A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods
<p>The topology of HESS.</p> "> Figure 2
<p>The model based on an equivalent circuit: (<b>a</b>) Battery. (<b>b</b>) Ultracapacitor.</p> "> Figure 3
<p>The results of HPPC and UDDS experiments: (<b>a</b>,<b>b</b>) Battery. (<b>c</b>,<b>d</b>) Ultracapacitor.</p> "> Figure 4
<p>The results of precision validation: (<b>a</b>) Battery. (<b>b</b>) Ultracapacitor.</p> "> Figure 5
<p>The structure of reinforcement learning.</p> "> Figure 6
<p>DQN-based EMS optimization control framework.</p> "> Figure 7
<p>DDPG-based EMS optimization control framework.</p> "> Figure 8
<p>Driving cycle of UDDS. (<b>a</b>) The velocity of UDDS (<b>b</b>) The required power of UDDS.</p> "> Figure 9
<p>The comparison results of battery and ultracapacitor under different EMSs: (<b>a</b>) battery <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">SOC</mi> </mrow> <mrow> <mi>bat</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>b</b>) ultracapacitor <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>SOC</mi> </mrow> <mrow> <mi>uc</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>c</b>) battery current; (<b>d</b>) ultracapacitor current; (<b>e</b>) battery power; and (<b>f</b>) ultracapacitor power.</p> "> Figure 10
<p>Comparison of energy loss in DRL-EMSs.</p> ">
Abstract
:1. Introduction
2. The Modeling of the HESS and Component Selection
2.1. HESS Topology
2.2. Vehicle Dynamic Model
2.3. Battery and Ultracapacitor Model
2.4. DC/DC Converter Modeling
2.5. Battery and Ultracapacitor Experiments
2.6. Parameter Identification and Precision Validation
2.7. Parameter Matching of the Battery Pack and Ultracapacitor Pack
3. DRL-Based Energy Management Strategy
3.1. Reinforcement Learning
3.2. Deep Q Network
3.3. Deep Deterministic Policy Gradient
3.4. Confirm State Variables and Action Variable
3.5. Reward Function Settings
3.6. Training Setup
4. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, F. Green Energy and Intelligent Transportation-Promoting Green and Intelligent Mobility. Green Energy Intell. Transp. 2022, 1, 100017. [Google Scholar] [CrossRef]
- Selvakumar, R.B.; Vivekanandan, C.; Sharma, H.; Vekariya, V.; Varma, R.A.; Mohanavel, V.; Ramkumar, G.; Kumar, A.M.; Abdullah-Al-Wadud, M. Energy Management of a Dual Battery Energy Storage System for Electric Vehicular Application. Comput. Electr. Eng. 2024, 115, 109099. [Google Scholar] [CrossRef]
- He, H.; Sun, F.; Wang, Z.; Lin, C.; Zhang, C.; Xiong, R.; Deng, J.; Zhu, X.; Xie, P.; Zhang, S.; et al. China’s Battery Electric Vehicles Lead the World: Achievements in Technology System Architecture and Technological Breakthroughs. Green Energy Intell. Transp. 2022, 1, 100020. [Google Scholar] [CrossRef]
- Mohammadi, F.; Saif, M. A Comprehensive Overview of Electric Vehicle Batteries Market. e-Prime Adv. Electr. Eng. Electron. Energy 2023, 3, 100127. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Y.; Wang, H. Battery Degradation Stage Detection and Life Prediction Without Accessing Historical Operating Data. Energy Storage Mater. 2024, 69, 103441. [Google Scholar] [CrossRef]
- Saldaña, G.; Martín, J.I.S.; Zamora, I.; Asensio, F.J.; Oñederra, O.; González-Pérez, M. Empirical Calendar Ageing Model for Electric Vehicles and Energy Storage Systems Batteries. J. Energy Storage 2022, 55, 105676. [Google Scholar] [CrossRef]
- Sarvaiya, S.; Ganesh, S.; Xu, B. Comparative Analysis of Hybrid Vehicle Energy Management Strategies with Optimization of Fuel Economy and Battery Life. Energy 2021, 228, 120604. [Google Scholar] [CrossRef]
- Tao, F.; Gong, H.; Fu, Z.; Guo, Z.; Chen, Q.; Song, S. Terrain Information-Involved Power Allocation Optimization for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicles via an Improved Deep Reinforcement Learning. Eng. Appl. Artif. Intell. 2023, 125, 106685. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, Q.; Shi, J.; Li, S. Hierarchical Q-Learning Network for Online Simultaneous Optimization of Energy Efficiency and Battery Life of the Battery/Ultracapacitor Electric Vehicle. J. Energy Storage 2022, 46, 103925. [Google Scholar] [CrossRef]
- Yan, M.; Xu, H.; Li, M.; He, H.; Bai, Y. Hierarchical Predictive Energy Management Strategy for Fuel Cell Buses Entering Bus Stops Scenario. Green Energy Intell. Transp. 2023, 2, 100095. [Google Scholar] [CrossRef]
- Qiu, Y.; Zeng, T.; Zhang, C.; Wang, G.; Wang, Y.; Hu, Z.; Yan, M.; Wei, Z. Progress and Challenges in Multi-Stack Fuel Cell System for High Power Applications: Architecture and Energy Management. Green Energy Intell. Transp. 2023, 2, 100068. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, Y.; Wu, Y.; Chen, Z.; Ye, M. Rule Learning Based Energy Management Strategy of Fuel Cell Hybrid Vehicles Considering Multi-Objective Optimization. Energy 2020, 207, 118212. [Google Scholar] [CrossRef]
- Rodriguez, R.; Trovão, J.P.-F.; Solano, J. Fuzzy Logic-Model Predictive Control Energy Management Strategy for a Dual-Mode Locomotive. Energy Convers. Manag. 2022, 253, 115111. [Google Scholar] [CrossRef]
- Xu, M.; Wang, R.; Zhao, P.; Wang, X. Fast Charging Optimization for Lithium-Ion Batteries Based on Dynamic Programming Algorithm and Electrochemical-Thermal-Capacity Fade Coupled Model. J. Power Sources 2019, 438, 227015. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Wang, L.; Chen, Z. Load-Adaptive Real-Time Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System Using Dynamic Programming Optimization. J. Power Sources 2019, 438, 227024. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Li, G.; Liu, Y. A Real-Time Energy Management Control Strategy for Battery and Supercapacitor Hybrid Energy Storage Systems of Pure Electric Vehicles. J. Energy Storage 2020, 31, 101721. [Google Scholar] [CrossRef]
- Tian, X.; Cai, Y.; Sun, X.; Zhu, Z.; Xu, Y. An Adaptive ECMS with Driving Style Recognition for Energy Optimization of Parallel Hybrid Electric Buses. Energy 2019, 189, 116151. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Han, R.; Han, M.; Bai, Y.; Liu, Q. An Improved MPC-Based Energy Management Strategy for Hybrid Vehicles Using V2V and V2I Communications. Energy 2021, 225, 120273. [Google Scholar] [CrossRef]
- Brunelli, L.; Capancioni, A.; Canè, S.; Cecchini, G.; Perazzo, A.; Brusa, A.; Cavina, N. A Predictive Control Strategy Based on A-ECMS to Handle Zero-Emission Zones: Performance Assessment and Testing Using an HiL Equipped with Vehicular Connectivity. Appl. Energy 2023, 340, 121008. [Google Scholar] [CrossRef]
- Du, R.; Hu, X.; Xie, S.; Hu, L.; Zhang, Z.; Lin, X. Battery Aging- and Temperature-Aware Predictive Energy Management for Hybrid Electric Vehicles. J. Power Sources 2020, 473, 228568. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, H.; Xiao, G.; Zhang, Y. Real-Time Energy Management Strategy for a Plug-In Hybrid Electric Bus Considering the Battery Degradation. Energy Convers. Manag. 2022, 268, 116053. [Google Scholar] [CrossRef]
- Ahmadian, S.; Tahmasbi, M.; Abedi, R. Q-Learning Based Control for Energy Management of Series-Parallel Hybrid Vehicles with Balanced Fuel Consumption and Battery Life. Energy AI 2023, 11, 100217. [Google Scholar] [CrossRef]
- Ghaderi, R.; Kandidayeni, M.; Boulon, L.; Trovão, J.P. Q-Learning Based Energy Management Strategy for a Hybrid Multi-Stack Fuel Cell System Considering Degradation. Energy Convers. Manag. 2023, 293, 117524. [Google Scholar] [CrossRef]
- Syu, J.-H.; Lin, J.C.-W.; Fojcik, M.; Cupek, R. Q-Learning Based Energy Management System on Operating Reserve and Supply Distribution. Sustain. Energy Technol. Assess. 2023, 57, 103264. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, H.; Xu, B.; Zhang, J. An Imitation Learning-Based Energy Management Strategy for Electric Vehicles Considering Battery Aging. Energy 2023, 283, 128537. [Google Scholar] [CrossRef]
- Qi, C.; Zhu, Y.; Song, C.; Yan, G.; Xiao, F.; Da, W.; Zhang, X.; Cao, J.; Song, S. Hierarchical Reinforcement Learning Based Energy Management Strategy for Hybrid Electric Vehicle. Energy 2022, 238, 121703. [Google Scholar] [CrossRef]
- Wu, P.; Partridge, J.; Anderlini, E.; Liu, Y.; Bucknall, R. Near-Optimal Energy Management for Plug-In Hybrid Fuel Cell and Battery Propulsion Using Deep Reinforcement Learning. Int. J. Hydrogen Energy 2021, 46, 40022–40040. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, T.; Hong, J.; Zhang, H.; Yang, J.; Jia, Q. Double Deep Q-Network Guided Energy Management Strategy of a Novel Electric-Hydraulic Hybrid Electric Vehicle. Energy 2023, 269, 126858. [Google Scholar] [CrossRef]
- Xu, J.; Li, Z.; Du, G.; Liu, Q.; Gao, L.; Zhao, Y. A Transferable Energy Management Strategy for Hybrid Electric Vehicles via Dueling Deep Deterministic Policy Gradient. Green Energy Intell. Transp. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Liu, X.; Yang, C.; Meng, Y.; Zhu, J.; Duan, Y.; Chen, Y. Hierarchical Energy Management of Plug-In Hybrid Electric Trucks Based on State-of-Charge Optimization. J. Energy Storage 2023, 72, 107999. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q. Reinforcement Learning-Based Real-Time Power Management for Hybrid Energy Storage System in the Plug-In Hybrid Electric Vehicle. Appl. Energy 2018, 211, 538–548. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Luo, Y. Parameter Matching Method of a Battery-Supercapacitor Hybrid Energy Storage System for Electric Vehicles. World Electr. Veh. J. 2021, 12, 253. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, T.; Liu, D.; Sun, F. Reinforcement Learning-Based Real-Time Energy Management for a Hybrid Tracked Vehicle. Appl. Energy 2016, 171, 372–382. [Google Scholar] [CrossRef]
- Wang, H.; He, H.; Bai, Y.; Yue, H. Parameterized Deep Q-Network Based Energy Management with Balanced Energy Economy and Battery Life for Hybrid Electric Vehicles. Appl. Energy 2022, 320, 119270. [Google Scholar] [CrossRef]
- Alfaverh, F.; Denaï, M.; Sun, Y. Optimal Vehicle-to-Grid Control for Supplementary Frequency Regulation Using Deep Reinforcement Learning. Electr. Power Syst. Res. 2023, 214, 108949. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Guo, N.; Liu, Y.; Shen, S.; Wei, F.; Chen, Z.; Zheng, J. Adaptive deep reinforcement learning energy management for hybrid electric vehicles considering driving condition recognition. Energy 2024, 313, 134086. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Vehicle mass () | 1845 (kg) |
Roll resistance coefficient () | 0.025 |
Air resistance coefficient () | 0.36 |
Vehicle frontal area () | 2.53 (m2) |
Correction coefficient of the rotation mass () | 1.03 |
The efficiency of the transmission system () | 0.91 |
The efficiency of the motor () | 0.95 |
The efficiency of the DC/AC convertor () | 0.95 |
Gravity acceleration () | 9.8 (m2) |
The angle of the road () | 0 |
Vehicle mass () | 1845 (kg) |
Roll resistance coefficient () | 0.025 |
0 | 5 kW | 10 kW | 20 kW | 30 kW | 40 kW | 50 kW | ≥120 kW | |
---|---|---|---|---|---|---|---|---|
0 A | 50% | 50% | 50% | 50% | 50% | 50% | 50% | 50% |
5 A | 63% | 67% | 71% | 73% | 74% | 73% | 72% | 72% |
10 A | 75% | 84% | 92% | 95% | 97% | 95% | 94% | 94% |
50 A | 73% | 82% | 91% | 93% | 96% | 93% | 92% | 92% |
100 A | 72% | 80% | 88% | 91% | 95% | 92% | 91% | 91% |
150 A | 70% | 76% | 82% | 89% | 92% | 91% | 90% | 90% |
≥300 A | 70% | 76% | 82% | 89% | 92% | 91% | 90% | 90% |
SOC | Battery | Ultracapacitor | ||
---|---|---|---|---|
(mΩ) | (mΩ) | (mΩ) | ||
0.1 | 43.3187 | 31.2894 | 43.2336 | 0.5705 |
0.2 | 43.9644 | 30.6417 | 55.2877 | 0.5747 |
0.3 | 43.5411 | 30.0794 | 32.8869 | 0.5615 |
0.4 | 43.6130 | 46.8999 | 60.4520 | 0.5426 |
0.5 | 43.4107 | 25.7370 | 50.1300 | 0.5437 |
0.6 | 42.6368 | 11.1927 | 23.6147 | 0.5217 |
0.7 | 43.8977 | 24.4476 | 42.1034 | 0.5326 |
0.8 | 44.1886 | 30.0639 | 54.5234 | 0.5246 |
0.9 | 46.6132 | 43.3526 | 67.6599 | 0.5347 |
1 | 51.2364 | 41.8538 | 51.6169 | 0.5460 |
HESS Symbol | Parameters | Value |
---|---|---|
Battery pack | Type | NMC-2 Ah |
Series-Parallel connection number | 100 S-25 P | |
Nominal capacity | 50 Ah | |
Ultracapacitor pack | Type | Maxwell-2.7 V-1500 F |
Series-Parallel connection number | 135 S-3 P | |
Nominal capacity | 4500 F |
Parameters | Range | Unit |
---|---|---|
[0.2, 1] | - | |
[0.4, 1] | - | |
[−32, 56] | (kW) | |
[−50, 100] | (A) |
Parameters | Settings and Values |
---|---|
Actor networks | 32/32/16 |
Critic networks | 32/32/16 |
Actor learning rates | 0.0005 |
Critic learning rates | 0.002 |
Discount factor | 0.995 |
Experience buffer size | 1,000,000 |
Minibatch size | 256 |
Target smooth factor | 0.001 |
Number of training episodes | 200 |
Strategy | Terminal SOC | Max Current (A) | ||
---|---|---|---|---|
Type | ||||
DP | 0.3465 | 0.8583 | 85.0000 | 137.2945 |
DDPG | 0.3452 | 0.8769 | 75.1178 | 101.9868 |
DQN | 0.3124 | 0.8782 | 74.9343 | 168.4609 |
RL-based | 0.3146 | 0.8854 | 175.6661 | 126.7752 |
Strategy | Battery Loss | Ultracapacitor Loss | DC/DC Loss | Total Loss |
---|---|---|---|---|
DP (kJ) | 1315.2 | 136.1 | 2561.3 | 4012.6 |
DDPG (kJ) | 1212.8 | 65.9 | 2760.0 | 4038.7 |
DQN (kJ) | 1143.2 | 116.7 | 4374.3 | 5634.2 |
RL-based (kJ) | 1914.4 | 340.9 | 3828.1 | 6083.4 |
DDPG-DP | 7.8% | 51.6% | −7.8% | −0.7% |
DDPG-DQN | −6.1% | 43.5% | 36.9% | 28.3% |
DDPG-RL-based | 36.6% | 80.7% | 27.9% | 33.6% |
DQN-DP | 13.1% | 14.3% | −70.8% | −40.4% |
DQN-RL-based | 40.3% | 65.8% | −14.3% | 7.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Huang, H.; Wang, C.; Xia, S.; Gao, X. A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods. Energies 2025, 18, 1280. https://doi.org/10.3390/en18051280
Xu W, Huang H, Wang C, Xia S, Gao X. A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods. Energies. 2025; 18(5):1280. https://doi.org/10.3390/en18051280
Chicago/Turabian StyleXu, Wenna, Hao Huang, Chun Wang, Shuai Xia, and Xinmei Gao. 2025. "A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods" Energies 18, no. 5: 1280. https://doi.org/10.3390/en18051280
APA StyleXu, W., Huang, H., Wang, C., Xia, S., & Gao, X. (2025). A Comparative Study of Energy Management Strategies for Battery-Ultracapacitor Electric Vehicles Based on Different Deep Reinforcement Learning Methods. Energies, 18(5), 1280. https://doi.org/10.3390/en18051280