Design and Control of a Three-Coil Permanent Magnet Spherical Motor
<p>(<b>a</b>) The main body of the proposed spherical motor and some of its components. (<b>b</b>) A: Magnetic field (<b>H</b>) resulting from each stator coil (±<span class="html-italic">H</span>1, ±<span class="html-italic">H</span>2, ±<span class="html-italic">H</span>3); B: Compact coil composed of <span class="html-italic">N</span> turns and representation of manufacturing variables (<span class="html-italic">h</span> is the height of the coil (<math display="inline"><semantics> <msub> <mi>h</mi> <mn>1</mn> </msub> </semantics></math> = beginning, <math display="inline"><semantics> <msub> <mi>h</mi> <mn>2</mn> </msub> </semantics></math> = end), <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> is the coil radius (<math display="inline"><semantics> <msub> <mi>ρ</mi> <mn>2</mn> </msub> </semantics></math> = outside, <math display="inline"><semantics> <msub> <mi>ρ</mi> <mn>1</mn> </msub> </semantics></math> = inside), and <span class="html-italic">i</span> is the current in the wire section.</p> "> Figure 2
<p>(<b>a</b>) Dimensions of the proposed stator in (mm); and (<b>b</b>) coil without ferrite core, dimensions in (mm).</p> "> Figure 3
<p>Temperatures of the coil operating at 1.2 A for 25 min, 45 min and 60 min.</p> "> Figure 4
<p>(<b>A</b>) Isolated view of the rotor; and (<b>B</b>) rotor with the attached rod inserted in the stator.</p> "> Figure 5
<p>(<b>a</b>) A: Camera system mounted above the spherical motor; B: camera’s view of the rotor; C: points collected within the rotor’s workspace. (<b>b</b>) Board dedicated to computer communication with current driver. (<b>c</b>) Illustration of the data acquisition system.</p> "> Figure 6
<p>The chosen topology of the MLP network.</p> "> Figure 7
<p>Typical learning curves of the MLP (2, 25, 20, 3) network for different sizes of the training set.</p> "> Figure 8
<p>Scatterplots of the targets values versus the predicted ones for the test data: (<b>a</b>) current <math display="inline"><semantics> <msub> <mi>I</mi> <mn>1</mn> </msub> </semantics></math>; (<b>b</b>) current <math display="inline"><semantics> <msub> <mi>I</mi> <mn>2</mn> </msub> </semantics></math>; and (<b>c</b>) current <math display="inline"><semantics> <msub> <mi>I</mi> <mn>3</mn> </msub> </semantics></math>.</p> "> Figure 9
<p>(<b>A</b>) Data collection step; (<b>B</b>) neural network training; (<b>C</b>) prototype testing step; and (<b>D</b>) typical learning curves of the MLP(2,25,20,3) network for different sizes of the training set.</p> ">
Abstract
:1. Introduction
2. Theoretical Aspects
3. Three-Coil Spherical Motor Positioning System
4. Stator and Rotor Design
5. Neural Network Design: Data Acquisition and Training
The Neural Network Topology
Algorithm 1 Two-hidden-layered MLP Training. |
|
6. Results and Discussion
6.1. Preliminary Experiments
6.2. Further Evaluation of the Chosen MLP Model
6.3. Evaluating the Chosen MLP Model on the Prototype Motor
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halverson, R.; Cohen, H. Torque on a spinning hollow sphere in a uniform magnetic field. IEEE Trans. Aerosp. Navig. Electron. 1964, 2, 118–122. [Google Scholar] [CrossRef]
- Dien, R.; Luce, E. Spherical Robotic Wrist Joint. U.S. Patent 4,628,765, 16 December 1986. [Google Scholar]
- Wang, W.; Wang, J.; Jewell, G.; Howe, D. Design and control of a novel spherical permanent magnet actuator with three degrees of freedom. IEEE/ASME Trans. Mechatron. 2003, 8, 457–468. [Google Scholar] [CrossRef]
- Yan, L.; Wu, Z.; Jiao, Z.; Chen, C.Y.; Chen, I.M. Equivalent energized coil model for magnetic field of permanent-magnet spherical actuators. Sens. Actuators A Phys. 2015, 229, 68–76. [Google Scholar] [CrossRef]
- Lee, K.M.; Kwan, C.K. Design concept development of a spherical stepper for robotic applications. IEEE Trans. Robot. Autom. 1991, 7, 175–181. [Google Scholar] [CrossRef]
- Yan, L.; Chen, I.M.; Lim, C.K.; Yang, G.; Lee, K.M. Design, Modeling and Experiments of 3-DOF Electromagnetic Spherical Actuators; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Fernandes, J.F.; Branco, P.C. The Shell-Like Spherical Induction Motor for Low-Speed Traction: Electromagnetic Design, Analysis, and Experimental Tests. IEEE Trans. Ind. Electron. 2016, 63, 4325–4335. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, J.; Gill, E. Review of reaction spheres for spacecraft attitude control. Prog. Aerosp. Sci. 2017, 91, 67–86. [Google Scholar] [CrossRef]
- Williams, F.; Laithwaite, E. A brushless variable-speed induction motor. Proc. IEE-Part A Power Eng. 1954, 102, 203–210. [Google Scholar] [CrossRef]
- Williams, F.; Laithwaite, E.; Piggott, L. Brushless variable-speed induction motors. Proc. IEE-Part A Power Eng. 1957, 104, 102–118. [Google Scholar] [CrossRef]
- Williams, F.; Laithwaite, E.; Eastham, J. Development and design of spherical induction motors. Proc. IEE-Part A Power Eng. 1959, 106, 471–484. [Google Scholar] [CrossRef]
- Haeussermann, W. The Spherical Control Motor for Three Axis Attitude Control of Space Vehicles; NASA TM X-50071; NASA: Washington, DC, USA, 1959.
- Haeussermann, W. Velocity Measurement System. U.S. Patent 4,093,917, 6 June 1978. [Google Scholar]
- Yan, L.; Chen, I.; Lim, C.K.; Yang, G.; Lin, W.; Lee, K.M. Design and analysis of a permanent magnet spherical actuator. IEEE/ASME Trans. Mechatron. 2008, 13, 239–248. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Ahn, D.; Gweon, D. Design of a new type of spherical voice coil actuator. Sens. Actuators A Phys. 2013, 203, 181–188. [Google Scholar] [CrossRef]
- Van Ninhuijs, B.; Jansen, J.; Gysen, B.; Lomonova, E. Multi-Degree-of-Freedom Spherical Permanent-Magnet Gravity Compensator for Mobile Arm Support Systems. IEEE Trans. Ind. Appl. 2014, 50, 3628–3636. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Kim, H.; Gweon, D.G.; Jeong, J. Development of a Novel Spherical Actuator With Two Degrees of Freedom. IEEE/ASME Trans. Mechatron. 2015, 20, 532–540. [Google Scholar] [CrossRef]
- Lu, B.; Xu, Y. Development and Analysis of a Novel Spherical 2-Degree-of-Freedom (2-DOF) Hybrid Stepping Motor. Energies 2017, 11, 41. [Google Scholar] [CrossRef]
- Tsukano, M.; Sakaidani, Y.; Hirata, K.; Niguchi, N.; Maeda, S.; Zaini, A. Analysis of 2-degree of freedom outer rotor spherical actuator employing 3-D finite element method. IEEE Trans. Magn. 2013, 49, 2233–2236. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Liu, J.; Wu, X. Analysis and decoupling control of a permanent magnet spherical actuator. Rev. Sci. Instrum. 2013, 84, 125001. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Gweon, D. Magnetic field analysis of a VCM spherical actuator. Sens. Actuators A Phys. 2013, 195, 38–49. [Google Scholar] [CrossRef]
- Rossini, L.; Mingard, S.; Boletis, A.; Forzani, E.; Onillon, E.; Perriard, Y. Rotor design optimization for a reaction sphere actuator. IEEE Trans. Ind. Appl. 2014, 50, 1706–1716. [Google Scholar] [CrossRef]
- Bai, K.; Lee, K.M. Direct field-feedback control of a ball-joint-like permanent-magnet spherical motor. IEEE/ASME Trans. Mechatron. 2014, 19, 975–986. [Google Scholar] [CrossRef]
- Bederson, B.B.; Wallace, R.S.; Schwartz, E. A miniaturized space-variant active vision system: Cortex-I. Mach. Vis. Appl. 1995, 8, 101–109. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Yan, L.; Liu, J. Design and control of a three degree-of-freedom permanent magnet spherical actuator. Sens. Actuators A Phys. 2012, 180, 75–86. [Google Scholar] [CrossRef]
- Son, H.; Lee, K.M. Control system design and input shape for orientation of spherical wheel motor. Control Eng. Pract. 2014, 24, 120–128. [Google Scholar] [CrossRef]
- Rossini, L.; Onillon, E.; Chételat, O.; Perriard, Y. Closed-loop magnetic bearing and angular velocity control of a reaction sphere actuator. Mechatronics 2015, 30, 214–224. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Liu, J.; Wen, C. A robust adaptive iterative learning control for trajectory tracking of permanent-magnet spherical actuator. IEEE Trans. Ind. Electron. 2016, 63, 291–301. [Google Scholar] [CrossRef]
- Li, H.; Li, T. End-Effect Magnetic Field Analysis of the Halbach Array Permanent Magnet Spherical Motor. IEEE Trans. Magn. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Oner, Y.; Cetin, E.; Ozturk, H.K.; Yilanci, A. Design of a new three-degree of freedom spherical motor for photovoltaic-tracking systems. Renew. Energy 2009, 34, 2751–2756. [Google Scholar] [CrossRef]
- Kasashima, N.; Ashida, K.; Yano, T.; Gofuku, A.; Shibata, M. Torque Control Method of an Electromagnetic Spherical Motor Using Torque Map. IEEE/ASME Trans. Mechatron. 2016, 21, 2050–2060. [Google Scholar] [CrossRef]
- Fernandes, J.F.; Vieira, S.; Branco, P. Multi-Objective Optimization of a Shell-like Induction Spherical Motor for Power-Assisted Wheelchair. IEEE Trans. Energy Convers. 2018, 33, 660–669. [Google Scholar] [CrossRef]
- Maeda, S.; Hirata, K.; Niguchi, N. Characteristics Verification of an Independently Controllable Electromagnetic Spherical Motor. Sensors 2014, 14, 10072–10080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glowacz, A. Acoustic based fault diagnosis of three-phase induction motor. Appl. Acoust. 2018, 137, 82–89. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [Google Scholar] [CrossRef]
- Glowacz, A. Fault diagnostics of acoustic signals of loaded synchronous motor using SMOFS-25-EXPANDED and selected classifiers. Tehnički Vjesnik 2016, 23, 1365–1372. [Google Scholar] [CrossRef]
- Wang, R.L.; Lu, B.C.; Hou, Y.L.; Gao, Q. Passivity-Based Control for Rocket Launcher Position Servo System Based on ADRC Optimized by IPSO-BP Algorithm. Shock Vib. 2018, 2018, 5801573. [Google Scholar] [CrossRef]
- Coban, R.; Aksu, I.O. Neuro-Controller Design by Using the Multifeedback Layer Neural Network and the Particle Swarm Optimization. Tehnički Vjesnik 2018, 25, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, B.; Xu, X.; Sun, X. A Nonlinear Decoupling Control Approach Using RBFNNI-Based Robust Pole Placement for a Permanent Magnet In-Wheel Motor. IEEE Access 2018, 6, 1844–1854. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Sun, J.; Guo, J. Improved Wind Speed Prediction Using Empirical Mode Decomposition. Adv. Elect. Comput. Eng. 2018, 18, 3–10. [Google Scholar] [CrossRef]
- Hayt, W.H.; Buck, J.A. Engineering Electromagnetics; McGraw-Hill: New York, NY, USA, 1981; Volume 6. [Google Scholar]
- Miner, G.F. Lines and Electromagnetic Fields for Engineers; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Sadiku, M.N. Numerical Techniques in Electromagnetics with MATLAB; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Han, F.; Gao, Z.; Li, D.; Wang, Y. Nonlinear compensation of active electrostatic bearings supporting a spherical rotor. Sens. Actuators A Phys. 2005, 119, 177–186. [Google Scholar] [CrossRef]
- Nanodots Nano Magnetics Ltd. 2014. Available online: http://nanodots.com/gyro.html (accessed on 29 December 2017).
- Ng, T. The optical mouse as a two-dimensional displacement sensor. Sens. Actuators A Phys. 2003, 107, 21–25. [Google Scholar] [CrossRef]
- Lee, K.M.; Zhou, D. A real-time optical sensor for simultaneous measurement of three-DOF motions. IEEE/ASME Trans. Mechatron. 2004, 9, 499–507. [Google Scholar] [CrossRef]
- Son, H.; Lee, K.M. Two-DOF magnetic orientation sensor using distributed multipole models for spherical wheel motor. Mechatronics 2011, 21, 156–165. [Google Scholar] [CrossRef]
- Lim, C.K.; Chen, I.M.; Yan, L.; Luo, Z. A novel approach for positional sensing of a spherical geometry. Sens. Actuators A Phys. 2011, 168, 328–334. [Google Scholar] [CrossRef]
- Xin, J.; Xia, C.; Li, H.; Shi, T. A novel orientation measurement using optical sensor for spherical motor. Sci. Chin. Technol. Sci. 2013, 56, 1330–1339. [Google Scholar] [CrossRef]
- Kumagai, M.; Hollis, R.L. Development and control of a three DOF spherical induction motor. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 1528–1533. [Google Scholar] [CrossRef]
- Sakaidani, Y.; Hirata, K.; Niguchi, N.; Maeda, S. Experimental verification of feedback control of a 2-DOF spherical actuator. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Qian, Z.; Li, G.; Wang, Q.; Guo, X.; Ju, L. Vision-based permanent magnet spherical motor orientation detection and adaptive PD control system. In Proceedings of the 2016 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan, 13–16 November 2016; pp. 1–5. [Google Scholar]
- Frijet, Z.; Zribi, A.; Chtourou, M. Adaptive neural network internal model control for PMSM speed regulation. J. Electr. Syst. 2018, 14, 118–126. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- Barreto, G.A.; Araújo, A.F.R.; Ritter, H. Self-Organizing Feature Maps for Modeling and Control of Robotic Manipulators. J. Intell. Robot. Syst. 2003, 36, 407–450. [Google Scholar] [CrossRef]
- Widrow, B.; Lehr, M.A. 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proc. IEEE 1990, 78, 1415–1442. [Google Scholar] [CrossRef]
Training Set Size | Testing Set Size | MSE Training | MSE Testing |
---|---|---|---|
700 | 300 | 0.0181 ± 0.3274 | 0.0187 ± 0.3322 |
1400 | 600 | 0.0181 ± 0.3274 | 0.0187 ± 0.3322 |
2100 | 900 | 0.0135 ± 0.2806 | 0.0145 ± 0.2830 |
2800 | 1200 | 0.0129 ± 0.2731 | 0.0130 ± 0.2742 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, K.N.; Pontes, R.S.T.; Oliveira, A.P.; Barreto, G.A. Design and Control of a Three-Coil Permanent Magnet Spherical Motor. Energies 2018, 11, 2009. https://doi.org/10.3390/en11082009
Souza KN, Pontes RST, Oliveira AP, Barreto GA. Design and Control of a Three-Coil Permanent Magnet Spherical Motor. Energies. 2018; 11(8):2009. https://doi.org/10.3390/en11082009
Chicago/Turabian StyleSouza, Kleymilson N., Ricardo S. T. Pontes, Andressa P. Oliveira, and Guilherme A. Barreto. 2018. "Design and Control of a Three-Coil Permanent Magnet Spherical Motor" Energies 11, no. 8: 2009. https://doi.org/10.3390/en11082009
APA StyleSouza, K. N., Pontes, R. S. T., Oliveira, A. P., & Barreto, G. A. (2018). Design and Control of a Three-Coil Permanent Magnet Spherical Motor. Energies, 11(8), 2009. https://doi.org/10.3390/en11082009