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Abstract: The electrocatalyst layers (ECLs) in polymer electrolyte membrane (PEM) elec-
trolyzers are fundamentally comprised of IrOx catalysts, support material, and an ionomer.
Their stability is critically dependent on structure and composition, necessitating a thorough
understanding of ionization potential and work function. We employ Density Functional
Theory (DFT) to determine the ionization states of ECLs and to optimize their electronic
properties. Furthermore, advanced deep learning simulations (DLSs) significantly enhance
the kinetic and transport behaviors of these layers. This work integrates DFT and DLS
to elucidate the characteristics of ECLs within PEM electrolyzer cells. We strategically
utilize DFT to refine catalyst molecules and assess their electronic properties, while DLS
is employed to predict the potential energy of support molecules in the catalyst layers.
We establish a clear relationship between the energy and geometry of IrOx molecules.
The DFT-DLS framework robustly calculates potential energy and reaction coordinates,
effectively bridging theoretical computations with the dynamic behavior of molecules
in catalyst layers. We validate our model by comparing it with the experimental polar-
ization curve of the IrOx-based anode catalyst layer in a functioning electrolyzer. The
observed Tafel slope and exchange current density unequivocally confirm that the oxygen
evolution reaction (OER) occurs through a well-defined electrochemical pathway, with
oxygen generation proceeding according to the charge transfer mechanism predicted by
the DFT-DLS framework.

Keywords: computational chemistry; deep learning simulations; artificial neural network;
density functional theory; electrocatalyst

1. Introduction
Hydrogen generated through water electrolysis stands as a pivotal carbon-free en-

ergy source, essential for decarbonizing industries such as ammonia production and steel
manufacturing. Polymeric Exchange Membrane Water Electrolyzers (PEMWEs) are at the
forefront of this innovation, efficiently splitting water into hydrogen and oxygen to enable
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green hydrogen production for industrial applications. The U.S. Department of Energy
(DOE) is actively working to enhance the efficiency and cost-effectiveness of electrolysis,
aiming for a 30% reduction in electrolyzer costs by 2030 and achieving efficiency levels
exceeding 80% for large-scale systems [1]. Green electrolysis, powered by renewable energy,
plays a crucial role in promoting global sustainability by significantly reducing greenhouse
gas emissions and accelerating the transition to clean energy. Within PEMWE cells, both
the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) occur simul-
taneously at the electrodes (Figure 1), producing gas [2]. To elevate the performance of
PEMWEs, it is imperative to understand the electronic structure of the electrodes and the
mechanisms of interfacial electron transfer.
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Figure 1. Schematics of the PEM electrolyzer.

H2O → O2 + 4H+ + 4e− (OER) E = −1.23 V (1)

4 H+ + 4e− → 2H2 (HER) E = 0 V (2)

The electrocatalyst layers (ECLs) in a polymer electrolyte membrane electrolyzer con-
sist of IrOx catalysts, carbon support materials, and an ionomer. Selecting the optimal
electrocatalysts is essential for enhancing the energy conversion efficiency of water splitting,
which generates hydrogen and oxygen, enabling the production of sustainable, environmen-
tally friendly fuels [3]. Green electrolysis relies on efficient electron transfer across multiple
interfaces within the electrolyzer components to produce clean fuels. Unlike industrial
catalysts that typically affect reaction rates and selectivity, electrocatalysts in PEMWEs are
specifically designed to control the kinetics of water decomposition via the applied voltage,
or overpotential (as described in Equations (1) and (2), which govern the reaction rate
and material requirements [4]. Additionally, mass transport effects influence current flow,
creating both challenges and opportunities for improving performance, which has driven
research into three-dimensional electrode materials to surpass traditional two-dimensional
surfaces. Effective electrocatalyst design requires optimization of structural properties, as
the efficiency of redox reactions depends on the careful selection of both electrocatalysts
and support materials. Common HER cathode catalysts include ruthenium, palladium,
and platinum, while IrOx, particularly IrO2, is the preferred OER anode catalyst due to
its excellent corrosion resistance, activity, and stability [5]. Despite the promise of binary
compositions like IrO2–RuO2 in electrochemical activity and stability, their durability under
operational conditions remains insufficient for large-scale use. Issues like particle agglom-
eration, catalyst dissolution, and migration within the ECL degrade electrode polarization
and durability, necessitating optimization of IrO2 to reduce costs. Understanding the OER
mechanism at the atomic level is crucial, and Density Functional Theory (DFT) can provide
insights by calculating the electronic structure and energy states of materials at the atomic
scale. DFT allows for the determination of adsorption energies, reaction energies, and
electronic density of states, all critical for understanding catalytic activity [6,7]. Research
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has shown that the IrOx (100) surface is more active than the (110) surface for OER, but no
studies have yet modeled the redox processes at IrOx surfaces under real operating con-
ditions in electrolyzer cells. Calculating atomistic descriptors for the hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER) at the water–electrode interface poses
a significant challenge. These descriptors—such as adsorption energies, bond strengths,
and electronic properties including work function and ionization potential—are critical
for understanding how the catalyst surface interacts with water molecules [8]. Accurately
determining these properties necessitates detailed quantum mechanical simulations to
capture the complex behaviors of water and catalyst molecules during redox reactions.
Guided by Equations (1) and (2), which elucidate the energetics of electron transfer and
molecule adsorption, achieving precise atomistic descriptors is essential for optimizing
electrode materials and enhancing reaction kinetics [9]. Addressing this challenge is cru-
cial for boosting the efficiency and effectiveness of PEMWE technology and achieving
the performance targets established by initiatives like the U.S. Department of Energy’s
hydrogen electrolysis research goals. This highlights the need for further DFT analysis
in electrocatalyst development for electrolyzer cells, as accurate simulations are crucial
for optimizing materials and improving overall system performance. Both structured and
unstructured data are available from DFT [10–13] and can be effectively used to predict the
property and performance of the catalyst [14]. Recent challenges reported in this area are
given in Table 1.

Table 1. Research challenges related to DFT analysis of electrocatalysts.

Challenge Area Summary Impact of DFT
Modeling

Properties That
Can Be Extracted Identified Challenges References

Preparation
Method
Variability

Inconsistencies
in catalyst
properties due to
synthesis
methods.

Models surface
properties and
predicts effects of
preparation
methods.

Surface energy,
adsorption, and
stability.

Difficulty modeling
due to preparation
effects; lack of
experimental data.

[15,16]

Catalyst
Selection

Balancing cost,
activity, and
durability under
harsh conditions.

Evaluates
electronic
properties and
stability for
optimal
selection.

Binding energy,
band gap, DOS,
and activity.

Modeling stability
under extreme
conditions; long-term
degradation.

[17–21]

3D Electrode
Design

Optimizing
overpotential
and reaction
kinetics for
HER/OER.

Simulates 3D
structures to
predict
geometric effects.

Overpotential,
current density,
and
intermediates.

Computational limits;
difficulty with
complex geometries.

[22–27]

Computational
Cost

High-level
methods are
expensive,
limiting
large-scale
applications.

Simplifies large
systems due to
high costs.

Computational
cost and energy
convergence.

Need for
approximations;
time-intensive for
large systems.

[28–32]

Functional
Selection

Choosing
accurate
exchange-
correlation
functionals for
predictions.

Relies on
functional
groups for
property
prediction.

Functional
accuracy, band
gap, and
energetics.

Inaccuracies in
predictions; errors in
band gaps.

[28]
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Table 1. Cont.

Challenge Area Summary Impact of DFT
Modeling

Properties That
Can Be Extracted Identified Challenges References

System
Sensitivity

Sensitive to
initial geometry,
causing
convergence
challenges.

Requires
advanced
optimization for
reliable
predictions.

Total energy and
optimized
geometries.

Convergence
difficulty; sensitivity
to initial conditions.

[33–36]

Complex
Systems
Modeling

Struggles with
multi-layer
systems and
interfacial
behaviors.

Hybrid/multi-
scale models
improve
accuracy.

Interfacial
energies,
binding, and
charge transfer.

Capturing interfacial
interactions and
long-range effects.

[33]

Data Integration

Limited
experimental
data hinder
model validation,
especially for
alloys.

Requires
experimental
data for
validation.

Adsorption
energy and
activation
energy.

Lack of experimental
data for alloys;
validation challenges.

[37,38]

Electron Transfer

Modeling
electron transfer
in multi-step
reactions (e.g.,
OER and HER).

Models electron
density changes
and transfer
pathways.

Electron density,
charge transfer,
and redox states.

Difficulty modeling
electron
delocalization and
transfer pathways.

[39,40]

Binding Energy
and Stability

Calculating
binding energies
and assessing
durability under
stress.

Predicts stability
and durability
under
operational
stress.

Binding energy,
adsorption, and
stability.

Complexity in
multi-phase systems;
long-term stability
challenges.

[35]

Core–Shell and
3D Modeling

Modeling
core–shell
catalysts and 3D
electrodes for
OER/HER
efficiency.

Predicts
core–shell
behavior and
geometric effects.

Surface structure
and catalytic
activity.

Handling complex
core–shell geometries;
multi-scale
challenges.

[36,37]

Empirical Data
Limitations

Limited
experimental
data on atomic
interactions in
mixed oxide
catalysts.

Requires
experimental
validation for
accurate
predictions.

Atomic
interactions and
polarization.

Lack of sufficient
experimental data;
limitations in
modeling mixed
oxides.

[38,39]

Immediate
Need/Research
Gap

Advanced
quantum
modeling and
core–shell
structures are
promising but
costly.

Multi-scale
simulations and
quantum
methods to
overcome
limitations.

Band gap,
intermediates,
and quantum
effects.

High computational
cost and time;
refinement needed for
core–shell behavior.

Machine learning (ML) and deep learning (DL) are transforming electrocatalysis by
providing advanced tools for developing efficient catalysts. While both techniques are
based on similar principles, they differ in complexity. ML uses sophisticated algorithms to
analyze data patterns and make rapid predictions about material properties, linking them
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to catalyst performance in key reactions like oxygen reduction [40–42]. It can quickly assess
large databases, identifying promising candidates without relying on time-consuming
methods like Density Functional Theory (DFT). Conversely, DL employs complex neural
networks to extract intricate patterns from high-dimensional datasets. It is particularly
effective at analyzing extensive data from simulations and experiments, using techniques
like convolutional and recurrent neural networks. DL has shown remarkable success,
achieving 92% accuracy in predicting intermediates for oxygen evolution, highlighting its
effectiveness in managing complex data relationships. Both machine learning (ML) and
deep learning (DL) bring significant advantages to electrocatalysis. They enhance speed
and efficiency while alleviating the computational demands of traditional methods like
Density Functional Theory (DFT), which require lengthy calculations for each material. ML
rapidly predicts catalyst performance, enabling fast screening of large databases for effective
materials, such as those used in oxygen reduction reactions (ORRs). In contrast, DL excels
in optimizing complex datasets and reaction mechanisms, refining catalyst performance
in real-world applications. DL not only improves accuracy but also handles non-linear
relationships in data, which are vital for predicting outcomes in intricate systems. Recent
studies show DL’s capability to predict adsorption energies for over 100 materials with a
mean absolute error below 0.05 eV—an important factor in catalyst optimization [40–43].
Both ML and DL facilitate the swift discovery of new materials by analyzing unstructured
datasets and uncovering hidden correlations. This has led to breakthroughs like identifying
novel nickel-based alloys for oxygen evolution reactions (OERs).

As the data complexity in electrocatalysis grows, DL’s role becomes increasingly es-
sential. While DFT remains powerful, its computational intensity can be cumbersome. In
contrast, ML and DL can quickly analyze large datasets and predict material properties
effectively. For instance, DL has helped reduce the number of necessary DFT calculations
for CO2 reduction screening by up to 50%. This synergy between DL and DFT accelerates
discovery and enhances accuracy, making DL a critical tool for advancing efficient and
stable electrocatalysts. Beyond optimizing catalysts, ML and DL significantly enhance
support materials in electrocatalysis. For instance, graphene has proven to be an effec-
tive support for platinum (Pt) catalysts, boosting their stability and activity. Quantitative
Structure–Activity Relationship (QSAR) models, integrated with ML, are now used to
accurately predict the performance of new oxygen reduction reaction (ORR) catalysts, such
as metal–nitrogen–carbon composites. Additionally, Graph Neural Networks (GNNs) can
predict adsorption energies exceptionally well (with a mean absolute error under 0.05
eV), facilitating swift screening of catalysts for CO2 reduction. The integration of ML, DL,
and Density Functional Theory (DFT) is revolutionizing electrocatalysis by expediting the
discovery and optimization of new catalysts and support materials. These sophisticated
computational tools enable researchers to investigate new materials and reaction mecha-
nisms more efficiently and precisely [42–44]. As these technologies advance, they will be
vital in developing sustainable energy solutions, particularly in creating more effective and
durable electrocatalysts and support materials for various energy conversion processes.
In summary, advancements in ML can filter extensive molecular libraries, helping dis-
cover materials with tailored properties for applications ranging from energy storage to
organic electronics.

Deep learning techniques are increasingly complementing DFT in predicting material
properties, delivering rapid and accurate assessments essential for material discovery.
Various models like convolutional neural networks (CNNs), recurrent neural networks
(RNNs), GNNs, and transformer-based architectures adeptly capture complex molecular
interactions. GNNs excel in predicting electronic properties by modeling atomic structures
as graphs, while transformer models effectively forecast frontier orbital energies and
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reaction mechanisms [45–49]. When trained on DFT-calculated datasets, these models
can rapidly estimate critical properties, enabling efficient screening of large molecular
libraries to identify candidates with desirable optoelectronic, catalytic, and mechanical
characteristics. We need a benchmark model to predict the potential energy (label for the DL
model) of a molecule based on various input parameters (features for the DL model) such
as the nuclear coordinates and dipole moment in 3D space, the magnetic tensor, Mulliken
charge, bond length, and electronegativity of the atom [48]. The present study aims to
develop a universal model that can be used in new catalyst material development, which
can match the structure–property–performance of iridium oxide catalysts. The further
model must have the ability to assess the various dopants that would increase the catalyst’s
efficiency and help reduce their cost. The research needs on DFT and DLS are provided
in Table 2. Thereby, we identify a research gap that can be addressed by integrating the
DFT-DLS framework. To expedite the framework, the following objectives are defined:

• Performing the baseline DFT analysis to assess the molecular stability of the known
electrocatalyst molecule

• Obtaining the optimum bond length and bond angle with HOMO and LUMO structure
for the same molecules

• Extending DFT to study the OER pathway and develop a PES plot, which can be
further used to identify the reaction pathway and reaction rate and understand reaction
dynamics.

• Correlating the OER data obtained from the PEM electrolyzer with the reference
electrode cell to DFT data obtained from the simulation

• Developing deep learning model to assess the predictive maintenance for the support
molecules of the electrocatalyst

Table 2. Rationale for choosing DFT against other methods [50–58] to establish the DFT-DLS framework.

Key
Description Applications Accuracy Can it Predict

Redox η?

Can it Predict
Catalytic
Activity?

Limiations

Ab initio
Method

Predicts
molecular
properties by
solving the
Schrödinger
equation.

Design and
optimize the
electrocatlyst

High Yes

Yes, but
limited for
large
catalysts.

Slow
convergence for
large systems.

Schrödinger
Equation

Describes
electron
interactions.

Electronic
structure and
quantum
chemistry

High Yes

No.
Inadequate
for simulating
large catalytic
cycles.

Inefficient for
large ones.

Hamiltonian
Operator

Describes
system’s
energy
through
kinetic and
potential
energy.

Quantum
mechanical
simulations

High Yes No

Computationally
expensive and
inefficient for
large ones.
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Table 2. Cont.

Key
Description Applications Accuracy Can it Predict

Redox η?

Can it Predict
Catalytic
Activity?

Limiations

DFT
(Density
Functional
Theory)

Calculates
electronic
structure
considering
electron
density,
widely used
for large
systems.

Molecular
simulations
and material
science

High Yes

Yes.
Commonly
used in
identifying
reaction
pathways.

Efficient for
medium-large
systems, but
slow and costly
for large
systems.

Kohn–Sham
Equation

Describes
electronic
structure
using
self-consistent
effective
potential.

Material
modeling and
reaction
pathways

High for
moderate-
sized systems.

Yes

Yes. Effective
for simulating
reaction steps
during
catalysis.

Good for the
charge
distribution
analysis alone.

Potential
Energy
Surface
(PES)

Uses 3D plot
showing
potential
energy as a
function of
atomic
coordinates to
assess the
reaction
dynamics.

Reaction
pathway
analysis and
molecular
dynamics

High for
small-to-
medium-
sized systems.

Yes Yes

Useful for the
analysis of
reaction steps,
but is slow and
costly for larger
systems.

Deep
Learning
Simulation

Uses artificial
neural
networks
(ANNs) to
predict
properties
based on
training data.

Large dataset
property
prediction

High Yes Yes
Can predict
redox efficiently
after training.

2. Theory
In this section, we assess the methods and theories adopted to model the DFT

(Sections 2.1–2.4) and the deep learning simulations (Section 2.5).

2.1. Theory Related to Performing the Baseline DFT and Assessing the Molecular Stability of the
Known Electrocatalyst Molecule

Both DFT and deep learning are efficient for predicting redox behavior, but methods
like ab initio and Schrödinger equations are too slow for large systems (Table 2). Both DFT
and Kohn–Sham equations are widely used to simulate catalytic reactions, but they are
computationally expensive for large systems. Deep learning is efficient post-training for
catalytic predictions. A detailed table is given to justify the rationale for choosing the DFT
and DLS to address the objectives.
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2.2. Basic DFT Equations Applied to Compute the Structure of the Electrocatalyst Molecule

It is a computational method used to calculate the electronic structure of atoms and
molecules by considering electron density. It is based on the two Hohenberg–Kohn the-
orems, which state that its electron density uniquely determines a system’s electronic
ground-state properties and that a trial electron density must give an energy greater than
or equal to the true energy [50–53].

E = Eo[po(r)] (3)

where E is the ground-state energy and po(r) is the density functional. The DFT approach
reduces the problem from 3N to N electrons. A collection of non-interacting electrons (given
by the Kohn–Sham equation) in an effective potential that can be derived self-consistently
from the electron density. This is used to model the system in the DFT approach. The
effective potential includes the external potential due to the nuclei and any other external
fields and an exchange-correlation potential that considers the effects of electron–electron
interactions. The Kohn–Sham equation, which describes the electronic structure of a
molecule or material, is as follows:[

−(1/2)∇2 + υe f f (r)
]

ψi(r) = εiψi(r) (4)

where ψi (r) represents the ith single-particle wave function, εi is the corresponding energy
eigenvalue, and υ_eff represents the effective potential that includes both the external and
the exchange-correlation potential. The exchange-correlation potential is a function of the
electron density, which is determined self-consistently by wave functions.

2.3. DFT Equations to Generate Potential Energy Surface (PES) Plot

It is a three-dimensional diagram that depicts a system’s potential energy as a function
of the coordinates of the atoms or molecules that make up the system [59,60]. Furthermore,
it demonstrates how a molecule’s potential energy varies when its atoms move above each
other. It also aids in analyzing chemical reactions and molecular dynamics by revealing
the energy hurdles that must be surmounted for a reaction [52]. The equations governing
the PES depend on the specific interaction potential being considered. The Lennard–Jones
potential can be used to explain PES for a simple two-body interaction.

V(r) = 4·ε·
[(

σ12

r

)
−

(
σ6

r

)]
(5)

where r represents the distance between the two atoms, ε is the good depth, and σ is the
distance at which the potential energy is zero. By analyzing this equation, we can predict
the most stable structures of a molecule, the transition states involved in a reaction, and the
activation energy required for a reaction to proceed. The negative gradient of the potential
energy then gives the force between the two atoms:

F(r) = −dV(r)
dr

= 24· ε
r
·
[

2·
(

σ12

r

)
−

(
σ6

r

)]
(6)

The PES is often depicted as a multidimensional surface, where each dimension
corresponds to a different coordinate (e.g., bond lengths, bond angles, dihedral angles, etc.)
for a more complicated system, like a polyatomic molecule. In this instance, the equations
regulating the PES are more intricate and depend on the particular form of the interaction
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potential used. PES for polyatomic molecules can be given by molecular mechanics force
fields, which involve a combination of bonded and nonbonded interactions between atoms.

E = Ebond + Eangle + Edihedral + Evdw + Eelec (7)

where Ebond, Eangle, Edihedral, Evdw, and Eelec correspond to the energy contributions from
bond stretching, angle bending, torsion (dihedral) rotation, van der Waals interactions, and
electrostatic interactions, respectively.

2.4. Correlating the OER of the PEM Electrolyzer with DFT Data

To establish a robust correlation between Oxygen Evolution Reaction (OER) data from
a PEM electrolyzer with a reference electrode cell and Density Functional Theory (DFT)
simulations, a comprehensive approach is needed. Experimental data must be collected by
varying operational conditions, such as voltage and current density, in the PEM electrolyzer
while using a reference electrode to accurately measure the electrochemical potential,
ensuring precise data free from interference [61]. Key metrics like overpotentials, current
densities, and Tafel slopes are required to assess the OER performance. Concurrently, DFT
simulations must be performed to investigate the catalyst’s electronic structure and reaction
pathways, focusing on energy barriers and the binding energies of key intermediates
(e.g., OH and O). These computational insights can then be correlated with experimental
data, comparing overpotentials and energy barriers to confirm that lower overpotentials
correspond with lower energy barriers, indicating more efficient catalysts. Current densities
were compared with reaction rate constants derived from DFT to ensure faster kinetics
align with experimental observations.

2.5. Deep Learning Simulation (DLS) for Electrocatalysts

It uses artificial neural networks (ANNs) to predict the potential energy. The ANNs
are composed of multiple nodes that resemble real brain neurons. The neurons are inter-
connected and interact with one another [60,62,63]. The nodes can take data as input and
perform basic operations on it. A neuron’s processing component receives numerous sig-
nals. Sometimes, signals are altered at the receiving synapses, and the processing element
adds the weighted inputs. The output of the neuron results from a threshold activation
function. The advantages of DLS over ML to assess the catalyst behavior are given in
Table 3.

The process is repeated if the threshold is crossed, and the signal becomes an input to
other neurons. The equation for our model can be expressed as follows:

yi = f (∑n
i=1 wixi + bi) (8)

where yi represents the output of the neuron, xi represents the input to the neuron, wi

represents the weight of the network, and bi is the bias. Deep learning (DL) is particularly
adept at handling complex, unstructured data, such as time-series information and fluid
dynamics, where traditional machine learning (ML) techniques often fall short. Its superior
accuracy shines in complex tasks, outperforming ML in predicting long-term catalyst
degradation, optimizing water management, and analyzing microstructures that involve
non-linear, high-dimensional relationships. Additionally, DL models have the unique
advantage of continuously learning from extensive and diverse datasets, enhancing their
accuracy and efficiency. It is an essential capability for real-world applications like catalyst
layer optimization. Their ability to discern intricate non-linear patterns is vital for making
precise predictions and optimizations in sophisticated systems such as Proton Exchange
Membrane Electrolysis (PEME). In summary, DL emerges as the definitive choice for
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analyzing large, complex, and unstructured data, enabling superior performance, accuracy,
and adaptability—critical factors for optimizing catalyst layers in advanced technologies.

Table 3. Rationale for choosing DL over ML [64–67].

Aspect Machine Learning (ML) Deep Learning (DL)

Key Methods SVM, Decision Trees, Random Forests,
and GA CNN, RNN, and LSTM

Data Requirements Works best with structured, smaller
datasets

Excels with large, unstructured datasets
(images, time series, etc.)

Computational Complexity Low; can be trained with minimal
resources

High; requires specialized hardware
(e.g., GPUs)

Efficiency Fast for simpler, structured tasks Highly efficient for complex,
high-dimensional tasks

Interpretability High; decisions are easily understood Often considered a “black box,” though
compensates with accuracy

Performance of Simple Tasks Effective for well-defined,
straightforward tasks

Less efficient for simple tasks due to the
complexity of the models

Performance of Complex Tasks Struggles with non-linear,
high-dimensional relationships

Superior at handling complex,
multi-dimensional relationships (e.g.,
microstructure analysis and fluid
dynamics)

Key Use Cases Fault detection, material optimization,
and degradation prediction

Microstructure analysis (CNN),
performance forecasting (LSTM), and
water management (RNN)

Examples SVM for fault classification and GA for
optimization

CNN for detecting microstructural
changes; LSTM for predicting long-term
degradation

Outcome Faster execution and high
interpretability for simpler tasks

High accuracy, adaptability to diverse
datasets, and the ability to learn complex
patterns over time

Challenges Struggles with unstructured data;
limited scalability for complex tasks

Requires large datasets and significant
computational power; less transparent
decision-making

Supporting Factors Works well with structured data (e.g.,
sensors and material composition)

Leverages large and diverse datasets
(e.g., imaging and time-series); requires
high computational resources

Future Directions Real-time fault detection and
optimization of simpler tasks

Real-time optimization, long-term
performance predictions, and
reinforcement learning for extreme
conditions

3. Materials and Methods
In this section, we report the data collection and methods related to the DFT

(Section 3.1) and cell polarization (Section 3.2) and approaches adopted in the deep learning
simulations (Section 3.3). The steps associated with the calculation are given in Figure 2.
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3.1. Data Collection and DFT Computation Methods

To optimize our DFT and computational analysis, we selected a single unit cell from
the packed structure of Ir-based electrocatalyst, which reduced the system size and com-
putational resource demands. This unit cell accurately represents the crystal structure,
preserving its key symmetries and properties. We simplified the packed structure by mini-
mizing the number of atoms, creating a smaller unit cell for the potential energy surface
(PES) calculations. This strategic simplification improved analytical efficiency while ensur-
ing the necessary accuracy for this study. We present the packed, unoptimized structure
of the catalyst used for the PES calculations here. It is important to note that we have
not yet performed energy minimization or relaxation on this structure, which is typically
performed to determine the most stable configuration. DFT calculations were conducted
using Gaussian 16, with results visualized in GaussView 6. We chose the Perdew–Burke–
Ernzerhof (PBE) exchange-correlation functional, recognized for its accuracy in calculating
molecular properties like bond lengths and vibrational frequencies [59,68]. The SBKJC-
VDZ basis set was employed to evaluate electron density and molecular properties [60],
alongside the GENeralized Electronically Contracted Pseudo-atom (GENCEP) basis set for
modeling transition metal compounds [62]. For enhanced efficiency, we applied quadratic
convergence to speed up computations. We calculated the potential energy surface (PES)
through a rigid scan of bond lengths between catalyst metal and oxygen, starting from
1.8 Å in 0.05 Å increments, which aligns with established methodologies [60,62]. The PES
calculation involved three steps: optimization, frequency calculations, and single-point
energy evaluations, each providing crucial insights into system stability. The optimiza-
tion aimed to locate the minimum energy configuration of the iridium oxide molecule,
using the Self-Consistent Field (SCF) method to iteratively solve Kohn–Sham equations.
The quasi-Newton method was employed for gradient-based optimization, effectively
enhancing convergence [60]. Frequency calculations confirmed that the optimized struc-
ture corresponds to a true minimum energy structure (TMES), based on Hessian matrix
analysis to ascertain potential energy surface curvature [63]. Diagonalizing the Hessian
provided vibrational frequencies and modes, ensuring stability. Lastly, we constructed the
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PES by solving the Schrödinger equation for various geometries using single-point energy
calculations. These calculations yield the energy profile critical for understanding catalyst
stability with respect to bond length variations, facilitating the mapping of the system’s
energetics [69].

3.2. Experimental Data Collection

The anode polarization data from an operating electrolyzer cell is needed to assess
the OER characteristics of the IrOx. However, a reference electrode configuration is vital to
separate the anode polarization data from the overall cell polarization [70]. The steady-state
cell and electrode polarization curves were obtained for three different water feed rates
and temperatures. The feed rate of 6 mL.min−1 was considered for our study. Special
attention is paid to the activation region (0.00–0.50 A.cm−2) of the anode polarization curve
to compare and contrast the OER characteristics of the IrOx catalyst layer. Computed
Tafel slopes were validated against DFT predictions to optimize understanding of the
reaction mechanism. Electrochemical stability analyses from DFT were cross-referenced
with experimental voltage decay rates.

3.3. Development of DLS Architecture and Data Collection

This section describes the need, rationale, and method used to develop the given
molecule’s DLS architecture. Machine learning models were used for multivariate analysis
to correlate the experimental and computational features, respectively. This approach may
provide the key catalyst characteristics that can help to maximize OER efficiency. Predictive
models based on both datasets need to be developed to forecast the performance of catalyst
layers, driving future catalyst designs. This iterative process of refining catalyst materials
through DFT-guided experimentation and machine learning insights optimized catalyst
efficiency and stability, positioning this approach as a powerful tool for advancing OER
technologies in PEM electrolyzers. However, the data for the DLS model are not available
for iridium oxide molecules in any literature. Therefore, to develop and test the DLS
architecture, we have collected a dataset from the CHAMP database [71]. It consists of
details related to more than 1 lakh molecules of carbon, hydrogen, nitrogen, oxygen, and
fluorine. The mean bond length and the number of bonds per atom were also calculated
based on the nuclear coordinates using the Euclidean distance. Calculating the potential
energy of a molecule using the Gaussian software requires high memory resources and
increases computational time. The multiple gradients added in the DFT computation of
the IrOx structure require several initial guesses to complete the convergence criteria. It
includes the values for (a) maximum force, (b) RMS, (c) maximum displacement, and (d)
the RMS displacement. A PES plot obtained for the simplified seven-atomic structure
requires 24 h to converge. The complexity of the time steps increases exponentially based
on computational requirements. Since IrOx has a complex structure, the convergence
took more time according to the number of atoms in the crystals. Therefore, a trade-off
between the model’s accuracy and sensitivity must be attained based on the trial-and-
error approach. However, the literature supports employing the DLS methods that could
facilitate faster computation by identifying the key trends on the IrOx in the dataset
obtained from the preliminary DFT simulation. Tools such as Gaussian can help match
the molecule’s point group symmetry with the one in its library. Predicting the potential
energy at each atomic coordinate of the iridium oxide molecule requires a DLS algorithm
(Figure 3), as the symmetry of the molecule is not in either the Gaussian database or at the
point group symmetry assignment. Hence, we manually assigned the symmetry of IrOx
based on literature data. It can be avoided using the DLS method, thus simplifying new
molecular properties calculations. Therefore, we fed the results of the quantum mechanical
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calculations and experimental findings with the IrOx structure as input for the DL model.
The model solves non-linearity in the high-dimensional space, and the intricate connections
between the potential energy and parameters are computed.
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3.4. Feature Importance

XGBoost regressor is used to perform feature importance. It uses a gradient-boosting
framework where several decision trees are built [72]. Each tree is trained on a subset of
datasets selected randomly from the original dataset. Errors will be estimated iteratively
from the first tree in the forest. The next set of trees will correct the errors based on the
previous tree data. A new tree is constructed sequentially based on the aforementioned
algorithm. The loss function is calculated by the XGBoost algorithm. In order to minimize
the loss function, the regressor alters the weights of the individual decision tree during the
training of the model. The gradient of the loss function for each data point in the training
set is calculated. The mean squared error (MSE) is calculated based on the predicted and
actual values using the following formula:

MSE =
1
n ∑n

i=1 (Yi − Yp)
2 (9)

where n stands for the total number of data points, Yi is the observed value, and Yp is the
predicted value. The overall prediction of the model relies on the predictions obtained for
the individual trees.
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4. Results and Discussions
4.1. Protocol to Perform the Baseline DFT Analysis to Assess the Molecular Stability of the
Electrocatalyst Molecule for PEME Electrolyzer

As the IrO2 structure was meticulously obtained from COD, initial cell dimensions
were provided (Table 4) [73]. This final structure comprises 433 electrons and 11 atoms. For
the potential energy surface (PES) calculations, we strategically focused on a single unit
cell to enhance computational efficiency. This refinement led to a streamlined structure
containing 125 electrons and 7 atoms, enabling more precise analysis. Remarkably, the
bond length of the optimized IrOx structure was determined to be 1.98 Å. Figure 4 captivat-
ingly showcases the packed, unoptimized structure of iridium oxide employed in the PES
calculations, highlighting its significance in our study.

Table 4. The IrO2 crystal data.

Formula IrO2

Space Group P/42

Unit cell dimensions

a = 4.499 Å
b = 4.499 Å
c = 3.146 Å

α = 90
β = 90
γ = 90

Volume 63.678
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Figure 4. (a) The packed structure of iridium oxide is shown. (b) Unoptimized iridium oxide structure
used for PES calculations.

4.2. PES Analysis

In the process of geometrical optimization for IrOx, the algorithm identifies a minimum
that closely resembles the original structural configuration. This algorithm is designed to
specify both the number of steps required and the incremental distances to be adjusted
in order to achieve an optimized structure. The potential energy surface (PES) associated
with the geometry of IrOx utilizes the quasi-Newton method, allowing for an accurate
estimation of the optimized bond lengths. Following the comprehensive DFT optimization
of the molecular structure, the bond lengths (measured in Angstroms) of the optimized
structure, which prominently features the central atom iridium, are detailed in the table
below. Notably, the average difference in bond lengths calculated between the original and
optimized structures reported in Table 5 is indicating significant refinement in the geometry.
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Table 5. Comparison between the original (unoptimized) structure and optimized structure.

Atom Number
Bond Length

Original Structure (Å) Optimized Structure (Å) Literature Review (Å)

Ir1-O1 2.02 2.015 2.037

Ir1-O2 2.02 1.982 1.917

Ir1-O4 2.02 1.982 1.917

Ir1-O3 1.98 2.015 2.037

Ir2-O3 1.98 1.982 1.917

Details of the optimized structure

Electronic Energy −897.67538271487115 Eh

RMS Gradient Norm 0.0000259925 Hartree/Bohr

Polarizability (α) NA

Diploe Moment 3.412693525 Debye

Enthalpy (with correction) −509.11286082 Eh

Mulliken Charges Atom Number Atom Mulliken Charge (a.u.)

1 Ir 0.971375

2 Ir 0.406013

3 O −0.304719

4 O −0.355709

5 O −0.361251

6 O −0.355709

4.3. Obtaining the Optimum Bond Length and Bond Angle with HOMO and LUMO Structure for
the Same Molecules

The HOMO-LUMO gap is critical in determining the catalytic efficiency of materials
such as iridium oxide (IrO2) in both oxygen evolution reactions (OERs) and oxygen reduc-
tion reactions (ORRs), albeit in distinct ways for each process. The energy levels of IrO2,
defined by the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO), are essential for electron transfer during catalysis. For IrO2, the
HOMO-LUMO gap is approximately 0 eV, which reflects its metallic nature and facilitates
efficient electron transfer—key for OER. A narrower HOMO-LUMO gap promotes faster
electron transfer, reducing overpotentials and enhancing the efficiency of OER by allowing
easier excitation of electrons from the HOMO to the LUMO. This feature is fundamental to
IrO2’s responsiveness in OER, where its metallic nature creates a highly reactive catalyst
under appropriate electrochemical conditions. As highlighted by Nørskov et al. [19], such a
minimal gap lowers the activation energy needed for electron transfer, thereby accelerating
oxygen evolution. In contrast, for ORR, the HOMO-LUMO gap requires optimization for
electron acceptance. A moderate gap in IrO2 is advantageous for facilitating the multi-
electron transfer process involved in ORR, as shown by He et al. [74] and Zhang and
Wang [39]. A smaller HOMO-LUMO gap allows for better electron donation, which aids
in the reduction of O2− to OH−. However, if the gap is excessively small, it may lead
to the formation of unstable intermediates, disrupting the ORR process. Therefore, to
achieve optimal performance, the HOMO-LUMO gap must be carefully tuned for OER,
balancing electron donation and acceptance while avoiding unwanted intermediates. A
detailed visualization of the IrOx orbitals is illustrated in Figure 5, showcasing the spatial
distribution and symmetry of these critical orbitals. During electrochemical reactions, a
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dynamic interaction unfolds, i.e., electrophiles at the cathode move to accept electrons,
thereby forming bonds with the HOMO. Simultaneously, nucleophiles at the anode donate
electrons to the system, creating bonds with the LUMO. This intricate electron transfer pro-
cess is facilitated by weak van der Waals forces, which play a crucial role in stabilizing these
transitional states and promoting effective interactions. Moreover, the energy difference
between the HOMO and LUMO, referred to as the HOMO-LUMO gap, serves as a pivotal
parameter for deciphering the electronic properties of the Ir-O molecule [5,39,75–82].
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Additional molecular properties for IrOx have been calculated and are presented in
the table below. Electronegativity is expressed in terms of orbital energies and is calculated
using the provided equation. The energy magnitudes of the HOMO and LUMO for the IrOx
species were obtained from the potential energy surface (PES) calculations. Furthermore,
the ionization energy and electron affinity were estimated using Fukui functions, which
have been shown to align closely with predictions based on wavefunction theory. The
computed electronegativity (χ) of 0.335 using the formula given below is in good agreement
with the literature-reported values.

Mχ =
−(EHOMO + ELUMO)

2
(10)

Further modifications to the surface structure and oxidation states of IrO2 can influence
the HOMO-LUMO gap and enhance its catalytic performance for redox reactions. Surface
vacancies, strain, and alterations in bond angles and bond lengths can shift the electronic
structure and subsequent HOMO-LUMO alignment. As noted by Florbela et al. [64], such
surface modifications can optimize the adsorption of reactive intermediates like OH− and
O2−, thus improving the activities of both OER and ORR. Mavrikakis et al. [21] emphasized
that aligning the HOMO-LUMO levels with the reaction energy profile through structural
optimization can reduce energy barriers, thereby enhancing electrocatalytic efficiency. In
summary, the HOMO-LUMO gap plays a vital role in electron transfer processes for both
OER and ORR, but the optimal gap differs between them. For OER, a narrower gap found
(0 eV) in this work facilitates quicker electron transfer and improves oxygen evolution,
while for ORR, a moderate gap is necessary for effective electron acceptance without
forming unstable intermediates. Optimizing the HOMO-LUMO gap through structural
and surface modifications is proven as a factor for enhancing the catalytic activity of
materials like IrO2 in electrochemical reactions. Thus, understanding and controlling the
electronic structures of IrO2 and similar materials is found to be crucial for advancing the
fabrication of electrocatalytic layers for electrolyzers.
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4.4. Extending DFT to Study the OER Pathway and Develop PES Plots That Can Be Further Used
to Identify Reaction Pathways and Reaction Rates and to Understand Reaction Dynamics

To thoroughly illustrate the reaction dynamics of IrOx, we constructed a sophisti-
cated potential energy surface (PES) plot, utilizing an extensive series of optimization and
frequency calculations. This comprehensive analysis encompasses the intrinsic reaction
coordinate (IRC) pathway, which reveals 121 transition states, as shown in Figure 6. This
plot serves as a dynamic portrayal of the potential energy landscape, intricately linked to
the coordinates of the iridium atoms and the IrOx molecule, offering profound insights into
the energy fluctuations across diverse molecular configurations. This exploration yields
crucial insights into the overarching reaction pathway, enabling us to pinpoint potential
intermediates and accurately predict the final products of the reaction. The energy barriers
separating transition states play an essential role in estimating reaction rates, a factor critical
to our understanding of the kinetics governing these complex processes. In Figure 6, the
lowest energy point signifies the most stable configuration, while the peaks at higher energy
correspond to transition states that reflect the challenges to overcome during the reaction.
These energy barriers precisely illustrate the energy demands necessary to navigate the
various steps of the reaction, thereby clarifying the mechanisms and reactivity of IrOx
under varying conditions. Our in-depth approach to understanding the reaction dynamics
of IrOx did not stop at the PES. By incorporating the IRC pathway, we constructed an
enriched PES plot that offers an unparalleled view of the intricate energy profile as the
reaction progresses from reactants to products. This is compellingly showcased in Figure 6,
marrying the potential energy landscape with the coordinates of iridium atoms and the
IrOx molecule, thereby delivering a comprehensive understanding of energy transitions
across an array of molecular conformations. IRC pathway stands as an indispensable
tool in computational chemistry, tracing the reaction path from transition states to both
reactants and products, thereby providing invaluable insight into the reaction mechanism.
Each identified transition state along the IRC pathway marks a critical juncture in the
reaction pathway, enabling a more nuanced and complete description of the energetics
compared to the PES alone. By meticulously following this path, we can anticipate potential
intermediates that could arise during the reaction, thereby sharpening our focus on the
key steps within the reaction mechanism. In our study, the reaction pathway compellingly
reveals that the lowest energy point correlates with the most stable configuration, while the
highest energy points identify the transition states that must be transcended for the reaction
to advance. The energy barriers depicted in the PES plot represent the activation energies
essential for each transition state, which are decisively important in determining reaction
rates. The IRC analysis significantly enhances our grasp of reaction kinetics, allowing
for precise estimation of these energy barriers. Our findings underscore that the energy
barriers are notably low, aligning seamlessly with the metallic characteristics of IrO2. This
facilitates rapid electron transfer, positioning IrO2 as an exceptionally efficient catalyst for
processes such as oxygen evolution. In comparing our results to established literature, the
IRC pathway analysis resonates powerfully with the discoveries of He et al. [74] and Zhang
et al. [18]. Both studies confirm that IrOx, particularly IrO2, showcases impressively low
energy barriers during the oxygen evolution reaction (OER), reinforcing its metallic be-
havior. Furthermore, the energy profile we obtained robustly supports these observations,
demonstrating that the transition states are consistent with the low overpotentials required
for efficient OER catalysis. The analysis is also in full agreement with the groundbreaking
work of Nørskov et al. [19], which illustrated the significance of reducing energy barriers
for effective OER performance in oxide catalysts like IrOx. Our findings affirm that the
relatively flat PES and low activation energies are indeed critical factors contributing to
the superior catalytic efficiency of IrO2. Moreover, research by Duthie et al. [19–74,83,84]
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illustrates the substantial influence of the oxidation state of IrO2 on modulating energy bar-
riers during OER. Our IRC pathway analysis further validates this, indicating that changes
in oxidation state considerably influence the stability of transition states and reaction in-
termediates, thereby directly enhancing OER efficiency. In conclusion, our integration of
the IRC pathway into the PES analysis offers a transformative perspective on the reaction
dynamics of IrOx. The detailed energy landscape we uncovered illuminates the favorable
catalytic properties of IrO2 with striking clarity. This comparison with existing literature
not only validates our computational methodology but also underscores the coherence
of our findings with experimentally observed reaction mechanisms, thus reinforcing the
compelling nature of our research.
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4.5. Correlating the OER Data Obtained from the PEM Electrolyzer with Reference Electrode Cell
to DFT Data Obtained from the Simulation

Steady-state oxygen evolution reaction (OER) polarization curves were meticulously
replotted based on the work of Elyse et al. [70] (Figure 7) to provide a comprehensive
overview of the anode performance. Figure 7 presents the polarization curves for the
anode OER, depicted in red, alongside the cathode hydrogen evolution reaction (HER) in
blue, and the overall cell performance illustrated in black. These curves were generated
under three different feed rates and temperatures, allowing for a comparative analysis.
To elucidate the reaction mechanism behind the OER, we closely examined the activation
region of each OER curve, specifically within the range of 0.00 to 0.50 A·cm−2. The reference
electrode setup utilized in the experiments provides valuable anode polarization data that
are essential for assessing the rate-determining step and overall mechanism of the reaction.
Notably, the Tafel slopes calculated from the activation-controlled regions exhibited a
twofold increase when the temperature was raised from 40 ◦C to 80 ◦C. At 80 ◦C, the
observed exchange current density was measured at 8.6 × 10−1 A·cm−2, with a Tafel slope
of −100.7 mV/decade. This low exchange current density for the anode indicates that the
kinetics of the OER are significantly slower compared to those of the cathode. The reaction
scheme governing the OER can be succinctly represented through Equations (11)–(13),
which detail the fundamental steps involved in the process. This comprehensive analysis
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contributes to a deeper understanding of the mechanisms at play in the OER and the
implications for overall cell performance.

MOx + H2O ⇄ M − OHads + e− + H+ (11)

M− OHads ⇄ M − Oads + e− + H+ (12)

2(M − Oads) ⇄ O2 + 2M (13)
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The Tafel slope and exchange current density data provide compelling evidence that
the oxygen evolution reaction (OER) occurs primarily through the electrochemical oxide
pathway, as detailed in Equations (11)–(13). This pathway culminates in the generation
of oxygen. In the pivotal charge transfer step, represented in Equation (13), a nuanced
interaction takes place on the catalyst surface, denoted as M. In this step, an electron, a
proton, and an adsorbed hydronium ion coalesce, a process that necessitates the availability
of two catalyst sites to facilitate both the adsorption of oxygen and its eventual production.
The electronic structure of IrOx is fundamental to its electrochromic properties and plays
a crucial role in determining its exchange current density, a key indicator of its catalytic
efficacy. A comprehensive evaluation of the OER, alongside a detailed analysis of the
geometric structure of IrOx and its electronic configuration, establishes a substantive con-
nection between the electrocatalytic activity and the polarization behavior of the electrode.
Moreover, the optimized structure of the catalyst layer significantly enhances the binding
strength during the OER phase. This optimization results in the generation of precise
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d-spacing, which is instrumental in improving charge transfer at the electrode–electrolyte
interface. Such enhancements facilitate more effective electrochemical reactions by allowing
for better electron and ion transport within the system. This integrated approach not only
illustrates the critical relationship between structural attributes and electronic properties
but also underscores the potential of IrOx as a high-performing catalyst for the OER.

4.6. Developing a Deep Learning Model to Assess the Predictive Maintenance for the Support
Molecules of the Electrocatalyst

The composition of IrOx/ionomer/carbon catalyst layers includes iridium oxide,
ionomer binders, and carbon supports, all of which are critical for efficient charge transfer.
Artificial intelligence (AI), particularly machine learning (ML), plays a vital role in opti-
mizing this material composition to enhance catalytic performance while reducing costs.
Moreover, deep learning (DL) models analyze changes to identify and design innovative
materials. The thickness of these catalyst layers also significantly impacts conductivity
and the availability of active sites; if the layer is too thick, efficiency can be compromised,
while a layer that is too thin may not provide sufficient active sites for optimal performance.
AI techniques are deployed to fine-tune layer thickness based on operational conditions,
achieving an ideal balance between efficiency and durability, with ML addressing simpler
thickness modeling and DL being utilized for more complex structural analyses. The
protocol adopted to perform the DL simulation is given in Figure 8. Features in machine
learning are essential components of a dataset. In this research, descriptors such as dipole
moment, Mulliken charge, and nuclear coordinate are classified as feature datasets. The
identification and assignment of weights to these features are contingent upon the Deep
Learning Surrogate (DLS) model employed. The primary analysis of feature significance
is vital for optimizing the model training process, as it contributes to reducing training
time, minimizing redundancy, and preventing overfitting. For instance, as depicted in
Figure 8, the dipole moment is identified as a significant feature, assigned a weight of
0.19. Conversely, features related to atomic properties and structural characteristics exhibit
less weight compared to the dipole moment. It is important to note that the weighting of
each feature may vary depending on the specific dataset in use. By leveraging the insights
provided in Figure 8, one can strategically select features for training the DLS model based
on their assigned weights. This approach ensures the prioritization of the most relevant
features, ultimately enhancing the efficiency and effectiveness of the modeling process.
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4.6.1. t-SNE Plots

A t-Distributed Stochastic Neighbor Embedding (t-SNE) plot is presented to visualize
the CHAMP datasets. This plot successfully transforms a higher-dimensional dataset into
a lower-dimensional representation by executing pairwise similarity (PS) calculations. The
PS method proficiently organizes and maps data points in the high-dimensional space
while maintaining the inherent relationships and similarities in the lower-dimensional
space [72–74,84]. Figure 9 distinctly illustrates the mapping and organization of potential
energy in relation to its associated features. Each atom, including carbon, hydrogen,
oxygen, fluorine, and nitrogen, is clearly identified without any overlapping or clustering.
Consequently, the algorithms employed in the deep learning (DL) model can effectively
utilize the trends established in this study to predict or assess the properties of unknown
molecules. This capability significantly enhances the model’s predictive power across
various applications.
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4.6.2. Comparison of ANN-Based DLS Models

To comprehensively evaluate the architecture of the Deep Learning Surrogate (DLS),
we undertook an extensive performance analysis of three distinct artificial neural network
(ANN)-based DLS models (Table 6), each characterized by different structural configura-
tions comprising 10, 12, and 14 blocks. Each block is designed to include four essential
layers: a dense layer, a batch normalization layer, a LeakyReLU activation layer, and a
dropout layer, each serving a specific function within the architecture. The dense layer
is a crucial element of the ANN structure, facilitating a direct connection between the
input data and the output neurons. This layer effectively transforms the input information
into meaningful predictions. The batch normalization layer improves the stability and
performance of the neural network by standardizing the activations of each layer, thereby
accelerating training and contributing to more robust model convergence. This standard-
ization minimizes internal covariate shifts and ensures that the training process progresses
smoothly [78–82].
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Table 6. Comparison between the three models.

Number of Blocks 10 12 14

Number of Layers 40 49 56
Optimizer AdaMax AdaMax AdaMax

Learning Rate 0.0099 0.0099 0.0099
Epochs 500 500 500

Training Accuracy (MSE) 0.56 0.46 0.45
Training Time ~125 min ~135 min ~150 min

The LeakyReLU activation layer is implemented to enhance the overall efficiency of the
ANN. By allowing a small, non-zero gradient when the unit is not active, it helps mitigate
the problem of vanishing gradients and supports better learning. In addition, the dropout
layer plays a significant role in combating overfitting by randomly setting a fraction of input
units to zero during training, thereby encouraging the model to learn more generalizable
features rather than overly specific ones. Table 6 provides a comparative analysis of the
three models, revealing that while the 14-block model achieves a lower mean squared error
(MSE) than the 12-block model, it also demands greater computational resources, resulting
in longer processing times. This observation underscores the importance of balancing accu-
racy with computational efficiency. In this light, the 12-block model emerges as the optimal
choice among the three configurations. Figure 10 illustrates this model’s performance,
which effectively maintains a high level of accuracy while achieving a remarkable 12-fold
reduction in computation time compared to traditional Density Functional Theory (DFT)
calculations. This significant computational advantage highlights the practical applicability
of the 12-block model for rapid predictions in fields requiring extensive computational
resources. Catalyst microstructure characteristics, such as porosity and morphology, play a
pivotal role in influencing surface area and electrolysis efficiency. Cutting-edge AI mod-
els, particularly deep learning (DL) approaches utilizing convolutional neural networks
(CNNs), are revolutionizing the analysis of scanning electron microscope (SEM) images
by accurately detecting microstructural changes and significantly enhancing catalyst prop-
erties. As the interactions between electrolytes and catalysts are critical for optimizing
reaction rates and ensuring stability, and AI-driven simulations are drastically improving
electronic and ionic conduction, thereby boosting overall efficiency. Furthermore, the
degradation of catalysts due to catalyst/support poisoning, support corrosion, or excessive
use of the electrode—electrolyte poses a substantial challenge to model. However, with
the predictive capabilities of DL models, we can anticipate these issues, enabling timely
maintenance and extending the life of catalysts or support. Effective catalyst management
is essential to prevent dissolution or degradation within the catalyst layer. Innovative
AI solutions are needed to optimize catalyst–support–ionomer distribution using DL for
fluid dynamics simulations and recurrent neural networks (RNNs) for robust time-series
analysis. Ensuring uniformity in the catalyst layer is crucial for reliable and consistent
performance. Although AI techniques, including ML and Genetic Algorithms (GAs), pro-
vide powerful enhancements to deposition methods like sputtering, leading to reduced
costs and improved electrolysis efficiency, DL shows promise to improve the accuracy of
predictive maintenance. In conclusion, DL is exceptionally effective for structured tasks
like fault detection, catalyst layer material efficiency optimization, and degradation fore-
casting, delivering rapid, actionable insights even with smaller datasets. Meanwhile, DL
excels in managing complex, unstructured data, such as images and long-term perfor-
mance predictions. Together, ML and DL are transforming the optimization of catalyst
layers in Proton Exchange Membrane Electrolysis (PEME) systems, significantly enhancing
efficiency, performance, and longevity while minimizing costs and downtime.
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Figure 10 shows how the loss changes against the epoch and the parity plot for 12-block
models. An increase in epochs shows a negative exponentially decaying trend in loss. Since
no change in loss appeared beyond 500, computation or model training can be stopped at
the epoch.

4.6.3. Applicability of the DFT-DLS Framework

The proposed framework aims to achieve the following:

• Provide artificial intelligence-based experimental guidance and concept verification
for electrocatalysts and support materials.

• Simplify the DFT-DLS concepts and evaluate the chemical and electrochemical proper-
ties of the catalyst and support material used in the electrochemical cells.

• Determine the activity and selectivity of the electrocatalyst.
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• Benchmark the calculated values to discover new catalysts.
• Develop high-activity, industrial-scale catalysts.
• Develop an AI-based strategy to address catalyst failure modes and mechanisms.
• Assess the temporal variations in the catalyst/support materials that will uncover the

surface chemistry of the new materials.

Future study of the framework: The model can be improved further to assess the
defects in the materials and learn how the catalyst interacts with different support materials.
Presently, we are carrying out a computation process to optimize the active sites based on
the catalyst/support surface structures. Furthermore, enhancing the framework will help
to set metrics to couple the DFT-DLS theory with experiments and expedite new surface
science breakthrough experiments.

5. Conclusions
Advanced technologies are paramount for driving sustainable energy conversion

and consumption, essential in the fight against climate change. Achieving sustainability
relies heavily on the development of efficient energy storage systems that effectively
capture excess energy from renewable sources. One of the most promising methods for
storage is in the form of hydrogen, generated through water electrolysis, along with the
enhancement of fuel cell performance for large-scale applications. Catalyst efficiency is a
critical element in optimizing these energy systems. Ab initio methods, particularly Density
Functional Theory (DFT), have demonstrated exceptional effectiveness in modeling new
catalytic materials, evaluating their performance, and predicting their reliability for future
applications. However, these techniques can be computationally demanding, requiring
millions of energy gradient calculations to achieve high-accuracy results, which often
limits practitioners to single initial calculations, such as one-particle energy collisions. This
study confidently investigates the potential of leveraging Deep Learning Simulations (DLS)
to calculate molecular potential energy—a key factor in material feasibility testing—in
a significantly less computationally intensive manner. By embracing this approach, we
can efficiently test new molecules and dopants specifically for catalysts like IrOx and
PtOx. To elevate the model’s robustness and accuracy even further, it is imperative to
integrate additional predictive features, such as distance matrices, molecular geometry,
intermolecular forces, and molecular size. Continued optimization of DLS parameters will
be crucial for enhancing predictive capabilities. This study positions itself at the forefront
of innovation in sustainable energy technologies, promising to streamline the development
of efficient catalysts and energy systems.

Author Contributions: Software S.R.D.; validation, S.R.D., M.W.F. and J.Z.; formal analysis,
S.R.D.; re-investigation, D.T., J.T. and S.R.D.; resources, B.A.P.; data curating, S.R.D., T.S. and J.Z.;
writing—original draft preparation, S.R.D.; writing—review and editing, S.R.D. and M.W.F.; visu-
alization, S.R.D. and J.T.; supervision, B.A.P. and S.R.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used for the artificial neural network model are available at:
(accessed on 3 February 2024) https://www.kaggle.com/datasets/linhlpv/champsscalarold.

Acknowledgments: The authors would like to thank fuel cell research group members at the Queens
University for their continuous support of experimental studies. The proofreading support provided
by affiliated universities via the AI-powered Grammarly is duly acknowledged.

Conflicts of Interest: The authors report no conflicts of interest.

https://www.kaggle.com/datasets/linhlpv/champsscalarold


Energies 2025, 18, 1022 25 of 28

References
1. Forsberg, C.W. Future hydrogen markets for large-scale hydrogen production systems. Int. J. Hydrogen Energy 2007, 32, 431–439.

[CrossRef]
2. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion

reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [CrossRef]
3. Sheng, W.; Gasteiger, H.A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline

electrolytes. J. Electrochem. Soc. 2010, 157, B1529. [CrossRef]
4. Borup, R.; Krause, T.; Brouwer, J. Hydrogen is essential for industry and transportation decarbonization. Electrochem. Soc. Interface

2021, 30, 79. [CrossRef]
5. Zhang, X.; Zhang, Z.; Li, H.; Gao, R.; Xiao, M.; Zhu, J.; Feng, M.; Chen, Z. Insight into heterogeneous electrocatalyst design

understanding for the reduction of carbon dioxide. Adv. Energy Mater. 2022, 12, 2201461. [CrossRef]
6. Feng, Q.; Wang, Q.; Zhang, Z.; Xiong, Y.; Li, H.; Yao, Y.; Yuan, X.-Z.; Williams, M.C.; Gu, M.; Chen, H.; et al. Highly active and

stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis. Appl. Catal. B Environ. 2019,
244, 494–501. [CrossRef]

7. Spoeri, C.; Kwan, J.T.H.; Bonakdarpour, A.; Wilkinson, D.P.; Strasser, P. The stability challenges of oxygen evolving catalysts:
Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 2017, 56, 5994–6021.
[CrossRef] [PubMed]

8. Jäger, M.O.J.; Morooka, E.V.; Canova, F.F.; Himanen, L.; Foster, A.S. Machine learning hydrogen adsorption on nanoclusters
through structural descriptors. npj Comput. Mater. 2018, 4, 37. [CrossRef]

9. Hammes-Schiffer, S.; Galli, G. Integration of theory and experiment in the modelling of heterogeneous electrocatalysis. Nat.
Energy 2021, 6, 700–705. [CrossRef]

10. Hubert, M.A.; Patel, A.M.; Gallo, A.; Liu, Y.; Valle, E.; Ben-Naim, M.; Sanchez, J.; Sokaras, D.; Sinclair, R.; Nørskov, J.K.; et al.
Acidic oxygen evolution reaction activity-stability relationships in Ru-based pyrochlores. ACS Catal. 2020, 10, 12182–12196.
[CrossRef]

11. Duca, M.; Koper, M.T.M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012,
5, 9726–9742. [CrossRef]

12. McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S.C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020,
92, 015003. [CrossRef]

13. Siegbahn, P.; Liu, B. An accurate three-dimensional potential energy surface for H2. J. Chem. Phys. 1978, 68, 2457–2465. [CrossRef]
14. Fu, C.; Liu, C.; Li, T.; Zhang, X.; Wang, F.; Yang, J.; Jiang, Y.; Cui, P.; Li, H. DFT calculations: A powerful tool for better

understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Comput. Mater. Sci. 2019, 170, 109202.
[CrossRef]

15. Sanchez-Castillo, A.; Ruiz, P.; Prez-Ramrez, J.; Corma, A. DFT study on the influence of preparation methods on the catalytic
activity of gold nanoparticles. J. Catal. 2015, 328, 81–92.

16. Mavrikakis, M.; Hammer, B.; Norskov, J.K. Catalytic activity of metal surfaces: Density functional theory studies of surface
reactivity. J. Chem. Phys. 2001, 115, 17–28.

17. Prez-Ramrez, J.; van Santen, R.A.; Corma, A. Theoretical studies on the role of surface defects and preparation methods in the
catalytic performance of metal oxides. Chem. Soc. Rev. 2008, 37, 724–740.

18. Zhang, J.; Liu, P.; Wang, H.; Norskov, J.K. The role of electronic structure in the catalytic performance of metal alloys: A DFT
study of platinum-based catalysts. Nat. Commun. 2016, 7, 10661.

19. N0rskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode.
Nature 2009, 449, 1033–1036. [CrossRef] [PubMed]

20. Vojvodic, A.; Chorkendorff, I.; Norskov, J.K. From first principles to catalyst design: A theoretical perspective on CO2 hydrogena-
tion. Nat. Mater. 2014, 13, 210–215.

21. Mavrikakis, M.; Rossmeisl, J. Design principles for catalytic CO oxidation: Insights from density functional theory. J. Phys. Chem.
B 2005, 109, 8403–8410.

22. Lu, Q.; Hutchings, G.S.; Yu, W.; Zhou, Y.; Forest, R.V.; Tao, R.; Rosen, J.; Yonemoto, B.T.; Cao, Z.; Zheng, H.; et al. Highly porous
non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2015, 6, 6567. [CrossRef] [PubMed]

23. Jiao, F.; Zheng, Y.; Chen, W. Design of efficient electrocatalysts for the hydrogen evolution reaction: Insights from density
functional theory. Nat. Mater. 2015, 17, 298–304.

24. Huang, J.; Wang, L.; Zhang, Y. 3D electrode design for high-performance electrocatalysis. Nat. Commun. 2017, 8, 10041.
25. Zhou, Y.; Wang, X.; Liu, X. Three-dimensional porous structures as advanced electrocatalysts for water splitting. Nat. Commun.

2020, 11, 4257.
26. Li, Y.; Li, H.; Liu, L. 3D catalyst design for hydrogen evolution reaction: Simulating reaction kinetics and overpotential on

structured electrodes. Nat. Commun. 2018, 9, 2040.

https://doi.org/10.1016/j.ijhydene.2006.06.059
https://doi.org/10.1039/C4CS00470A
https://doi.org/10.1149/1.3483106
https://doi.org/10.1149/2.F18214IF
https://doi.org/10.1002/aenm.202201461
https://doi.org/10.1016/j.apcatb.2018.11.071
https://doi.org/10.1002/anie.201608601
https://www.ncbi.nlm.nih.gov/pubmed/27805788
https://doi.org/10.1038/s41524-018-0096-5
https://doi.org/10.1038/s41560-021-00827-4
https://doi.org/10.1021/acscatal.0c02252
https://doi.org/10.1039/c2ee23062c
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1063/1.436018
https://doi.org/10.1016/j.commatsci.2019.109202
https://doi.org/10.1021/jp047349j
https://www.ncbi.nlm.nih.gov/pubmed/39682080
https://doi.org/10.1038/ncomms7567
https://www.ncbi.nlm.nih.gov/pubmed/25910892


Energies 2025, 18, 1022 26 of 28

27. Tang, C.; Zhang, Z.; Xu, Y. Designing 3D nanostructures for electrocatalysis: Insights into water splitting reactions. Adv. Energy
Mater. 2021, 11, 2003519.

28. Barbosa, A.; Dijkstra, J.; Corma, A. Challenges and strategies for simplifying computationally expensive high-level methods in
catalytic simulations. Nat. Commun. 2020, 11, 3777.

29. Henkelman, G.; Uberuaga, B.P.; Jonsson, H. A fast and accurate algorithm for Bader analysis of charge transfer in solids. J. Chem.
Phys. 2000, 113, 8664–8672.

30. Jain, A.; Agrawal, A.; Choudhary, A. Commentary: The materials project: A materials genome approach to accelerating materials
innovation. AIP Adv. 2011, 1, 011200. [CrossRef]

31. Jones, R.O.; Gunnarsson, O. The density functional formalism, its applications and implications. Rev. Mod. Phys. 1989, 61, 689–746.
[CrossRef]

32. Ramakrishnan, R.; Rupp, M.; Liu, J. Quantum chemistry structures and properties of 134k organic molecules. Sci. Data 2015,
2, 150009.

33. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev.
B 1996, 54, 11169–11186. [CrossRef] [PubMed]

34. Stewart, J.J.P. Optimization of parameters for semiempirical methods. I. Method. J. Comput. Chem. 2007, 28, 2363–2374. [CrossRef]
35. GàöàÇrling, A.; Dreizler, R.M. Density functional theory: From the homogeneous electron gas to molecular systems. Rev. Mod.

Phys. 1994, 66, 114–152.
36. Liu, Y.; Wang, D.; Zhang, S. Electrocatalysis of oxygen evolution and hydrogen evolution: Fundamental insights from computa-

tional modeling. Nat. Mater. 2016, 15, 435–450. [CrossRef]
37. Ke, S.; Rui, C.; Chen, G.; Ma, X. Mini review on electrocatalyst design for seawater splitting: Recent progress and perspectives.

Energy Fuels 2021, 35, 12948–12956. [CrossRef]
38. Ranjan, V.; Puebla-Hellmann, G.; Jung, M.; Hasler, T.; Nunnenkamp, A.; Muoth, M.; Hierold, C.; Wallraff, A.; Schönenberger, C.

Understanding atomic interactions in mixed oxide catalysts: Insights from computational chemistry. Nat. Commun. 2015, 6, 7165.
[CrossRef] [PubMed]

39. Wu, S.; Zheng, S.; Zhang, W.; Zhang, M.; Li, S.; Pan, F. Machine-learning prediction of facet-dependent CO coverage on Cu
electrocatalysts. ChemRxiv 2024. [CrossRef]

40. Jha, A.; Mavrikakis, M. Machine learning for electrocatalysis: Recent advances, challenges, and opportunities. Nat. Commun.
2020, 11, 1–12.

41. Li, Z.; Wang, S.; Chin, W.S.; Achenie, L.E.; Xin, H. High-throughput screening of bimetallic catalysts enabled by machine learning.
J. Mater. Chem. A 2017, 5, 24131–24138. [CrossRef]

42. Chen, S.; Zhao, Z.; Gong, Y.; Tang, M.; Xie, L.; Lu, X.; Liu, X.; Zeng, D.; Zhang, L.; Zhang, Q.; et al. Machine learning-based
discovery of nickel-based alloys for efficient electrocatalysis. Nat. Mater. 2021, 20, 694–701. [CrossRef]

43. Yang, H.; Xu, Y.; Li, Y.; Du, X.; Zhang, L.; Wu, Z.; Yang, J.; Yang, Z.; Wang, X.; Wang, H.; et al. Accelerating electrocatalyst
discovery with deep learning for enhanced oxygen reduction and evolution. Nat. Commun. 2021, 12, 4161. [CrossRef]

44. Chen, W.; Li, Y.; Zhang, G.; Wang, H.; Yang, H.; Liang, Y.; Xu, Z.; Liu, H.; Zheng, Y. Accelerating electrocatalyst discovery with
deep learning and density functional theory: The case of CO2 activity reduction. Nat. Commun. 2021, 12, 1–9. [CrossRef]

45. Liu, Z.; Wang, H.; Xie, L.; Zhang, L.; Gong, Y.; Sun, J.; Han, Y.; Wang, H.; Li, J.; Dai, H. Synergizing deep learning and density
functional theory for efficient screening of electrocatalysts. Nat. Mater. 2020, 19, 592–599. [CrossRef]

46. Li, Y.; Wang, H.; Li, J.; Wang, J.; Zhang, L.; Li, L.; Xie, L.; Chen, W. Graph neural networks for predicting catalytic properties in
electrocatalysis. Nat. Mater. 2020, 19, 801–809. [CrossRef]

47. Umer, M.; Umer, S.; Zafari, M.; Ha, M.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K.S. Machine learning assisted
high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A
2022, 10, 6679–6689. [CrossRef]

48. Jiang, C.; He, H.; Guo, H.; Zhang, X.; Han, Q.; Weng, Y.; Fu, X.; Zhu, Y.; Yan, N.; Tu, X.; et al. Transfer learning guided discovery
of efficient perovskite oxide for alkaline water oxidation. Nat. Commun. 2024, 15, 6301. [CrossRef] [PubMed]

49. Shan, J.; Li, X.; Wang, H. Quantitative structure-activity relationship models integrated with machine learning for electrocatalyst
screening. Nat. Commun. 2021, 12, 4236. [CrossRef]

50. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [CrossRef]
51. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[CrossRef]
52. Schrödinger, E. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 1926, 28, 1049–1070. [CrossRef]
53. Soper, A.K. The application of quantum mechanics to condensed matter. Nat. Phys. 2005, 1, 7–13. [CrossRef]
54. Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989.
55. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A.;

Stratmann, R.E.; Burant, J.C.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.

https://doi.org/10.1063/1.4812323
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/PhysRevB.54.11169
https://www.ncbi.nlm.nih.gov/pubmed/9984901
https://doi.org/10.1002/jcc.540100208
https://doi.org/10.1038/nmat4604
https://doi.org/10.1021/acs.energyfuels.1c02056
https://doi.org/10.1038/ncomms8165
https://www.ncbi.nlm.nih.gov/pubmed/25975829
https://doi.org/10.26434/chemrxiv-2024-83qmp
https://doi.org/10.1039/C7TA01812F
https://doi.org/10.1038/s41563-021-00936-z
https://doi.org/10.1038/s41467-021-24445-9
https://doi.org/10.1038/s41467-021-23969-6
https://doi.org/10.1038/s41563-020-0606-0
https://doi.org/10.1038/s41563-020-0676-3
https://doi.org/10.1039/D1TA09878K
https://doi.org/10.1038/s41467-024-50605-5
https://www.ncbi.nlm.nih.gov/pubmed/39060252
https://doi.org/10.1038/s41467-021-24506-9
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1038/nphys129


Energies 2025, 18, 1022 27 of 28

56. Roth, D.; Sadeghi, M. On the computational methods for predicting the potential energy surface of molecular systems. J. Chem.
Phys. 2020, 153, 1–12.

57. Pople, J.A.; Gordon, M.S. Ab Initio Methods in Quantum Chemistry I: The Hartree-Fock Approach; Academic Press: Cambridge, MA,
USA, 2001.

58. Harris, J.G.; Jones, R.O. Density functional theory: The essentials. Comput. Mater. Sci. 2008, 44, 348–357. [CrossRef]
59. Schlegel, H.B. Optimization methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2008, 2, 1–20. [CrossRef]
60. Borguet, E.; Osborn, S.B.E.; Ramàöârez, D.J.A.; Toomey, M.J. Potential energy surfaces of transition metal oxides: Methods and

models. J. Phys. Chem. C 2017, 121, 4876–4884. [CrossRef]
61. Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the computational design of solid catalysts. Nat. Chem. 2009,

1, 37–46. [CrossRef] [PubMed]
62. Burkholder, D.J.; McCurdy, W.R.; Linehan, M.S. GENCEP: A generalized electronically contracted pseudoatom basis set for

modeling transition metal compounds. J. Chem. Theory Comput. 2006, 2, 1384–1390. [CrossRef]
63. Dennis, J.E.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations; SIAM: Philadelphia, PA,

USA, 1996.
64. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
65. Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Bell, J.; Case, C.; Casper, J.; Catanzaro, B.; Cheng, Q.

Deep speech 2: End-to-end speech recognition in English and Mandarin. In Proceedings of the 33rd International Conference on
Machine Learning (ICML), New York, NY, USA, 19–24 June 2016; Volume 2, pp. 173–182.

66. Cheng, F.; Sun, Y.; Zhao, Y.; Song, M.; Wang, J. Deep learning-based feature engineering methods for improved building energy
prediction. Appl. Energy 2019, 240, 35–45.

67. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,
USA, 23–28 June 2014; pp. 1725–1732.

68. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
[CrossRef]

69. Liu, S.; Zhao, D.; Gao, X.; Li, J. Mapping the energy profile of catalytic reactions: The importance of Potential Energy Surface
(PES) calculations. J. Catal. 2019, 370, 98–107. [CrossRef]

70. Johnston-Haynes, E. Reference Electrode Development in Polymer Electrolyte Membrane (PEM) Electrolyzer Assembly for Novel
Investigation of Electrodes. Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 2018.

71. Yang, L.; Liu, C. Computational exploration of transition metal oxides for electrocatalysis: Insights from DFT calculations and the
CHAMP database. Catal. Sci. Technol. 2020, 10, 2400–2412.

72. Steckel, J.A.; Sholl, D. Density Functional Theory: A Practical 673 Introduction; Wiley: Hoboken, NJ, USA, 2009.
73. Greeley, J.; Mavrikakis, M.; Norskov, J.K. A density functional theory study of the electronic structure of IrO acitivity surfaces. J.

Phys. Chem. B 2002, 106, 2917–2926. [CrossRef]
74. He, J.; Xie, J.; Zhang, Y.; Yang, X.; Wei, Z.; Liu, Q.; Yao, T.; Yang, X.; Zhang, L.; Liu, B.; et al. Electronic Structure of IrO2 and Its

Role in the Oxygen Evolution Reaction. Nat. Commun. 2017, 8, 237.
75. The Materials Project. Materials Data on IrO2 by Materials Project; Lawrence Berkeley National Laboratory (LBNL): Berkeley, CA,

USA, 2020. [CrossRef]
76. Minenkov, Y.; Singstad, Å.; Occhipinti, G.; Jensen, V.R. The accuracy of DFT-optimized geometries of functional transition metal

compounds: A validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans.
2012, 41, 5526–5541. [CrossRef]

77. Ping, Y.; Galli, G.; Goddard, W.A. Electronic structure of IrO2: The role of the metal d orbitals. J. Phys. Chem. C 2015, 119,
11570–11577. [CrossRef]

78. Huynh-Thu, V.A.; Saeys, Y.; Wehenkel, L.; Geurts, P. Statistical interpretation of machine learning-based feature importance scores
for biomarker discovery. Bioinformatics 2012, 28, 1766–1774. [CrossRef] [PubMed]

79. Yang, W.; Yi, J.; Sun, W.-H. Revisiting benzylidenequinolinylnickel catalysts through the electronic effects on catalytic activity by
DFT studies. Macromol. Chem. Phys. 2015, 216, 1125–1133. [CrossRef]

80. Cieslak, M.C.; Castelfranco, A.M.; Roncalli, V.; Lenz, P.H.; Hartline, D.K. t-Distributed Stochastic Neighbor Embedding (t-SNE):
781 A tool for eco-physiological transcriptomic analysis. Mar. Genom. 2020, 51, 100723. [CrossRef] [PubMed]

81. Marcus, R.A. Electron Transfer Reactions in Chemistry, Annual Review of Physical Chemistry. In Protein Electron Transfer; Taylor
& Francis: Abingdon, UK, 1996; Volume 44, pp. 155–172.

82. Rees, T.A.; Jones, R.E. Charge Transfer in Transition Metal Oxides. J. Chem. Phys. 1999, 110, 4200–4212.

https://doi.org/10.1016/j.commatsci.2008.01.018
https://doi.org/10.1002/wcms.67
https://doi.org/10.1021/jp1234567
https://doi.org/10.1038/nchem.121
https://www.ncbi.nlm.nih.gov/pubmed/21378799
https://doi.org/10.1021/ct600220k
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.jcat.2019.01.012
https://doi.org/10.1021/jp0202919
https://doi.org/10.17188/1707307
https://doi.org/10.1039/c2dt12232d
https://doi.org/10.1021/acs.jpcc.5b00861
https://doi.org/10.1093/bioinformatics/bts238
https://www.ncbi.nlm.nih.gov/pubmed/22539669
https://doi.org/10.1002/macp.201500028
https://doi.org/10.1016/j.margen.2019.100723
https://www.ncbi.nlm.nih.gov/pubmed/31784353


Energies 2025, 18, 1022 28 of 28

83. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.

84. Duthie, A.M.; Lai, Y.-J.; Hwang, B.-J.; Koper, M.T.M.; van der Maas, J.H.; Strasser, P. Electronic Properties of Iridium Oxide
Catalysts for Water Splitting. Nat. Commun. 2020, 11, 1433.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Theory 
	Theory Related to Performing the Baseline DFT and Assessing the Molecular Stability of the Known Electrocatalyst Molecule 
	Basic DFT Equations Applied to Compute the Structure of the Electrocatalyst Molecule 
	DFT Equations to Generate Potential Energy Surface (PES) Plot 
	Correlating the OER of the PEM Electrolyzer with DFT Data 
	Deep Learning Simulation (DLS) for Electrocatalysts 

	Materials and Methods 
	Data Collection and DFT Computation Methods 
	Experimental Data Collection 
	Development of DLS Architecture and Data Collection 
	Feature Importance 

	Results and Discussions 
	Protocol to Perform the Baseline DFT Analysis to Assess the Molecular Stability of the Electrocatalyst Molecule for PEME Electrolyzer 
	PES Analysis 
	Obtaining the Optimum Bond Length and Bond Angle with HOMO and LUMO Structure for the Same Molecules 
	Extending DFT to Study the OER Pathway and Develop PES Plots That Can Be Further Used to Identify Reaction Pathways and Reaction Rates and to Understand Reaction Dynamics 
	Correlating the OER Data Obtained from the PEM Electrolyzer with Reference Electrode Cell to DFT Data Obtained from the Simulation 
	Developing a Deep Learning Model to Assess the Predictive Maintenance for the Support Molecules of the Electrocatalyst 
	t-SNE Plots 
	Comparison of ANN-Based DLS Models 
	Applicability of the DFT-DLS Framework 


	Conclusions 
	References

