Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends
"> Figure 1
<p>(<b>a</b>) General aspect of the J69 engine installed in the testing bench; (<b>b</b>) detail of the control booth used in the experimentation.</p> "> Figure 2
<p>(<b>a</b>) General J69 engine experimental facility detailing peripheral components and instrumentation: (1) turbojet engine model J69T-25A, (2) tachometer, (3) fuel pressure manometer, (4) air inlet duct, (5) air inlet temperature probe set, (6) exhaust gas temperature (EGT) thermocouple set, (7) exhaust gas sampling rake, (8) exhaust gas analyzer, (9) fuel flow meter, (10) fuel supply line, (11) fuel inlet pressure manometer, (12) fuel supply pump, and (13) fuel tank; (<b>b</b>) detail of the exhaust gas sampling rake: (14) outer tailpipe, (15) gas sampling ducts; (<b>c</b>) the layout of the installation of the thermocouples, in accordance with the standard instrumentation of the engine technical manual [<a href="#B21-energies-12-04530" class="html-bibr">21</a>]. (Source: Author’s own figures).</p> "> Figure 3
<p>Effect of the biodiesel content for experiments B0, B5, and B10 varying the engine regime (<math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>) in the: (<b>a</b>) thrust force (<math display="inline"><semantics> <mrow> <mi>T</mi> </mrow> </semantics></math>) and the absolute percent variance, (<b>b</b>) exhaust gas temperature (EGT) and the absolute percent variance.</p> "> Figure 4
<p>Effect of the biodiesel content for experiments B0, B5, and B10 varying the engine regime (<math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>) in the: (<b>a</b>) fuel consumption (<math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>m</mi> <mo>˙</mo> </mover> <mi>f</mi> </msub> </mrow> </semantics></math>) and the absolute percent variance, (<b>b</b>) fuel injection pressure (<math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>f</mi> <mi>u</mi> <mi>e</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics></math>) and the absolute percent variance.</p> "> Figure 5
<p>Effect of the biodiesel content for experiments B0, B5, and B10 varying the engine regime (<math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>) in the: (<b>a</b>) content of oxygen in flue gas (<math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">O</mi> <mn>2</mn> </msub> </mrow> </semantics></math>) and the absolute percent variance, (<b>b</b>) content of carbon dioxide in flue gas (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">C</mi> <msub> <mi mathvariant="normal">O</mi> <mn>2</mn> </msub> </mrow> </semantics></math>) and the absolute percent variance.</p> "> Figure 6
<p>Effect of the biodiesel content for experiments B0, B5, and B10 varying the engine regime (<math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>ω</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>a</mi> <mi>f</mi> <mi>t</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>) in the: (<b>a</b>) content of carbon monoxide in flue gas (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">O</mi> </mrow> </semantics></math>) and the absolute percent variance, (<b>b</b>) hydrocarbons in flue gas (<math display="inline"><semantics> <mrow> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">C</mi> </mrow> </semantics></math>) and the absolute percent variance.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Facility and Procedure
2.2. Experimental Planning and Data Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Definition | Units |
Percent excess combustion air | % g/g | |
Fuel pressure | kPa | |
Fuel mass flow | g/s | |
Biodiesel volume content in fuel blend | % v/v | |
Main shaft rotational speed | RPM | |
Air/fuel ratio | g/g | |
Exhaust gas temperature | - | |
Higher heating value | MJ/kg | |
Thrust force | N | |
Outside Air Temperature | °C |
References
- Abu Talib, A.R.; Gires, E.; Ahmad, M.T. Performance Evaluation of a Small-Scale Turbojet Engine Running on Palm Oil Biodiesel Blends. J. Fuels 2014. [Google Scholar] [CrossRef]
- Teske, S. Achieving the Paris Climate Agreement Goals: Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1.5 C and +2 C; Institute for Sustainable Futures University of Technology Sydney, Ed.; Springer: Sydney, NSW, Australia, 2019; ISBN 9783030058432. [Google Scholar]
- Kandaramath Hari, T.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Coban, K.; Colpan, C.O.; Karakoc, T.H. Application of thermodynamic laws on a military helicopter engine. Energy 2017, 140, 1427–1436. [Google Scholar] [CrossRef]
- Corporan, E.; Reich, R.; Larson, V.; Aulich, T.; Mann, M.; Seames, W. Impacts of biodiesel on pollutant emissions of a JP-8–fueled turbine engine. J. Air Waste Manag. Assoc. 2005, 55, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.A.R.; Lora, E.S.; Corrêa, P.S.P.; Andrade, R.V.; Rendon, M.A.; Venturini, O.J.; Ramirez, G.A.S. Biodiesel fuel in diesel micro-turbine engines: Modelling and experimental evaluation. Energy 2008, 33, 233–240. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Rizzo, A.M.; Spadi, A.; Prussi, M.; Riccio, G.; Martelli, F. Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil. Appl. Energy 2013, 101, 349–356. [Google Scholar] [CrossRef]
- Sundararaj, R.H.; Dinesh, R.; Kumar, A.; Sekar, T.C.; Pandey, V.; Kushari, A.; Puri, S.K. Combustion and emission characteristics from biojet fuel blends in a gas turbine combustor. Energy 2019, 182, 689–705. [Google Scholar] [CrossRef]
- Udeh, G.T.; Udeh, P.O. Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant. Renew. Energy 2019, 133, 295–306. [Google Scholar] [CrossRef]
- Harahap, F.; Silveira, S.; Khatiwada, D. Cost competitiveness of palm oil biodiesel production in Indonesia. Energy 2019, 170, 62–72. [Google Scholar] [CrossRef]
- Hoxie, A.; Anderson, M. Evaluating high volume blends of vegetable oil in micro-gas turbine engines. Renew. Energy 2017, 101, 886–893. [Google Scholar] [CrossRef]
- Allouis, C.; Beretta, F.; Minutolo, P.; Pagliara, R.; Sirignano, M.; Sgro, L.A.; Anna, A.D. Measurements of ultrafine particles from a gas-turbine burning biofuels. Exp. Therm. Fluid Sci. 2010, 34, 258–261. [Google Scholar] [CrossRef]
- Chiong, M.C.; Chong, C.T.; Ng, J.H.; Lam, S.S.; Tran, M.V.; Chong, W.W.F.; Mohd Jaafar, M.N.; Valera-Medina, A. Liquid biofuels production and emissions performance in gas turbines: A review. Energy Convers. Manag. 2018, 173, 640–658. [Google Scholar] [CrossRef]
- Rochelle, D.; Najafi, H. A review of the effect of biodiesel on gas turbine emissions and performance. Renew. Sustain. Energy Rev. 2019, 105, 129–137. [Google Scholar] [CrossRef]
- Čerňan, J.; Hocko, M.; Cúttová, M. Safety risks of biofuel utilization in aircraft operations. Transp. Res. Procedia 2017, 28, 141–148. [Google Scholar] [CrossRef]
- Badami, M.; Nuccio, P.; Signoretto, A. Experimental and numerical analysis of a small-scale turbojet engine. Energy Convers. Manag. 2013, 76, 225–233. [Google Scholar] [CrossRef]
- French, K.W. Recycled fuel performance in the SR-30 gas turbine. In Proceedings of the 2003 American Society for Engineering Education Annual Conference Exposition, Nashville, TN, USA, 22–25 June 2003. [Google Scholar]
- Habib, Z.; Parthasarathy, R.; Gollahalli, S. Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Appl. Energy 2010, 87, 1701–1709. [Google Scholar] [CrossRef]
- Lupandin, V.; Thamburaj, R.; Nikolayev, A. Test results of the OGT2500 Gas Turbine. Engine Running on Alternative Fuels: BioOil, Ethanol, BioDiesel and Crude Oil 2005. In Proceedings of the ASME Turbo Expo 2005. Power for Land, Sea, and Air, Reno, NV, USA, 6–9 June 2005; pp. 421–426. [Google Scholar]
- Bayona-Roa, C.; Solís-Chaves, J.; Bonilla, J.; Rodriguez-Melendez, A.; Castellanos, D. Computational Simulation of PT6A Gas Turbine Engine Operating with Different Blends of Biodiesel—A Transient-Response Analysis. Energies 2019, 12, 4258. [Google Scholar] [CrossRef]
- Teledyne Continental Aviation and Engineering—CAE. Technichal Manual T.0. 2J-J69-72 Intermediate Maintenance Instructions Turbojet Engine Model No. J69-T-25-A; US Air Force: Oklahoma City, OK, USA, 2004.
- Choi, S.; Lee, D.; Park, J. Ignition and combustion characteristics of the gas turbine slinger combustor. J. Mech. Sci. Technol. 2008, 22, 538–544. [Google Scholar] [CrossRef]
- Kimble-Thom, M.A.; Stanley, D.L.; Cholis, J.T.; Lopp, D.W. The Use of Bio-Fuels as Additives and Extenders for Aviation Turbine Fuels. In Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, Indianapolis, IN, USA, 7–10 June 1999; ASME: New York, NY, USA, 2014. V002T01A007. [Google Scholar]
General Specifications of the J69 Engine | |
---|---|
Engine reference | Teledyne CAE J69 |
Variant | J69-T-25A |
Engine type | Turbojet—Single spool |
Rotational speed max./RPM | 21,730 |
Thrust max./N | 4560 |
EGT max./°C | 663 |
Compressor type | Centrifugal—1 stage |
Inlet air flow max./kg/s | 9.07 |
Pressure ratio max. | 3.9 |
Turbine type | Axial flow—1 stage |
Fuel distributor | Centrifugal/Slinger holes |
No. Of fuel injectors | 2 |
No. Of Slinger Holes | 16 |
Fuel type | JP-4, Jet A, Jet A1 |
Fuel consumption max./g/s | 143.6 |
Operating Environment | |
Location | Madrid, Colombia |
MSN/m | 2554 |
OAT/°C | 16–26 |
RH/% | 25–56 |
Patm/hPa | 1017 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talero, G.; Bayona-Roa, C.; Muñoz, G.; Galindo, M.; Silva, V.; Pava, J.; Lopez, M. Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends. Energies 2019, 12, 4530. https://doi.org/10.3390/en12234530
Talero G, Bayona-Roa C, Muñoz G, Galindo M, Silva V, Pava J, Lopez M. Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends. Energies. 2019; 12(23):4530. https://doi.org/10.3390/en12234530
Chicago/Turabian StyleTalero, Gabriel, Camilo Bayona-Roa, Giovanny Muñoz, Miguel Galindo, Vladimir Silva, Juan Pava, and Mauricio Lopez. 2019. "Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends" Energies 12, no. 23: 4530. https://doi.org/10.3390/en12234530
APA StyleTalero, G., Bayona-Roa, C., Muñoz, G., Galindo, M., Silva, V., Pava, J., & Lopez, M. (2019). Experimental Methodology and Facility for the J69-Engine Performance and Emissions Evaluation Using Jet A1 and Biodiesel Blends. Energies, 12(23), 4530. https://doi.org/10.3390/en12234530