>XRD patterns for Al<sub>82</sub>Fe<sub>16</sub>Nb<sub>2</sub>: (<b>a</b>) a mixture of powders (Al, Fe, and Nb); powders milled for (<b>b</b>) 2 h and (<b>c</b>) 10 h, followed by heat treatment for 15 min at (<b>d</b>) 550 °C, (<b>e</b>) 600 °C, and (<b>f</b>) 700 °C.</p> "> Figure 10
<p>XRD patterns for Al<sub>82</sub>Fe<sub>14</sub>Nb<sub>2</sub>Mn<sub>2</sub>: (<b>a</b>) a mixture of powders (Al, Fe, Nb, and Mn); powders milled for (<b>b</b>) 2 h and (<b>c</b>) 10 h, followed by heat treatment for 15 min at (<b>d</b>) 550 °C, (<b>e</b>) 600 °C, and (<b>f</b>) 700 °C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Al | Fe | Nb | Mn | |
---|---|---|---|---|
Al | - | 13.2 [%] | 0 [%] | 21.6 [%] |
Fe | −11 [kJ/mol] | - | 13.2 [%] | 9.6 [%] |
Nb | −18 [kJ/mol] | −16 [kJ/mol] | - | 21.6 [%] |
Mn | −19 [kJ/mol] | 0 [kJ/mol] | −4 [kJ/mol] | - |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Xie, B.; Liu, B.; Cao, Y.; Jia, L.; Fang, Q.; Liaw, P. A Focused Review on Engineering Application of Multi-Principal Element Alloy. Front. Mater. 2022, 8, 816309. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Zakharov, V.V. About Alloying of Aluminum Alloys with Transition Metals. Met. Sci. Heat Treat. 2017, 59, 67–71. [Google Scholar] [CrossRef]
- Krasnowski, M.; Kulik, T. Nanocrystalline and amorphous Al–Fe alloys containing 60–85% of Al synthesised by mechanical alloying and phase transformations induced by heating of milling products. Mater. Chem. Phys. 2009, 116, 631–637. [Google Scholar] [CrossRef]
- Rodrigues, C.A.D.; Botta Filho, W.J.; Tremiliosi-Filho, G. Structural Comparison of Amorphous, Nanocrystalline and Microcrystalline Al90Fe7Nb3 Alloys. Mater. Sci. Forum 2012, 727–728, 3–8. [Google Scholar] [CrossRef]
- Vilar, R.; Conde, O.; Franco, S. Crystallographic structure of Al3Nb in laser-processed Al–Nb alloys. Intermetallics 1999, 7, 1227–1233. [Google Scholar] [CrossRef]
- Rodrigues, C.A.D.; Yavari, A.R.; Kiminami, C.S.; Botta Filho, W.J. Milling and Hot Consolidation of Al-Fe-Nb Alloy. Mater. Sci. Forum 2003, 416–418, 287–292. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, P.; Chen, D.; Wu, Y.; Wang, M.; Ma, N.; Wang, H. First-principles investigation of thermodynamic, elastic and electronic properties of Al3V and Al3Nb intermetallics under pressures. J. Appl. Phys. 2015, 117, 085904. [Google Scholar] [CrossRef]
- Albrecht, S.; Cymorek, C.; Eckert, J. Niobium and Niobium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Verlag Chemie: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kvande, H.; Frank, W.B.; Haupin, W.E.; Vogt, H.; Bruno, M.; Thonstad, J.; Dawless, R.K.; Taiwo, O.A. Aluminum. In Ullmann’s Encyclopedia of Industrial Chemistry; Verlag Chemie: Hoboken, NJ, USA, 2012; pp. 1–48. [Google Scholar]
- Robert, M.H.; Filho, S.L.U. Mechanical properties of Al/NbAl3 in situ composites. J. Mater. Process. Technol. 1997, 64, 335–341. [Google Scholar] [CrossRef]
- Coelho, R.E.; Ambrozio Filho, F. Production of Al-Fe-Nb-Si Alloys by Mechanical Alloying and Hot Extrusion. Key Eng. Mater. 2001, 189–191, 555–560. [Google Scholar] [CrossRef]
- Audebert, F.; Sirkin, H.; Escorial, A.G. Aluminum-base Al-Fe-Nb amorphous and nanostructured alloys. Scr. Mater. 1997, 36, 405–410. [Google Scholar] [CrossRef]
- Reip, C.P.; Sauthoff, G. Deformation behaviour of the intermetallic phase Al3Nb with DO22 structure and of Al3Nb-base alloys: Part I. Physical properties and short-term behaviour. Intermetallics 1993, 1, 159–169. [Google Scholar] [CrossRef]
- Reip, C.P.; Sauthoff, G. Deformation behaviour of the intermetallic phase Al3Nb with DO22 structure and of the Al3Nb-base alloys. Part II: Creep behaviour. Intermetallics 1996, 4, 377–385. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications, 3rd ed.; William Andrew: Norwich, NY, USA, 8 May 2020. [Google Scholar]
- Suryanarayana, C. Mechanical Alloying of Nanocrystalline Materials and Nanocomposites. Madridge J. Nanotechnol. Nanosci. 2019, 4, 127–134. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying: A Novel Technique to Synthesize Advanced Materials. Research 2019, 2019, 4219812. [Google Scholar] [CrossRef]
- Enayati, M.H.; Mohamed, F.A. Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 2014, 59, 394–416. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Oanh, N.T.H.; Hoang Viet, N. Enhanced thermal stability of amorphous Al-Fe alloys by addition of Ce and Mn. Mater. Res. Express 2024, 11, 065201. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Do, N.B.; Nguyen, T.H.O.; Nguyen, C.S.; Trinh, V.T.; Le, H.T.; Jorge Junior, A.M. Synthesis and magnetic properties of Al–Cu–Fe quasicrystals prepared by mechanical alloying and heat treatment. J. Mater. Res. 2023, 38, 644–653. [Google Scholar] [CrossRef]
- Binh, D.N.; Oanh, N.T.H.; Viet, N.H. The effect of Ni and Ti additions on the glass forming ability and magnetic properties of Al-Fe-Y alloy prepared by mechanical alloying. J. Non-Cryst. Solids 2022, 583, 121478. [Google Scholar] [CrossRef]
- Nabiałek, M. Fabrication Methods for Bulk Amorphous Alloys. In Alloy Materials and Their Allied Applications; John Wiley & Sons: New York, NY, USA, 2020; pp. 1–25. [Google Scholar]
- Suryanarayana, C.; Inoue, A. Metallic Glasses. In Ullmann’s Encyclopedia of Industrial Chemistry; Verlag Chemie: Hoboken, NJ, USA, 2012. [Google Scholar]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Oanh, N.T.H.; Viet, N.H.; Dudina, D.V.; Jorge, A.M.; Kim, J.-S. Structural characterization and magnetic properties of Al82Fe16TM2 (TM: Ti, Ni, Cu) alloys prepared by mechanical alloying. J. Non-Cryst. Solids 2017, 468, 67–73. [Google Scholar] [CrossRef]
- Chatterjee, A.K. 8—X-Ray Diffraction. In Handbook of Analytical Techniques in Concrete Science and Technology; Ramachandran, V.S., Beaudoin, J.J., Eds.; William Andrew Publishing: Norwich, NY, USA, 2001; pp. 275–332. [Google Scholar]
- Takeuchi, A.; Inoue, A. Analyses of characteristics of atomic pairs in ferrous bulk metallic glasses using classification of bulk metallic glasses and pettifor map. J. Optoelectron. Adv. Mater. 2006, 8, 1679–1684. [Google Scholar]
- Xu, Y.; Zhou, S.; Liao, B.; Zhao, S.; Dai, X.; Chen, D. Effect of milling time on the microstructure and magnetic properties of amorphous Ti50Fe50 alloys prepared by mechanical alloying. J. Mater. Res. Technol. 2019, 8, 3929–3935. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Stoica, M.; Khoshkhoo, M.S.; Thomas, J.; Vaughan, G.; Janghorban, K.; Eckert, J. Microstructure and magnetic properties of amorphous/nanocrystalline Co40Fe22Ta8B30 alloy produced by mechanical alloying. Mater. Chem. Phys. 2012, 134, 1214–1224. [Google Scholar] [CrossRef]
- Abrosimova, G.; Chirkova, V.; Pershina, E.; Volkov, N.; Sholin, I.; Aronin, A. The Effect of Free Volume on the Crystallization of Al87Ni8Gd5 Amorphous Alloy. Metals 2022, 12, 332. [Google Scholar] [CrossRef]
- Paustovskii, A.V.; Gubin, Y.V.; Kunitskii, Y.A. On the Relationship between Residual Stresses and Structural Characteristics of Amorphous Alloys. Mater. Sci. 2001, 37, 73–79. [Google Scholar] [CrossRef]
- Nowroozi, M.A.; Shokrollahi, H. Magnetic and structural properties of amorphous/nanocrystalline Fe42Ni28Zr8Ta2B10C10 soft magnetic alloy produced by mechanical alloying. Adv. Powder Technol. 2013, 24, 1100–1108. [Google Scholar] [CrossRef]
- Jaw, K.-S.; Hsu, C.-K.; Lee, J.-S. The thermal decomposition behaviors of stearic acid, paraffin wax and polyvinyl butyral. Thermochim. Acta 2001, 367–368, 165–168. [Google Scholar] [CrossRef]
- Awotunde, M.A.; Adegbenjo, A.O.; Shongwe, M.B.; Olubambi, P.A. Spark Plasma Sintering of Aluminium-Based Materials. In Spark Plasma Sintering of Materials: Advances in Processing and Applications; Cavaliere, P., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 191–218. [Google Scholar]
- Binh, D.N.; Oanh, N.T.H.; Viet, N.H. Al-Fe-Ni Metallic Glasses via Mechanical Alloying and Its Consolidation. Appl. Sci. 2022, 12, 10561. [Google Scholar] [CrossRef]
Alloy System | Milling Time (h) | 2θ (°) | Crystal Size (nm) |
---|---|---|---|
Al82Fe16Nb2 | 2 | 36.8 | 14.8 |
Al82Fe16Nb2 | 5 | 36.8 | 13.4 |
Al82Fe14Nb2Mn2 | 2 | 36.8 | 14.8 |
Al82Fe14Nb2Mn2 | 5 | 36.7 | 15.1 |
Properties | Al82Fe16Nb2 | |||
1 h | 2 h | 5 h | 10 h | |
Hc (Oe) | 23.94 | 101.59 | 474.65 | 383.79 |
Ms (emu/g) | 47.60 | 46.21 | 40.28 | 9.21 |
Al82Fe14Nb2Mn2 | ||||
Hc (Oe) | 86.50 | 104 | 456 | 456 |
Ms (emu/g) | 44.50 | 42.16 | 36.12 | 26.93 |
Sample | Tx1 | Tp1 | Tx2 | Tp2 | Tx3 | Tp3 |
---|---|---|---|---|---|---|
Al82Fe16Nb2 | 496 | 522 | 580 | 613 | 628 | 641 |
Al82Fe14Nb2Mn2 | 494 | 522 | - | - | 628 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oanh, N.T.H.; An, D.T.; Viet, N.H. Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling. Materials 2024, 17, 5627. https://doi.org/10.3390/ma17225627
Oanh NTH, An DT, Viet NH. Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling. Materials. 2024; 17(22):5627. https://doi.org/10.3390/ma17225627
Chicago/Turabian StyleOanh, Nguyen Thi Hoang, Dao Truong An, and Nguyen Hoang Viet. 2024. "Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling" Materials 17, no. 22: 5627. https://doi.org/10.3390/ma17225627
APA StyleOanh, N. T. H., An, D. T., & Viet, N. H. (2024). Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling. Materials, 17(22), 5627. https://doi.org/10.3390/ma17225627