Study on the Wake Characteristics of the Loess Plateau Terrain Based on Wind Tunnel Experiment
<p>New installed capacity in China in 2023: (<b>a</b>) new installed capacity in various regions of China from 2022 to 2023; (<b>b</b>) the proportion of new additions in various regions of China (NE for Northeast China; NC for North China; EC for East China; NW for Northwest China; SW for Southwest China; MS for Central South China).</p> "> Figure 2
<p>Landform and atmospheric boundary layer characteristics of the loess plateau: (<b>a</b>) wind farm in loess plateau; (<b>b</b>) boundary layer of the loess plateau.</p> "> Figure 3
<p>Experimental model: (<b>a</b>) Terrain Model of the Loess Plateau (TMLP); (<b>b</b>) Standard Three-dimensional Mountain Model (STMM).</p> "> Figure 4
<p>Experiment scheme and experiment environment: (<b>a</b>) experiment scheme; (<b>b</b>) dimensionless mean velocity profile; (<b>c</b>) turbulence intensity profile; (<b>d</b>) photograph of wind tunnel experiment.</p> "> Figure 5
<p>Mean velocity distribution of vertical cross-section at different spanwise positions: (<b>a</b>) TMLP; (<b>b</b>) STMM.</p> "> Figure 6
<p>Recovery of mean velocity per unit distance at different heights: (<b>a</b>) recovery of mean velocity at different positions of cross-section Y = 0 H; (<b>b</b>) recovery of mean velocity at different positions of cross-section Y = 1 H.</p> "> Figure 7
<p>Turbulence distribution of vertical cross-sections at different spanwise positions: (<b>a</b>) TMLP; (<b>b</b>) STMM.</p> "> Figure 8
<p>Time–frequency plot of fluctuating wind speed.</p> "> Figure 9
<p>The fluctuating velocity power density spectra of the incoming flow, TMLP wake, and STMM wake at three height positions: (<b>a</b>) at a height of 0.1 H; (<b>b</b>) at a height of 0.5 H; (<b>c</b>) at a height of 1 H.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. Wind Tunnel
2.2. Experiment Model
2.3. Experiment Scheme
3. Results and Discussion
3.1. Time-Averaged Characteristics of Wake Flow for TMLP
3.2. Turbulence Characteristics for TMLP
3.2.1. Characteristics of Streamwise Turbulence Distribution
3.2.2. The Time–Frequency Characteristics of Turbulent Structures
3.2.3. The Impact of Topographical Features on Turbulent Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GWEC. Global Wind Report 2024; Global Wind Energy Council (GWEC): Brussels, Belgium, 2024; p. 78. [Google Scholar]
- Alfredsson, P.H.; Segalini, A. Wind farms in complex terrains: An introduction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160096. [Google Scholar] [CrossRef]
- CWEA. China Wind Power Hoisting Capacity Statistics Briefing in 2023; Wind Energy; Chinese Wind Energy Association (CWEA): Beijing, China, 2024; pp. 40–56. [Google Scholar]
- Huang, J.; Zhang, W.; Zuo, J.; Bi, J.; Shi, J.; Wang, X.; Chang, Z.; Huang, Z.; Yang, S.; Zhang, B.; et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci. 2008, 25, 906–921. [Google Scholar] [CrossRef]
- Wang, G.; Huang, J.; Guo, W.; Zuo, J.; Wang, J.; Bi, J.; Huang, Z.; Shi, J. Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China. J. Geophys. Res. Atmos. 2010, 115, D00K17. [Google Scholar] [CrossRef]
- Fu, T.; Wang, C. A novel ensemble wind speed forecasting model in the longdong area of loess plateau in china. Math. Probl. Eng. Math. Probl. Eng. 2018, 2018, 2506157. [Google Scholar] [CrossRef]
- Ma, M.; Pu, Z.; Wang, S.; Zhang, Q. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China. Bound.-Layer Meteorol. 2011, 140, 163–176. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, L.; Wang, Y.; Cao, X.; Zhang, Q.; Wang, H.; Zhang, B. Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China. J. Geophys. Res. Atmos. 2014, 119, 6009–6021. [Google Scholar] [CrossRef]
- Liang, J.; Guo, Q.; Zhang, Z.; Zhang, M.; Tian, P.; Zhang, L. Influence of Complex Terrain on Near-Surface Turbulence Structures over Loess Plateau. Atmosphere 2020, 11, 930. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, Q.; Wang, R.; Li, Y.; Wang, S. Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of Loess Plateau. Adv. Atmos. Sci. 2015, 32, 1291–1302. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, L.; Ren, Y.; Wei, W.; Zhang, H.; Cai, X.; Song, Y.; Kang, L. Characteristics of the turbulence intermittency and its influence on the turbulent transport in the semi-arid region of the Loess Plateau. Atmos. Res. 2021, 249, 105312. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Jing, X.; Jia, W.; Yu, Y.; Zhao, S. Ergodicity of turbulence measurements upon complex terrain in Loess Plateau. Sci. China Earth Sci. 2021, 64, 37–51. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Jia, W.; Yu, Y.; Zhao, S. Multi-site observation of large-scale eddies in the surface layer of the Loess Plateau. Sci. China Earth Sci. 2023, 66, 871–881. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Zhang, M.; Guo, Q.; Zhang, L. Surface Layer Turbulent Characteristics over the Complex Terrain of the Loess Plateau Semiarid Region. Adv. Meteorol. 2021, 2021, 6618544. [Google Scholar] [CrossRef]
- Duetsch-Patel, J.E.; Gargiulo, A.; Borgoltz, A.; Devenport, W.J.; Lowe, K.T. Structural aspects of the attached turbulent boundary layer flow over a hill. Exp. Fluids 2023, 64, 38. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.-Y.; Deng, E.; Ni, Y.-Q.; Chan, P.-W.; Yang, W.-C.; Tan, Y.-K. Acceleration and Reynolds effects of crosswind flow fields in gorge terrains. Phys. Fluids 2023, 35, 85143. [Google Scholar] [CrossRef]
- Kamada, Y.; Li, Q.; Maeda, T.; Yamada, K. Wind tunnel experimental investigation of flow field around two-dimensional single hill models. Renew. Energy 2019, 136, 1107–1118. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, C.M.; Lim, H.C.; Kyong, N.H. An experimental and numerical study on the flow over two-dimensional hills. J. Wind Eng. Ind. Aerodyn. 1997, 66, 17–33. [Google Scholar] [CrossRef]
- Nanos, E.M.; Yilmazlar, K.; Zanotti, A.; Croce, A.; Bottasso, C.L. Wind tunnel testing of a wind turbine in complex terrain. J. Phys. Conf. Ser. 2020, 1618, 032041. [Google Scholar] [CrossRef]
- Cao, S.; Tamura, T. Experimental study on roughness effects on turbulent boundary layer flow over a two-dimensional steep hill. J. Wind Eng. Ind. Aerodyn. 2006, 94, 1–19. [Google Scholar] [CrossRef]
- Miller, C.A.; Davenport, A.G. Guidelines for the calculation of wind speed-ups in complex terrain. J. Wind Eng. Ind. Aerodyn. 1998, 74–76, 189–197. [Google Scholar] [CrossRef]
- Zhang, W.; Markfort, C.D.; Porté-Agel, F. Wind-Tunnel Experiments of Turbulent Wind Fields over a Two-dimensional (2D) Steep Hill: Effects of the Stable Boundary Layer. Bound.-Layer Meteorol. 2023, 188, 441–461. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Y.; Yue, P.; He, X.; Liu, L.; Luo, X. Effect of Topography Truncation on Experimental Simulation of Flow over Complex Terrain. Appl. Sci. 2022, 12, 2477. [Google Scholar] [CrossRef]
- Gong, W.; Ibbetson, A. A wind tunnel study of turbulent flow over model hills. Bound.-Layer Meteorol. 1989, 49, 113–148. [Google Scholar] [CrossRef]
- Ishihara, T.; Hibi, K.; Oikawa, S. A wind tunnel study of turbulent flow over a three-dimensional steep hill. J. Wind Eng. Ind. Aerodyn. 1999, 83, 95–107. [Google Scholar] [CrossRef]
- Takahashi, T.; Ohtsu, T.; Yassin, M.F.; Kato, S.; Murakami, S. Turbulence characteristics of wind over a hill with a rough surface. J. Wind Eng. Ind. Aerodyn. 2002, 90, 1697–1706. [Google Scholar] [CrossRef]
- Shen, G.; Yao, J.; Lou, W.; Chen, Y.; Guo, Y.; Xing, Y. An Experimental Investigation of Streamwise and Vertical Wind Fields on a Typical Three-Dimensional Hill. Appl. Sci. 2020, 10, 1463. [Google Scholar] [CrossRef]
- Lubitz, W.D.; White, B.R. Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills. J. Wind Eng. Ind. Aerodyn. 2007, 95, 639–661. [Google Scholar] [CrossRef]
- Yang, X.; Howard, K.B.; Guala, M.; Sotiropoulos, F. Effects of a three-dimensional hill on the wake characteristics of a model wind turbine. Phys. Fluids 2015, 27, 25103. [Google Scholar] [CrossRef]
- Lange, J.; Mann, J.; Berg, J.; Parvu, D.; Kilpatrick, R.; Costache, A.; Chowdhury, J.; Siddiqui, K.; Hangan, H. For wind turbines in complex terrain, the devil is in the detail. Environ. Res. Lett. 2017, 12, 94020. [Google Scholar] [CrossRef]
- Uchida, T.; Sugitani, K. Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain. Energies 2020, 13, 3896. [Google Scholar] [CrossRef]
- Demarco, G.; Martins, L.G.N.; Bodmann, B.E.J.; Puhales, F.S.; Acevedo, O.C.; Wittwer, A.R.; Costa, F.D.; Roberti, D.R.; Loredo-Souza, A.M.; Degrazia, F.C.; et al. Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel. Int. J. Environ. Res. Public Health 2022, 19, 5134. [Google Scholar] [CrossRef]
- Howard, K.B.; Chamorro, L.P.; Guala, M. A comparative analysis on the response of a wind-turbine model to atmospheric and terrain effects. Bound.-Layer Meteorol. 2016, 158, 229–255. [Google Scholar] [CrossRef]
- Ma, Y.; Li, S.; Li, D.; Gao, Z.; Guo, X. Study on power characteristics of wind turbine on the Loess Plateau terrain based on wind tunnel experiment. Wind Eng. 2024, 0309524X241283134. [Google Scholar] [CrossRef]
- Irwin, H.P.A.H. The design of spires for wind simulation. J. Wind Eng. Ind. Aerodyn. 1981, 7, 361–366. [Google Scholar] [CrossRef]
- IEC-61400-1-2019; Wind Energy Generation Systems—Part1:Design Requirements. American National Standards Institute: Atlanta, GA, USA, 2019.
- Chamorro, L.P.; Arndt, R.E.; Sotiropoulos, F. Reynolds number dependence of turbulence statistics in the wake of wind turbines ABSTRACT. Wind Energy 2012, 15, 733–742. [Google Scholar] [CrossRef]
- Larsén, X.G.; Petersen, E.L.; Larsen, S.E. Variation of boundary-layer wind spectra with height. Q. J. R. Meteorol. Soc. 2018, 144, 2054–2066. [Google Scholar] [CrossRef]
- An, L.-S.; Alinejad, N.; Kim, S.; Jung, S. Experimental study on wind characteristics and prediction of mean wind profile over complex heterogeneous terrain. Build. Environ. 2023, 243, 110719. [Google Scholar] [CrossRef]
- Alinejad, N.; Jung, S.; Kakareko, G.; Fernández-Cábán, P.L. Wind-Tunnel Reproduction of Nonuniform Terrains Using Local Roughness Zones. Bound.-Layer Meteorol. 2023, 188, 463–484. [Google Scholar] [CrossRef]
- Khujadze, G.; Drikakis, D.; Ritos, K.; Kokkinakis, I.W.; Spottswood, S.M. Wavelet analysis of high-speed transition and turbulence over a flat surface. Phys. Fluids 2022, 34, 46107. [Google Scholar] [CrossRef]
- Zheng, X.-B.; Jiang, N. Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer. Chinese Phys. B 2015, 24, 64702. [Google Scholar] [CrossRef]
- Guo, T.; Guo, X.; Gao, Z.; Li, S.; Zheng, X.; Gao, X.; Li, R.; Wang, T.; Li, Y.; Li, D. Nacelle and tower effect on a stand-alone wind turbine energy output A discussion on field measurements of a small wind turbine. Appl. Energy 2021, 303, 117590. [Google Scholar] [CrossRef]
- Cuerva-Tejero, A.; Avila-Sanchez, S.; Gallego-Castillo, C.; Lopez-Garcia, O.; Perez-Alvarez, J.; Yeow, T.S. Measurement of spectra over the Bolund hill in wind tunnel. Wind Energy 2018, 21, 87–99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Li, S.; Li, D.; Gao, Z.; Guo, X.; Ma, Q. Study on the Wake Characteristics of the Loess Plateau Terrain Based on Wind Tunnel Experiment. Energies 2025, 18, 958. https://doi.org/10.3390/en18040958
Ma Y, Li S, Li D, Gao Z, Guo X, Ma Q. Study on the Wake Characteristics of the Loess Plateau Terrain Based on Wind Tunnel Experiment. Energies. 2025; 18(4):958. https://doi.org/10.3390/en18040958
Chicago/Turabian StyleMa, Yulong, Shoutu Li, Deshun Li, Zhiteng Gao, Xingduo Guo, and Qingdong Ma. 2025. "Study on the Wake Characteristics of the Loess Plateau Terrain Based on Wind Tunnel Experiment" Energies 18, no. 4: 958. https://doi.org/10.3390/en18040958
APA StyleMa, Y., Li, S., Li, D., Gao, Z., Guo, X., & Ma, Q. (2025). Study on the Wake Characteristics of the Loess Plateau Terrain Based on Wind Tunnel Experiment. Energies, 18(4), 958. https://doi.org/10.3390/en18040958