Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes
<p>Soft matter electrolytes defined in the present review.</p> "> Figure 2
<p>Change in the structure of a polymer with decreasing temperature.</p> "> Figure 3
<p>Schematic illustration of lithium-ion transport in a salt-in-polymer electrolyte and a polymer-in-salt electrolyte. Reprinted with permission from Ref. [<a href="#B56-materials-17-05134" class="html-bibr">56</a>]. Copyright 2021, Hongcai Gao et al.</p> "> Figure 4
<p>Schematic illustration of ionic conductivity as a function of salt concentration with the suggested morphology of salt-in-polymer electrolytes and polymer-in-salt electrolytes (PISE). The inset shows the data for the PTMC:LiTFSI system where PTMC is poly(trimethylene carbonate): <math display="inline"><semantics> <mrow> <msub> <mrow> <mfenced> <mrow> <msub> <mi mathvariant="normal">C</mi> <mn>4</mn> </msub> <msub> <mi mathvariant="normal">H</mi> <mn>6</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>3</mn> </msub> </mrow> </mfenced> </mrow> <mi mathvariant="normal">n</mi> </msub> </mrow> </semantics></math> and LiTFSI is lithium bis(trifluoromethanesulfonyl)imide: <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>LiC</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">F</mi> <mn>6</mn> </msub> <msub> <mrow> <mi>NO</mi> </mrow> <mn>4</mn> </msub> <msub> <mi mathvariant="normal">S</mi> <mn>2</mn> </msub> </mrow> </semantics></math>. Reprinted with permission from Ref. [<a href="#B57-materials-17-05134" class="html-bibr">57</a>]. Copyright 2018, Elsevier.</p> "> Figure 5
<p>(<b>a</b>) Phase diagram of the PEO-<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>LiCF</mi> </mrow> <mn>3</mn> </msub> <msub> <mrow> <mi>SO</mi> </mrow> <mn>3</mn> </msub> </mrow> </semantics></math> system. The transition temperatures were obtained using various experimental techniques; NMR ⊡, DTA or DSC ● △ ⊗, conductivity ○ ▲ <math display="inline"><semantics> <mo>×</mo> </semantics></math>, optical microscopy ■ +, and modeling ⦿. (<b>b</b>) Isotherms of ionic conductivity (<math display="inline"><semantics> <mi>σ</mi> </semantics></math>) in logarithmic scale vs. mass fraction (X) in weight of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>LiCF</mi> </mrow> <mn>3</mn> </msub> <msub> <mrow> <mi>SO</mi> </mrow> <mn>3</mn> </msub> </mrow> </semantics></math> in the electrolyte. Reprinted with permission from Ref. [<a href="#B63-materials-17-05134" class="html-bibr">63</a>]. Copyright 1986, IOP Publishing Ltd.</p> "> Figure 6
<p>Models of gel electrolytes. Reprinted with permission from Ref. [<a href="#B24-materials-17-05134" class="html-bibr">24</a>]. Copyright 2000, Elsevier.</p> "> Figure 7
<p>Schematic illustration of ionic conductivity as a function of reciprocal temperature. (a) Arrhenius behavior; (b) VFT behavior; (c) typical behavior of semi-crystalline polymers (such as PEO-based systems), where melting of the crystalline phase occurs after which VFT behavior is displayed; (d) behavior of crystalline systems where a solid–solid phase transition occurs, e.g., <math display="inline"><semantics> <mrow> <msub> <mrow> <mfenced> <mrow> <mi>PEO</mi> </mrow> </mfenced> </mrow> <mn>8</mn> </msub> <msub> <mrow> <mi>NaAsF</mi> </mrow> <mn>6</mn> </msub> </mrow> </semantics></math>. Reprinted with permission from Ref. [<a href="#B57-materials-17-05134" class="html-bibr">57</a>]. Copyright 2018, Elsevier.</p> "> Figure 8
<p>Ionic conductivity of a liquid electrolyte as well as crystalline or amorphous solid electrolytes as a function of reciprocal temperature. The data are from a [<a href="#B87-materials-17-05134" class="html-bibr">87</a>], b [<a href="#B88-materials-17-05134" class="html-bibr">88</a>], c [<a href="#B91-materials-17-05134" class="html-bibr">91</a>], d [<a href="#B92-materials-17-05134" class="html-bibr">92</a>], e [<a href="#B72-materials-17-05134" class="html-bibr">72</a>], f [<a href="#B89-materials-17-05134" class="html-bibr">89</a>], and g [<a href="#B90-materials-17-05134" class="html-bibr">90</a>]. Reprinted with permission from Ref. [<a href="#B86-materials-17-05134" class="html-bibr">86</a>]. Copyright 2020, Grady et al.</p> "> Figure 9
<p>(<b>A</b>) Structure of N-methylacetamide (Mac) (<math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>H</mi> <mn>3</mn> </msub> <mi>C</mi> <mi>O</mi> <mi>N</mi> <mi>H</mi> <mi>C</mi> <msub> <mi>H</mi> <mn>3</mn> </msub> </mrow> </semantics></math>) with its volume in <math display="inline"><semantics> <mrow> <msup> <mo>Å</mo> <mn>3</mn> </msup> </mrow> </semantics></math>. C (green), H (white), N (blue), and O (red). (<b>B</b>) Arrhenius (<b>a</b>) and VFT (<b>b</b>) plots on the temperature dependence of ionic conductivity of liquid electrolytes (Mac with Li salts). The lithium-salt mole fraction was 0.2. The solid lines represent the VFT fitting. Reprinted with permission from Ref. [<a href="#B68-materials-17-05134" class="html-bibr">68</a>]. Copyright 2013, Royal Society of Chemistry.</p> "> Figure 9 Cont.
<p>(<b>A</b>) Structure of N-methylacetamide (Mac) (<math display="inline"><semantics> <mrow> <mi>C</mi> <msub> <mi>H</mi> <mn>3</mn> </msub> <mi>C</mi> <mi>O</mi> <mi>N</mi> <mi>H</mi> <mi>C</mi> <msub> <mi>H</mi> <mn>3</mn> </msub> </mrow> </semantics></math>) with its volume in <math display="inline"><semantics> <mrow> <msup> <mo>Å</mo> <mn>3</mn> </msup> </mrow> </semantics></math>. C (green), H (white), N (blue), and O (red). (<b>B</b>) Arrhenius (<b>a</b>) and VFT (<b>b</b>) plots on the temperature dependence of ionic conductivity of liquid electrolytes (Mac with Li salts). The lithium-salt mole fraction was 0.2. The solid lines represent the VFT fitting. Reprinted with permission from Ref. [<a href="#B68-materials-17-05134" class="html-bibr">68</a>]. Copyright 2013, Royal Society of Chemistry.</p> "> Figure 10
<p>(<b>A</b>) Arrhenius plot of ionic conductivities measured for Yttria-stabilized Zirconia (YSZ) single crystal (solid electrolyte). MPS is a sample name. (<b>B</b>) (<b>a</b>) Sketch of a series of barriers with one energetically very unfavorable transition state. (<b>b</b>) Sketch of series of barriers with one energetically very favorable ground state. (<b>c</b>) Bimodal barrier distributions with exactly two barrier heights or a broad distribution of heights with two maxima. Reprinted with permission from Ref. [<a href="#B71-materials-17-05134" class="html-bibr">71</a>]. Copyright 2017, Ahamer et al.</p> "> Figure 11
<p>(<b>a</b>) Arrhenius-like plots of ionic conductivities of glass-forming molten salt <math display="inline"><semantics> <mrow> <mi>LiCl</mi> <mo>·</mo> <mn>7</mn> <msub> <mi mathvariant="normal">H</mi> <mn>2</mn> </msub> <mi mathvariant="normal">O</mi> </mrow> </semantics></math> above the glass transition temperature (139 K) for various frequencies of applied electric field. (<b>b</b>) The corresponding plots of ionic conductivities as a function of frequency for various constant temperatures. Reprinted with permission from Ref. [<a href="#B94-materials-17-05134" class="html-bibr">94</a>]. Copyright 1995, Taylor & Francis Ltd.</p> "> Figure 12
<p>Effect of aging on Arrhenius plot of ionic conductivities of polymer electrolyte composed of an acrylonitrile and butyl acrylate copolymer with addition of 91 wt% of <math display="inline"><semantics> <mrow> <mi>LiN</mi> <msub> <mrow> <mfenced> <mrow> <msub> <mrow> <mi>CF</mi> </mrow> <mn>3</mn> </msub> <msub> <mrow> <mi>SO</mi> </mrow> <mn>2</mn> </msub> </mrow> </mfenced> </mrow> <mn>2</mn> </msub> </mrow> </semantics></math> (LiTFSI). The solid lines represent the VFT fitting (for freshly cast film) and the Arrhenius fitting (for samples stored for 275 days). Reprinted with permission from Ref. [<a href="#B95-materials-17-05134" class="html-bibr">95</a>]. Copyright 2015, Elsevier.</p> "> Figure 13
<p>The free volume model.</p> "> Figure 14
<p>(<b>A</b>) The structures of crystalline (<b>a</b>) and amorphous (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Na</mi> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mi>Si</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>5</mn> </msub> </mrow> </semantics></math> (solid electrolyte). (<b>B</b>) The <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> transport in amorphous <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Na</mi> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mi>Si</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>5</mn> </msub> </mrow> </semantics></math> at 873 K for 40 ps by molecular dynamics simulation. The green ball represents <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> in motion. The calculated energy barrier is 0.30 eV which enables fast ionic conduction. (<b>C</b>) The <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> transport in crystalline <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Na</mi> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mi>Si</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>5</mn> </msub> </mrow> </semantics></math> by molecular dynamics simulation. The blue ball is the moving <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math>. The calculated energy barrier is 1.18 eV, which is probably too high for a fast <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> transport. Reprinted with permission from Ref. [<a href="#B104-materials-17-05134" class="html-bibr">104</a>]. Copyright 2015, Royal Society of Chemistry.</p> "> Figure 14 Cont.
<p>(<b>A</b>) The structures of crystalline (<b>a</b>) and amorphous (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Na</mi> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mi>Si</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>5</mn> </msub> </mrow> </semantics></math> (solid electrolyte). (<b>B</b>) The <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> transport in amorphous <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Na</mi> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mi>Si</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>5</mn> </msub> </mrow> </semantics></math> at 873 K for 40 ps by molecular dynamics simulation. The green ball represents <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> in motion. The calculated energy barrier is 0.30 eV which enables fast ionic conduction. (<b>C</b>) The <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> transport in crystalline <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Na</mi> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mi>Si</mi> </mrow> <mn>2</mn> </msub> <msub> <mi mathvariant="normal">O</mi> <mn>5</mn> </msub> </mrow> </semantics></math> by molecular dynamics simulation. The blue ball is the moving <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math>. The calculated energy barrier is 1.18 eV, which is probably too high for a fast <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Na</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> transport. Reprinted with permission from Ref. [<a href="#B104-materials-17-05134" class="html-bibr">104</a>]. Copyright 2015, Royal Society of Chemistry.</p> "> Figure 15
<p>(<b>a</b>) Ionic conductivity <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo> </mo> <mfenced> <mrow> <msup> <mrow> <mrow> <mi mathvariant="normal">S</mi> <mo> </mo> <mi>cm</mi> </mrow> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </mfenced> </mrow> </semantics></math> of crystalline polymer electrolytes <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>PEO</mi> </mrow> <mn>6</mn> </msub> <mo>:</mo> <msub> <mrow> <mi>LiPF</mi> </mrow> <mn>6</mn> </msub> </mrow> </semantics></math> (solid circles), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>PEO</mi> </mrow> <mn>6</mn> </msub> <mo>:</mo> <msub> <mrow> <mi>LiAsF</mi> </mrow> <mn>6</mn> </msub> <mo> </mo> </mrow> </semantics></math>(squares), <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>PEO</mi> </mrow> <mn>6</mn> </msub> <mo>:</mo> <msub> <mrow> <mi>LiSbF</mi> </mrow> <mn>6</mn> </msub> </mrow> </semantics></math> (triangles), and amorphous <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>PEO</mi> </mrow> <mn>6</mn> </msub> <mo>:</mo> <msub> <mrow> <mi>LiSbF</mi> </mrow> <mn>6</mn> </msub> </mrow> </semantics></math> (open circles). (<b>b</b>) Schematic diffusion pathway of <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Li</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> cations along the polymer tunnel in crystalline <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>PEO</mi> </mrow> <mn>6</mn> </msub> <mo>:</mo> <msub> <mrow> <mi>LiPF</mi> </mrow> <mn>6</mn> </msub> </mrow> </semantics></math>. The blue solid spheres show a <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Li</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> cation in the crystallographic five-coordinate site where the thin lines show the coordination. The meshed blue spheres show a <math display="inline"><semantics> <mrow> <msup> <mrow> <mi>Li</mi> </mrow> <mo>+</mo> </msup> </mrow> </semantics></math> cation in the intermediate four-coordinate site where green and red show carbon and oxygen, respectively. Reprinted with permission from Ref. [<a href="#B51-materials-17-05134" class="html-bibr">51</a>]. Copyright 2003, American Chemical Society.</p> "> Figure 16
<p>(<b>a</b>) Snapshot depicting the unit lattice of an N = 100 isotropic polyelectrolyte network structure in a swollen polyelectrolyte hydrogel by molecular dynamics simulations. Monomers and counterions are denoted by cyan and purple spheres, respectively. Each cross-linking node is attached by six polyelectrolyte chains, each of which has N monomers. (<b>b</b>) Free ions apart from the gel backbone can move faster. Reprinted with permission from Ref. [<a href="#B107-materials-17-05134" class="html-bibr">107</a>]. Copyright 2016, American Chemical Society.</p> "> Figure 17
<p>(<b>A</b>) Photo images of PEO samples subjected to tensile deformation. (<b>B</b>) In-plane and out-of-plane ionic conductivities of PEO electrolyte (soft matter electrolyte) with respect to tensile deformation (in the direction of the red arrow). (<b>a</b>) Out-of-plane ionic conductivity vs. tensile deformation of PEO/Li salt film. (<b>b</b>) Out-of-plane enhancement in ionic conductivity vs. tensile strain. (<b>c</b>) In-plane ionic conductivity vs. tensile deformation. (<b>d</b>) In-plane enhancement in ionic conductivity vs. tensile strain. (<b>C</b>) Depiction of semi-crystalline polymer microstructure at various stages of tensile deformation. Reprinted with permission from Ref. [<a href="#B113-materials-17-05134" class="html-bibr">113</a>]. Copyright 2016, Kelly et al.</p> "> Figure 17 Cont.
<p>(<b>A</b>) Photo images of PEO samples subjected to tensile deformation. (<b>B</b>) In-plane and out-of-plane ionic conductivities of PEO electrolyte (soft matter electrolyte) with respect to tensile deformation (in the direction of the red arrow). (<b>a</b>) Out-of-plane ionic conductivity vs. tensile deformation of PEO/Li salt film. (<b>b</b>) Out-of-plane enhancement in ionic conductivity vs. tensile strain. (<b>c</b>) In-plane ionic conductivity vs. tensile deformation. (<b>d</b>) In-plane enhancement in ionic conductivity vs. tensile strain. (<b>C</b>) Depiction of semi-crystalline polymer microstructure at various stages of tensile deformation. Reprinted with permission from Ref. [<a href="#B113-materials-17-05134" class="html-bibr">113</a>]. Copyright 2016, Kelly et al.</p> "> Figure 18
<p>AFM height images of equatorial region of a polybutene spherulite (semi-crystalline polymer) for two strain levels 10 and 15%. The void formation (1), the growth (2), and the coalescence (3) of cavities are indicated in the images. Reprinted with permission from Ref. [<a href="#B118-materials-17-05134" class="html-bibr">118</a>]. Copyright 2007, Elsevier.</p> "> Figure 19
<p>(<b>A</b>) SEM images of composite polymer membranes with different molecule sieves: (<b>a</b>) 0.15 g SBA-15 (silica with micro- and narrow mesopores), with rich pores; (<b>b</b>) its cross-section; (<b>c</b>) 0.15 g MCM-41 (another form of silica), without any pores; (<b>d</b>) 0.15 g NaY, without any pores. (<b>B</b>) Arrhenius plots of ionic conductivity for the composite polymer electrolyte (PVdF-HFP/<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>LiPF</mi> </mrow> <mn>6</mn> </msub> </mrow> </semantics></math>) films of (<b>a</b>) 0.15 g SBA-15; (<b>b</b>) 0.15 g MCM-41; (<b>c</b>) 0.15 g NaY. Reprinted with permission from Ref. [<a href="#B114-materials-17-05134" class="html-bibr">114</a>]. Copyright 2006, Elsevier.</p> "> Figure 20
<p>(<b>a</b>) Model of single-crystal solid electrolyte with parallel dislocations. (<b>b</b>) Calculated spatial variation of ionic current density (<math display="inline"><semantics> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac> <mrow> <msub> <mi>j</mi> <mrow> <mi>d</mi> <mi>i</mi> <mi>s</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>j</mi> <mrow> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> <mo>,</mo> <mrow> <mo> </mo> <mi>where</mi> <mo> </mo> </mrow> <msub> <mi>j</mi> <mrow> <mi>d</mi> <mi>i</mi> <mi>s</mi> </mrow> </msub> <mo> </mo> <mi>and</mi> <mo> </mo> <msub> <mi>j</mi> <mrow> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo> </mo> <mi>is</mi> </mrow> </mrow> </semantics></math> ionic current density along dislocations and in other regions, respectively), as a function of angle (<math display="inline"><semantics> <mi>θ</mi> </semantics></math>) for various dislocation densities (<math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>d</mi> </msub> </mrow> </semantics></math>). (<b>c</b>) Calculated mean ionic conductivity relative to the bulk ionic conductivity (<math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>/</mo> <msub> <mi>σ</mi> <mi>b</mi> </msub> </mrow> </semantics></math>). Reprinted with permission from Ref. [<a href="#B115-materials-17-05134" class="html-bibr">115</a>]. Copyright 2023, IOP Publishing Ltd.</p> "> Figure 21
<p>The results of numerical calculations for probability of fracture (<math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>F</mi> </msub> </mrow> </semantics></math>) as a function of dislocation density when the number of microcracks is <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>6</mn> </msup> </mrow> </semantics></math> for various values of the characteristic diameter of pre-existing microcracks (<math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>0</mn> </msub> </mrow> </semantics></math>). <math display="inline"><semantics> <mi>R</mi> </semantics></math> is the ratio of the compressive strength to the tensile strength (<math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> is assumed). Reprinted with permission from Ref. [<a href="#B150-materials-17-05134" class="html-bibr">150</a>]. Copyright 2023, IOP Publishing Ltd.</p> "> Figure 22
<p>The results of numerical simulations on the mobile- and immobile-dislocation densities as a function of time during dry pressing of LATP (solid electrolyte) particles with the initial radius of <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>45</mn> <mo> </mo> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> under the applied pressure of 100 MPa. <span class="html-italic">Ć</span><sub>1</sub> is the parameter related to the multiplication of mobile dislocations (<span class="html-italic">Ć</span><sub>1</sub><math display="inline"><semantics> <mrow> <mo>=</mo> <msup> <mrow> <mn>10</mn> </mrow> <mn>3</mn> </msup> </mrow> </semantics></math> is assumed). Reprinted with permission from Ref. [<a href="#B148-materials-17-05134" class="html-bibr">148</a>]. Copyright 2024, Yasui et al.</p> ">
Abstract
:1. Introduction
2. Temperature Dependence of Ionic Conductivity
3. Mechanism for Ionic Conduction (Theory)
3.1. Free Volume Model
3.2. Configurational Entropy Model
3.3. Jump-Diffusion Model
4. Crystal vs. Amorphous
5. Methods to Increase Ionic Conductivity
5.1. Cavitation in Polymer Electrolytes (Experiments)
5.2. Microporous (or Macroporous) Composite Polymer Electrolytes (Experiments)
5.3. All-Dislocation-Ceramics in Solid Electrolytes (Theory)
6. Merits and Demerits of Soft Matter Electrolytes
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Zhang, X.; Xiang, Y.; Liu, K. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 2023, 16, 8055–8071. [Google Scholar] [CrossRef]
- Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Lithium Batteries; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Aurbach, D.; Schechter, A. Advanced liquid electrolyte solutions. In Lithium Batteries: Science and Technology; Nazri, G.-A., Pistoia, G., Eds.; Kluwer Academic: Boston, MA, USA, 2004; pp. 530–573. [Google Scholar]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Takada, K. Solid-state batteries with oxide-based electrolytes. In Next Generation Batteries; Kanamura, K., Ed.; Springer: Singapore, 2021; pp. 181–186. [Google Scholar]
- Fan, L.-Z.; He, H.; Nan, C.-W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019. [Google Scholar] [CrossRef]
- Tang, S.; Mei, Q.; Zhai, Y.; Liu, Y. Cation-polymerized artificial SEI layer modified Li metal applied in soft-matter polymer electrolyte. Nanotechnology 2024, 35, 335401. [Google Scholar] [CrossRef]
- Prakash, P.; Fall, B.; Aguirre, J.; Sonnenberg, L.A.; Chinnam, P.R.; Chereddy, S.; Dikin, D.A.; Venkatnathan, A.; Wunder, S.L.; Zdilla, M.J. A soft co-crystalline solid electrolyte for lithium-ion batteries. Nat. Mater. 2023, 22, 627–635. [Google Scholar] [CrossRef]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Gray, F.M. Solid Polymer Electrolytes; VCH: New York, NY, USA, 1991. [Google Scholar]
- Gray, F.M. Polymer Electrolytes; Royal Society of Chemistry: Cambridge, UK, 1997. [Google Scholar]
- MacCallum, J.R.; Vincent, C.A. (Eds.) Polymer Electrolyte Reviews-1; Elsevier Applied Science: London, UK, 1987. [Google Scholar]
- MacCallum, J.R.; Vincent, C.A. (Eds.) Polymer Electrolyte Reviews-2; Elsevier Applied Science: London, UK, 1989. [Google Scholar]
- Gray, F.; Armand, M. Polymer electrolytes. In Handbook of Battery Materials, 2nd ed.; Daniel, C., Besenhard, J.O., Eds.; Wiley: Weinheim, Germany, 2011; Volume 2, pp. 627–656. [Google Scholar]
- Eftekhari, A. (Ed.) Polymerized Ionic Liquids; Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Fan, F.; Wang, W.; Holt, A.P.; Feng, H.; Uhrig, D.; Lu, X.; Hong, T.; Wang, Y.; Kang, N.-G.; Mays, J.; et al. Effect of molecular weight on the ion transport mechanism in polymerized ionic liquids. Macromolecules 2016, 49, 4557–4570. [Google Scholar] [CrossRef]
- Gainaru, C.; Stacy, E.W.; Bocharova, V.; Gobet, M.; Holt, A.P.; Saito, T.; Greenbaum, S.; Sokolov, A.P. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: Direct link between conductivity and diffusivity. J. Phys. Chem. B 2016, 120, 11074–11083. [Google Scholar] [CrossRef]
- Choi, U.H.; Mittal, A.; Price, T.L., Jr.; Lee, M.; Gibson, H.W.; Runt, J.; Colby, R.H. Molecular volume effects on the dynamics of polymerized ionic liquids and their monomers. Electrochim. Acta 2015, 175, 55–61. [Google Scholar] [CrossRef]
- Wojnarowska, Z.; Feng, H.; Fu, Y.; Cheng, S.; Carroll, B.; Kumar, R.; Novikov, V.N.; Kisliuk, A.M.; Saito, T.; Kang, N.-G.; et al. Effect of chain rigidity on the decoupling of ion motion from segmental relaxation in polymerized ionic liquids: Ambient and elevated pressure studies. Macromolecules 2017, 50, 6710–6721. [Google Scholar] [CrossRef]
- Obadia, M.M.; Jourdain, A.; Serghei, A.; Ikeda, T.; Drockenmuller, E. Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polym. Chem. 2017, 8, 910–917. [Google Scholar] [CrossRef]
- Bocharova, V.; Wojnarowska, Z.; Cao, P.-F.; Fu, Y.; Kumar, R.; Li, B.; Novikov, V.N.; Zhao, S.; Kisliuk, A.; Saito, T.; et al. Influence of chain rigidity and dielectric constant on the glass transition temperature in polymerized ionic liquids. J. Phys. Chem. B 2017, 121, 11511–11519. [Google Scholar] [CrossRef]
- Stephan, A.M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42. [Google Scholar] [CrossRef]
- Murata, K.; Izuchi, S.; Yoshihisa, Y. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 2000, 45, 1501–1508. [Google Scholar] [CrossRef]
- Yang, C.; Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125–142. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, H.; Liu, J.; Qian, T.; Yan, C. A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 2019, 22, 256–264. [Google Scholar] [CrossRef]
- Shen, X.; Hua, H.; Li, H.; Li, R.; Hu, T.; Wu, D.; Zhnag, P.; Zhao, J. Synthesis and molecular dynamics simulation of a novel single ion conducting gel polymer electrolyte for lithium-ion batteries. Polymer 2020, 201, 122568. [Google Scholar] [CrossRef]
- Hanabusa, K. Ionic liquid gels. In Electrochemical Aspects of Ionic Liquids, 2nd ed.; Ohno, H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 395–401. [Google Scholar]
- Noda, A.; Watanabe, M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim. Acta 2000, 45, 1265–1270. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Hirao, M.; Ito-Akita, K.; Ohno, H. Ion conduction in zwitterionic-type molten salts and their polymers. J. Mater. Chem. 2001, 11, 1057–1062. [Google Scholar] [CrossRef]
- Bhattacharyya, A.J.; Patel, M.; Das, S.K. Soft matter lithium salt electrolytes: Ion conduction and application to rechargeable batteries. Monatsh. Chem. 2009, 140, 1001–1010. [Google Scholar] [CrossRef]
- Wu, P.-W.; Holm, S.R.; Duong, A.T.; Dunn, B.; Kaner, R.B. A sol-gel electrolyte with high lithium ion conductivity. Chem. Mater. 1997, 9, 1004–1011. [Google Scholar] [CrossRef]
- Ogasawara, T.; Klein, L.C. Sol-gel electrolytes in lithium batteries. J. Sol-Gel Sci. Technol. 1994, 2, 611–613. [Google Scholar] [CrossRef]
- Akamatsu, T.; Kasuga, T.; Nogami, M. Formation of metaphosphate hydrogels and their proton conductivities. J. Non-Cryst. Solids 2005, 351, 691–696. [Google Scholar] [CrossRef]
- Yamanaka, M. Random matrix theory of rigidity in soft matter. J. Phys. Soc. Jpn. 2015, 84, 063801. [Google Scholar] [CrossRef]
- Doi, M. Soft Matter Physics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 1–37. [Google Scholar]
- Hu, X.; Li, Z.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. 2017, 56, 5785–5789. [Google Scholar] [CrossRef]
- Shirshova, N.; Bismarck, A.; Greenhalgh, E.S.; Johansson, P.; Kalinka, G.; Marczewski, M.J.; Shaffer, M.S.P.; Wienrich, M. Composition as a means to control morphology and properties of epoxy based dual-phase structural electrolytes. J. Phys. Chem. C 2014, 118, 28377–28387. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Liu, S.; Tao, Z.; Chen, J. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res. 2018, 11, 6244–6251. [Google Scholar] [CrossRef]
- Jacob, M.M.E.; Arof, A.K. Mechanical studies on poly(vinylidene fluoride) based polymer electrolytes. Polym. Eng. Sci. 2000, 40, 872–978. [Google Scholar] [CrossRef]
- Ke, X.; Wang, Y.; Ren, G.; Yuan, C. Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater. 2020, 26, 313–324. [Google Scholar] [CrossRef]
- Zafarani-Moattar, M.T.; Shekaari, H. Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation. J. Chem. Thermodyn. 2007, 39, 1649–1660. [Google Scholar] [CrossRef]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1982; pp. 57–77. [Google Scholar]
- Sperling, L.H. Introduction to Physical Polymer Science, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Strobl, G. The Physics of Polymers, 3rd ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Rubinstein, M.; Colby, R.H. Polymer Physics; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion. 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Xue, S.; Liu, Y.; Li, Y.; Teeters, D.; Crunkleton, D.W.; Wang, S. Diffusion of lithium ions in amorphous and crystalline poly(ethylene oxide)3:LiCF3SO3 polymer electrolytes. Electrochim. Acta 2017, 235, 122–128. [Google Scholar] [CrossRef]
- Gadjourova, Z.; Andreev, Y.G.; Tunstall, D.P.; Bruce, P.G. Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412, 520–523. [Google Scholar] [CrossRef]
- Stoeva, Z.; Martin-Litas, I.; Staunton, E.; Andreev, Y.G.; Bruce, P.G. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X=P, As, Sb. J. Am. Chem. Soc. 2003, 125, 4619–4626. [Google Scholar] [CrossRef]
- Xue, S.; Teeters, D.; Crunkleton, D.W.; Wang, S. Ab initio calculations for crystalline PEO6:LiPF6 polymer electrolytes. Comput. Mater. Sci. 2019, 160, 173–179. [Google Scholar] [CrossRef]
- Chatani, Y.; Okamura, S. Crystal structure of poly(ethylene oxide)-sodium iodide complex. Polymer 1987, 28, 1815–1820. [Google Scholar] [CrossRef]
- Nitzan, A.; Ratner, M.A. Conduction in polymers: Dynamic disorder transport. J. Phys. Chem. 1994, 98, 1765–1775. [Google Scholar] [CrossRef]
- Osada, I.; de Vries, H.; Scrosati, B.; Passerini, S. Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 2016, 55, 500–513. [Google Scholar] [CrossRef]
- Gao, H.; Grundish, N.S.; Zhao, Y.; Zhou, A.; Goodenough, J.B. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater. Adv. 2021, 2021, 1932952. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Armand, M.B. Current state of PEO-based electrolyte. In Polymer Electrolyte Reviews-1; MacCallum, J.R., Vincent, C.A., Eds.; Elsevier Applied Science: London, UK, 1987; pp. 1–22. [Google Scholar]
- Lopez, J.; Mackanic, D.G.; Cui, Y.; Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Jacoby, M. Batteries get flexible. Chem. Eng. News 2013, 91, 13–18. [Google Scholar] [CrossRef]
- Watanabe, M.; Ogata, N. Ionic conductivity of poly(propylene oxide) electrolytes. In Polymer Electrolyte Reviews-1; MacCallum, J.R., Vincent, C.A., Eds.; Elsevier Applied Science: London, UK, 1987; pp. 39–68. [Google Scholar]
- Robitaille, C.D.; Fauteux, D. Phase diagrams and conductivity characterization of some PEO-LiX electrolytes. J. Electrochem. Soc. 1986, 133, 315–325. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, F.; Agapov, A.L.; Saito, T.; Yang, J.; Yu, X.; Hong, K.; Mays, J.; Sokolov, A.P. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer 2014, 55, 4067–4076. [Google Scholar] [CrossRef]
- Petrowsky, M.; Frech, R. Temperature dependence of ion transport: The compensated Arrhenius equation. J. Phys. Chem. B 2009, 113, 5996–6000. [Google Scholar] [CrossRef]
- Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4. J. Polym. Sci. 1983, 21, 939–948. [Google Scholar] [CrossRef]
- Avellaneda, C.O.; Vieira, D.F.; Al-Kahlout, A.; Leite, E.R.; Pawlicka, A.; Aegerter, M.A. Solid-state electrochromic devices with Nb2O5: Mo thin film and gelatin-based electrolyte. Electrochim. Acta 2007, 53, 1648–1654. [Google Scholar] [CrossRef]
- Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 20054. [Google Scholar] [CrossRef]
- Miyamoto, T.; Shibayama, K. Free-volume model for ionic conductivity in polymers. J. Appl. Phys. 1973, 44, 5372–5376. [Google Scholar] [CrossRef]
- Minami, T.; Takuma, Y.; Tanaka, M. Superionic conducting glasses: Glass formation and conductivity in the AgI-Ag2O-P2O5 system. J. Electrochem. Soc. 1977, 124, 1659–1662. [Google Scholar] [CrossRef]
- Ahamer, C.; Opitz, A.K.; Rupp, G.M.; Fleig, J. Revisiting the temperature dependent ionic conductivity of yttria stabilized zirconia (YSZ). J. Electrochem. Soc. 2017, 164, F790–F803. [Google Scholar] [CrossRef]
- Nowak, S.; Berkemeier, F.; Schmitz, G. Ultra-thin LiPON films—Fundamental properties and application in solid state thin film model batteries. J. Power Sources 2015, 275, 144–150. [Google Scholar] [CrossRef]
- Berkemeier, F.; Abouzari, M.R.S.; Schmitz, G. Thickness-dependent dc conductivity of lithium borate glasses. Phys. Rev. B 2007, 76, 024205. [Google Scholar] [CrossRef]
- Heitjans, P.; Indris, S. Diffusion and ionic conduction in nanocrystalline ceramics. J. Phys. Condens. Matter 2003, 15, R1257–R1289. [Google Scholar] [CrossRef]
- Wang, W.; Yi, E.; Fici, A.J.; Laine, R.M.; Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C 2017, 121, 2563–2573. [Google Scholar] [CrossRef]
- Papke, B.L.; Ratner, M.A.; Shriver, D.F. Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts. J. Electrochem. Soc. 1982, 129, 1694–1701. [Google Scholar] [CrossRef]
- Gu, G.Y.; Bouvier, S.; Wu, C.; Laura, R.; Rzeznik, M.; Abraham, K.M. 2-methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta 2000, 45, 3127–3139. [Google Scholar] [CrossRef]
- Baril, D.; Michot, C.; Armand, M. Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ion. 1997, 94, 35–47. [Google Scholar] [CrossRef]
- Weston, J.E.; Steele, B.C.H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ion. 1982, 7, 75–79. [Google Scholar] [CrossRef]
- Ratner, M.A. Aspects of the theoretical treatment of polymer solid electrolytes: Transport theory and models. In Polymer Electrolyte Reviews-1; MacCallum, J.R., Vincent, C.A., Eds.; Elsevier Applied Science: London, UK, 1987; pp. 173–236. [Google Scholar]
- Armand, M.B.; Chabagno, J.M.; Duclot, M.J. Poly-ethers as solid electrolytes. In Fast Ion Transport in Solids; Vashishta, P., Mundy, J.N., Shenoy, G.K., Eds.; Elsevier North Holland: New York, NY, USA, 1979; pp. 131–136. [Google Scholar]
- Yoshida, K.; Tsuchiya, M.; Tachikawa, N.; Dokko, K.; Watanabe, M. Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis(trifluoromethanesulfonyl)amide. J. Phys. Chem. C 2011, 115, 18384–18394. [Google Scholar] [CrossRef]
- Susan, M.A.B.H.; Kaneko, T.; Noda, A.; Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 2005, 127, 4976–4983. [Google Scholar] [CrossRef] [PubMed]
- Marple, M.A.T.; Aitken, B.G.; Kim, S.; Sen, S. Fast Li-ion dynamics in stoichiometric Li2S-Ga2Se3-GeSe2 glasses. Chem. Mater. 2017, 29, 8704–8710. [Google Scholar] [CrossRef]
- Inaguma, Y. Fast percolative diffusion in lithium ion-conducting perovskite-type oxides. J. Ceram. Soc. Jpn. 2006, 114, 1103–1110. [Google Scholar] [CrossRef]
- Grady, Z.A.; Wilkinson, C.J.; Randall, C.A.; Mauro, J.C. Emerging role of non-crystalline electrolytes in solid-state battery research. Front. Energy Res. 2020, 8, 218. [Google Scholar] [CrossRef]
- Saruwatari, H.; Kuboki, T.; Kishi, T.; Mikoshiba, S.; Takami, N. Imidazolium ionic liquids containing LiBOB electrolyte for lithium battery. J. Power Sources 2010, 195, 1495–1499. [Google Scholar] [CrossRef]
- Hong, H.Y.-P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bul. 1978, 13, 117–124. [Google Scholar] [CrossRef]
- Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 1990, 137, 1023–1027. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Malugani, J.P.; Robert, G. Ion conductivity in LiPO3-LiX (X=I, Br, Cl). Mater. Res. Bull. 1979, 14, 1075–1081. [Google Scholar] [CrossRef]
- Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid State Ion. 2006, 177, 2721–2725. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.; Funke, K.; Buscher, M.; Happe, A.; Saatkamp, T.; Wilmer, D. Ion dynamics in glass-forming systems II. Conductivity spectra above the glass transformation temperature. Philos. Mag. B 1995, 71, 713–719. [Google Scholar] [CrossRef]
- Łasińska, A.K.; Marzantowicz, M.; Dygas, J.R.; Krok, F.; Florjańczyk, Z.; Tomaszewska, A.; Zygadło-Monikowska, E.; Żukowska, Z.; Lafont, U. Study of ageing effects in polymer-in-salt electrolytes based on poly (acrylonitrile-co-butyl acrylate) and lithium salts. Electrochim. Acta 2015, 169, 61–72. [Google Scholar] [CrossRef]
- Doolittle, A.K. Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Phys. 1951, 22, 1471–1475. [Google Scholar] [CrossRef]
- Cohen, M.H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164–1169. [Google Scholar] [CrossRef]
- Atkins, P.W. Physical Chemistry, 6th ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Adam, G.; Gibbs, J.H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 43, 139–146. [Google Scholar] [CrossRef]
- Angell, C.A.; Sichina, W. Thermodynamics of glass-transition—Empirical aspects. Ann. N. Y. Acad. Sci. 1976, 279, 53–67. [Google Scholar] [CrossRef]
- Henderson, W.A.; Passerini, S. Ionic conductivity in crystalline-amorphous polymer electrolytes—P(EO)6:LiX phases. Electrochem. Commun. 2003, 5, 575–578. [Google Scholar] [CrossRef]
- Spěváćek, H.; Brus, J.; Dybal, J. Solid state NMR and DFT study of polymer electrolyte poly(ethylene oxide)/LiCF3SO3. Solid State Ion. 2005, 176, 163–167. [Google Scholar] [CrossRef]
- Spěváćek, H.; Brus, J.; Dybal, J. Solid polymer electrolytes studied by NMR spectroscopy and DFT calculations. Macromol. Symp. 2006, 235, 57–63. [Google Scholar] [CrossRef]
- Lei, X.; Jee, Y.; Huang, K. Amorphous Na2Si2O5 as a fast Na+ conductor: An ab initio molecular dynamics simulation. J. Mater. Chem. A 2015, 3, 19920–19927. [Google Scholar] [CrossRef]
- Singh, P.; Goodenough, J.B. Monoclinic Sr1−xNax SiO3−0.5x: New superior oxide ion electrolytes. J. Am. Chem. Soc. 2013, 135, 10149–10154. [Google Scholar] [CrossRef]
- Evans, I.R.; Evans, J.S.O.; Davies, H.G.; Haworth, A.R.; Tate, M.L. On Sr1−xNax SiO3−0.5x new superior fast ion conductors. Chem. Mater. 2014, 26, 5187–5189. [Google Scholar] [CrossRef]
- Li, H.; Erbaş, A.; Zwanikken, J.; de la Cruz, M.O. Ionic conductivity in polyelectrolyte hydrogel. Macromolecules 2016, 49, 9239–9246. [Google Scholar] [CrossRef]
- Stacy, E.W.; Gainaru, C.P.; Gobet, M.; Wojnarowska, Z.; Bocharova, V.; Greenbaum, S.G.; Sokolov, A.P. Fundamental limitations of ionic conductivity in polymerized ionic liquids. Macromolecules 2018, 51, 8637–8645. [Google Scholar] [CrossRef]
- Kisliuk, A.; Bocharova, V.; Popov, I.; Gainaru, C.; Sokolov, A.P. Fundamental parameters governing ion conductivity in polymer electrolytes. Electrochim. Acta 2019, 299, 191–196. [Google Scholar] [CrossRef]
- Zhang, C.; Staunton, E.; Andreev, Y.G.; Bruce, P.G. Raising the conductivity of crystalline polymer electrolytes by aliovalent doping. J. Am. Chem. Soc. 2005, 127, 18305–18308. [Google Scholar] [CrossRef]
- Murakami, S.; Ueda, K.; Kitada, T.; Ikeda, Y.; Kohjiya, S. Control on the structure of poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte. Solid State Ion. 2002, 154–155, 399–406. [Google Scholar] [CrossRef]
- Chung, J.-S.; Sohn, H.-J. Electrochemical properties of amorphous comb-shaped composite PEO polymer electrolyte. J. Power Sources 2002, 112, 671–675. [Google Scholar] [CrossRef]
- Kelly, T.; Ghadi, B.M.; Berg, S.; Ardebili, H. In situ study of strain-dependent ion conductivity of stretchable polyethylene oxide electrolyte. Sci. Rep. 2016, 6, 20128. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-X.; Chen, Z.-F.; Zhuang, Q.-C.; Xu, J.-M.; Dong, Q.-F.; Huang, L.; Sun, S.-G. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries. J. Power Sources 2006, 160, 1320–1328. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Influence of dislocations on ionic conductivity and dendrite formation in solid electrolytes. Phys. Scr. 2023, 98, 045811. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Possibility of high ionic conductivity and high fracture toughness in all-dislocation-ceramics. Materials 2024, 17, 428. [Google Scholar] [CrossRef]
- Pawlak, A.; Galeski, A.; Rozanski, A. Cavitation during deformation of semicrystalline polymers. Prog. Polym. Sci. 2014, 39, 921–958. [Google Scholar] [CrossRef]
- Thomas, C.; Ferreiro, V.; Coulon, G.; Seguela, R. In situ AFM investigation of crazing in polybutene spherulites under tensile drawing. Polymer 2007, 48, 6041–6048. [Google Scholar] [CrossRef]
- Morozinis, A.K.; Tzoumanekas, C.; Anogiannakis, S.D.; Theodorou, D.N. Atomistic simulations of cavitation in a model polyethylene network. Polym. Sci. C 2013, 55, 212–218. [Google Scholar] [CrossRef]
- Neogi, A.; Mitra, N.; Talreja, R. Cavitation in epoxies under composite-like stress states. Compos. Part A 2018, 106, 52–58. [Google Scholar] [CrossRef]
- Rozanski, A.; Galeski, A.; Debowska, M. Initiation of cavitation of polypropylene during tensile drawing. Macromolecules 2011, 44, 20–28. [Google Scholar] [CrossRef]
- Makarewicz, C.; Safandowska, M.; Idczak, R.; Kolodziej, S.; Rozanski, A. Strain rate and temperature influence on micromechanisms of plastic deformation of polyethylenes investigated by positron annihilation lifetime spectroscopy. Polymers 2024, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K. Acoustic Cavitation and Bubble Dynamics; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Young, F.R. Cavitation; Imperial College Press: London, UK, 1999. [Google Scholar]
- Leighton, T.G. The Acoustic Bubble; Academic Press: London, UK, 1994. [Google Scholar]
- Grieser, F.; Choi, P.-K.; Enomoto, N.; Harada, H.; Okitsu, K.; Yasui, K. (Eds.) Sonochemistry and the Acoustic Bubble; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Manickam, S.; Ashokkumar, M. (Eds.) Cavitation, a Novel Energy-Efficiency Technique for the Generation of Nanomaterials; Pan Stanford: Singapore, 2014. [Google Scholar]
- Young, F.R. Sonoluminescence; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Yasui, K. Production of O radicals from cavitation bubbles under ultrasound. Molecules 2022, 27, 4788. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K. The reducing agents in sonochemical reactions without any additives. Molecules 2023, 28, 4198. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K. Multibubble sonoluminescence from a theoretical perspective. Molecules 2021, 26, 4624. [Google Scholar] [CrossRef]
- Yasui, K. Numerical simulations for sonochemistry. Ultrason. Sonochem. 2021, 78, 105728. [Google Scholar] [CrossRef]
- Yasui, K. Origin of broad-band noise in acoustic cavitation. Ultrason. Sonochem. 2023, 93, 106276. [Google Scholar] [CrossRef]
- Jeanne-Brou, R.; Charvin, N.; de Moor, G.; Flandin, L.; Issa, S.; Phan, T.N.T.; Bouchet, R.; Devaux, D. Ionic conductivity of solid polymer electrolytes depending on elongation. Electrochim. Acta 2023, 469, 143253. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef]
- Strathmann, H.; Kock, K. The formation mechanism of phase inversion membranes. Desalination 1977, 21, 241–255. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Cheng, L.; Yan, M.; Zheng, X.; Gao, Z.; Jiang, Z. Enhanced ionic conductivity of poly(ethylene oxide) (PEO) electrolyte by adding mesoporous molecular sieve LiAlSBA. J. Solid State Electrochem. 2005, 9, 609–615. [Google Scholar] [CrossRef]
- Chu, P.P.; Reddy, M.J.; Kao, H.M. Novel composite polymer comprising mesoporous structured SiO2 and PEO/Li. Solid State Ion. 2003, 156, 141–153. [Google Scholar] [CrossRef]
- Reddy, M.J.; Chu, P.P. 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte. J. Power Sources 2004, 135, 1–8. [Google Scholar] [CrossRef]
- Tang, X.; Lagerlöf, K.P.D.; Heuer, A.H. Determination of pipe diffusion coefficients in undoped and magnesia-doped sapphire (α−Al2O3): A study based on annihilation of dislocation dipoles. J. Am. Ceram. Soc. 2003, 86, 560–565. [Google Scholar] [CrossRef]
- Sakaguchi, I.; Yurimoto, H.; Sueno, S. Impurities dislocation diffusion in single-crystal MgO. Mater. Sci. Eng. 1992, B13, L1–L4. [Google Scholar] [CrossRef]
- Pun, G.P.P.; Mishin, Y. A molecular dynamics study of self-diffusion in the cores of screw and edge dislocations in aluminum. Acta Mater. 2009, 57, 5531–5542. [Google Scholar] [CrossRef]
- Börgers, J.M.; Kler, J.; Ran, K.; Larenz, E.; Weirich, T.E.; Dittmann, R.; De Souza, R.A. Faster diffusion of oxygen along dislocations in (La,Sr)MnO3+δ is a space-charge phenomenon. Adv. Funct. Mater. 2021, 31, 2105647. [Google Scholar] [CrossRef]
- Garbrecht, M.; Saha, B.; Schroeder, J.L.; Hultman, L.; Sands, T.D. Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution. Sci. Rep. 2017, 7, 46092. [Google Scholar] [CrossRef]
- Hirel, P.; Carrez, P.; Clouet, E.; Cordier, P. The electric charge and climb of edge dislocations in perovskite oxides: The case of high-pressure MgSiO3 bridgmanite. Acta Mater. 2016, 106, 313–321. [Google Scholar] [CrossRef]
- Tuller, H.L. Ionic conduction in nanocrystalline materials. Solid State Ion. 2000, 131, 143–157. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Toward all-dislocation-ceramics for high ionic conductivity produced by dry pressing at relatively low temperatures with and without ultrasound. J. Appl. Phys. 2024, 135, 085107. [Google Scholar] [CrossRef]
- Yasui, K. Merits and demerits of machine learning of ferroelectric, flexoelectric, and electrolytic properties of ceramic materials. Materials 2024, 17, 2512. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K.; Hamamoto, K. Theoretical upper limit of dislocation density in slightly-ductile single-crystal ceramics. J. Phys. Condens. Matter 2023, 35, 455701. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.L. Fracture Mechanics, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cai, W.; Nix, W.D. Imperfections in Crystalline Solids; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Fang, X. Mechanical tailoring of dislocations in ceramics at room temperature: A perspective. J. Am. Ceram. Soc. 2024, 107, 1425–1447. [Google Scholar] [CrossRef]
- Armstrong, M.D.; Lan, K.-W.; Guo, Y.; Perry, N.H. Dislocation-mediated conductivity in oxides: Progress, challenges, and opportunities. ACS Nano 2021, 15, 9211–9221. [Google Scholar] [CrossRef]
- Muhammad, Q.K.; Porz, L.; Nakamura, A.; Matsunaga, K.; Rohnke, M.; Janek, J.; Rödel, J.; Frömling, T. Donor and acceptor-like self-doping by mechanically induced dislocations in bulk TiO2. Nano Energy 2021, 85, 105944. [Google Scholar] [CrossRef]
- Bouville, F.; Studart, A.R. Geologically-inspired strong bulk ceramics made with water at room temperature. Nat. Commun. 2017, 8, 14655. [Google Scholar] [CrossRef]
- Galotta, A.; Sglavo, V.M. The cold sintering process: A review on processing features, densification mechanisms and perspectives. J. Eur. Ceram. Soc. 2021, 41, 1–17. [Google Scholar] [CrossRef]
- Guo, J.; Floyd, R.; Lowum, S.; Maria, J.-P.; de Beauvoir, T.H.; Seo, J.-H.; Randall, C.A. Cold sintering progress, challenges, and future opportunities. Ann. Rev. Mater. Res. 2019, 49, 275–295. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Numerical simulations of reactive cold sintering of BaTiO3. J. Eur. Ceram. Soc. 2024, 44, 2777–2786. [Google Scholar] [CrossRef]
- Nakagawa, K.; Iwasaki, M.; Fan, Z.; Roscow, J.I.; Randall, C.A. The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3. J. Eur. Cream. Soc. 2023, 43, 4015–4020. [Google Scholar] [CrossRef]
- Tsuji, K.; Fan, Z.; Bang, S.H.; Dursun, S.; Trolier-McKinstry, S.; Randall, C.A. Cold sintering of the ceramic potassium sodium niobate, (K0.5Na0.5)NbO3, and influences on piezoelectric properties. J. Eur. Ceram. Soc. 2022, 42, 105–111. [Google Scholar] [CrossRef]
- Nur, K.; Zubair, M.; Gibson, J.S.K.-L.; Sandlöbes-Haut, S.; Mayer, J.; Bram, M.; Guillon, O. Mechanical properties of cold sintered ZnO investigated by nanoindentation and micro-pillar testing. J. Eur. Ceram. Soc. 2022, 42, 512–524. [Google Scholar] [CrossRef]
- Porz, L.; Klomp, A.J.; Fang, X.; Li, N.; Yildrim, C.; Detlefs, C.; Bruder, E.; Höfling, M.; Rheinheimer, W.; Patterson, E.A.; et al. Dislocation-toughened ceramics. Mater. Horiz. 2021, 8, 1528–1537. [Google Scholar] [CrossRef]
- Preuß, O.; Bruder, E.; Lu, W.; Zhuo, F.; Minnert, C.; Zhang, J.; Rödel, J.; Fang, X. Dislocation toughening in single-crystal KNbO3. J. Am. Ceram. Soc. 2023, 106, 4371–4381. [Google Scholar] [CrossRef]
- Salem, M.N.; Ding, K.; Rödel, J.; Fang, X. Thermally enhanced dislocation density improves both hardness and fracture toughness in single-crystal SrTiO3. J. Am. Ceram. Soc. 2023, 106, 1344–1355. [Google Scholar] [CrossRef]
- Huang, J.; Hill, A.; Forsyth, M.; MacFarlane, D.; Hollenkamp, A. Conduction in ionic organic crystals: The role of defects. Solid State Ion. 2006, 177, 2569–2573. [Google Scholar] [CrossRef]
- Keith, H.D.; Passaglia, E. Dislocation in polymer crystals. J. Res. Natl. Bur. Stand. A Phys. Chem. 1964, 68, 513–518. [Google Scholar] [CrossRef]
- Predecki, P.; Statton, W.O. A dislocation mechanism for deformation in polyethylene. J. Appl. Phys. 1967, 38, 4140–4144. [Google Scholar] [CrossRef]
- Séguéla, R. Dislocation approach to the plastic deformation of semicrystalline polymers: Kinetic aspects for polyethylene and polypropylene. J. Polym. Sci. B 2002, 40, 593–601. [Google Scholar] [CrossRef]
- Karothu, D.P.; Halabi, J.M.; Ahmed, E.; Ferreira, R.; Spackman, P.R.; Spackman, M.A.; Naumov, P. Global analysis of the mechanical properties of organic crystals. Angew. Chem. Int. Ed. 2022, 61, e202113988. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030. [Google Scholar] [CrossRef]
- Kerr, J.B. Polymeric electrolytes: An overview. In Lithium Batteries: Science and Technology; Nazri, G.-A., Pistoia, G., Eds.; Kluwer Academic: Boston, MA, USA, 2004; pp. 574–622. [Google Scholar]
- Fang, X.; He, Y.; Fan, X.; Zhang, D.; Hu, H. Modeling and simulation in capacity degradation and control of all-solid-state lithium battery based on time-aging polymer electrolyte. Polymers 2021, 13, 1206. [Google Scholar] [CrossRef] [PubMed]
- Mench, M.M.; Kumbur, E.C.; Veziroglu, T.N. Polymer Electrolyte Fuel Cell Degradation; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef]
- Heinrich, G.; Kipscholl, R.; Stoček, R. (Eds.) Degradation of Elastomers in Practice, Experiments and Modeling; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Keil, P.; Schuster, S.F.; Wilhelm, J.; Travi, J.; Hauser, A.; Karl, R.C.; Josen, A. Calendar aging of lithium-ion batteries. J. Electrochem. Soc. 2016, 163, A1872–A1880. [Google Scholar] [CrossRef]
- Kim, W.; Noh, J.; Lee, S.; Yoon, K.; Han, S.; Yu, S.; Ko, K.-H.; Kang, K. Aging property of halide solid electrolyte at the cathode interface. Adv. Mater. 2023, 35, 2301631. [Google Scholar] [CrossRef]
- Xiang, F.; Cheng, F.; Sun, Y.; Yang, X.; Lu, W.; Amal, R.; Dai, L. Recent advances in flexible batteries: From materials to applications. Nano Res. 2023, 16, 4821–4854. [Google Scholar] [CrossRef]
- Tominaga, Y.; Yamazaki, K.; Nanthana, V. Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J. Electrochem. Soc. 2015, 162, A3133–A3136. [Google Scholar] [CrossRef]
- Wang, X.-L.; Fan, L.-Z.; Xu, Z.-H.; Lin, Y.-H.; Nan, C.-W. Temperature dependent ionic transport properties in composite solid polymer electrolytes. Solid State Ion. 2008, 179, 1310–1313. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, L.; He, X.; Wan, C.; Jiang, C. Determination of lithium-ion transference numbers in LiPF6-PC solutions based on electrochemical polarization and NMR measurements. J. Electrochem. Soc. 2008, 155, A292–A296. [Google Scholar] [CrossRef]
- Heo, Y.; Kang, Y.; Han, K.; Lee, C. Ionic conductivity and lithium ion transport characteristics of gel-type polymer electrolytes using lithium p-[methoxy oligo(ethyleneoxy)] benzenesulfonates. Electrochim. Acta 2004, 50, 345–349. [Google Scholar] [CrossRef]
- Borodin, O.; Suo, L.; Gobet, M.; Ren, X.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M.S.; et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 2017, 11, 10462–10471. [Google Scholar] [CrossRef] [PubMed]
- Mizuhata, M.; Ito, F.; Deki, S. Transport properties of non-aqueous lithium electrolyte coexisting with porous solid materials montmorillonite-based electrolyte composite system. J. Power Sources 2005, 146, 365–370. [Google Scholar] [CrossRef]
Soft Matter Electrolytes | Liquid Electrolytes | Solid Electrolytes | |
---|---|---|---|
Materials | Li Salt in Polymer/Gel | Li Salt in Organic Solvent | Ceramics |
Young’s modulus (Pa) (Softness) | (Bulk modulus) | ||
Ionic Conductivity | Low~Medium | High | Medium |
Li+ Transference Num. | Low~Medium | Low~Medium | High |
Mechanical Flexibility | High | Low | Medium |
Contact at Electrodes | Good | Excellent | Poor |
Degradation (Aging) | Highly Possible | Possible (Interfaces) | Possible (Interfaces) |
Leakage | Less Possible | Highly Possible | None |
Burnability | Low~Medium | High | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasui, K.; Hamamoto, K. Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes. Materials 2024, 17, 5134. https://doi.org/10.3390/ma17205134
Yasui K, Hamamoto K. Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes. Materials. 2024; 17(20):5134. https://doi.org/10.3390/ma17205134
Chicago/Turabian StyleYasui, Kyuichi, and Koichi Hamamoto. 2024. "Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes" Materials 17, no. 20: 5134. https://doi.org/10.3390/ma17205134
APA StyleYasui, K., & Hamamoto, K. (2024). Soft Matter Electrolytes: Mechanism of Ionic Conduction Compared to Liquid or Solid Electrolytes. Materials, 17(20), 5134. https://doi.org/10.3390/ma17205134