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Abstract: Permanent magnet synchronous motors (PMSMs) are widely used in industrial
automation and electric vehicles due to their high efficiency and excellent dynamic perfor-
mance. However, controlling PMSMs presents challenges such as parameter variations
and system nonlinearities. This paper proposes a twin delayed deep deterministic policy
gradient (TD3)-based energy-saving optimization control method for PMSM drive systems.
The TD3 algorithm uses double networks, target policy smoothing regularization, and
delayed actor network updates to improve training stability and accuracy. Simulation
experiments under two operating conditions show that the TD3 algorithm outperforms
traditional proportional–integral (PI) controllers and linear active disturbance rejection con-
trol (LADRC) controllers in terms of reference trajectory tracking, q-axis current regulation,
and speed tracking error minimization. The results demonstrate the TD3 algorithm’s effec-
tiveness in enhancing motor efficiency and system robustness, offering a novel approach to
PMSM drive system control through deep reinforcement learning.

Keywords: PMSM; TD3; optimization control; energy-saving

1. Introduction
PMSMs have gained significant traction in industrial automation and electric vehicle

applications due to their exceptional efficiency, high power density, and superior dynamic
performance [1,2]. The PMSM drive system represents a typical dual-timescale system.
Among the most efficient control designs for PMSMs is the cascade structure, which in-
corporates a rapid inner loop responsible for armature current control while employing a
slower outer loop intended to adjust angular velocity by generating appropriate current ref-
erence signals. However, achieving the desired control performance for PMSM applications
presents challenges, including issues such as parameter variations, external disturbances,
and system nonlinearity. In reference [3], it is pointed out that the permanent magnetic
flux linkage can vary by 20% of its nominal value, while the stator resistance can vary by
200% of its nominal value. In practical applications, researchers often aim to employ a
stable and highly accurate control strategy that can effectively achieve a rapid response and
robustness in the presence of uncertain parameters. However, conventional PI controllers
prove inadequate for tracking the outer loop velocity when motor parameter uncertainties
arise. Consequently, researchers have explored diverse advanced control techniques to
address the velocity servo problem, encompassing model predictive control (MPC), robust
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control, adaptive control, fuzzy control, disturbance rejection control, sliding mode control,
prediction-based model-free control, and deep learning and reinforcement learning-based
controls. Paper [4] proposes a robust model predictive current control method based on
nonlinear extended state observation to enhance the control performance of PMSM in the
presence of parameter variations. Paper [5] presents a robust adaptive model predictive
speed control method based on a recurrent neural network to tackle the speed control
problem of PMSMs under the conditions of mismatched parameters.

Paper [6] presents a universal control framework that utilizes an observer to estimate
both the system state and disturbances, while establishing a predictive current controller
based on an enhanced system model. Paper [7] introduces a motor-parameter-free model
predictive voltage control strategy for PMSM drive systems. Its fundamental concept
aims to reduce dependence on motor parameters in PMSM control, thus enhancing the
robustness of this control strategy. Papers [8–12] employ the MPC algorithm to mitigate
torque fluctuations in PMSM drive systems induced by interturn faults (ITFs). It simplifies
the complexity of control methods for PMSM drives, considering ITF by incorporating an
adaptive compensation current approach.

In the field of robust adaptive control, the compensator based on the extended state
observer proposed in reference [13] effectively addresses the issue of excessively high
switching gains required for disturbance rejection. Reference [14] introduced a system
transformation method that effectively converts a PMSM system with current constraints
into an unconstrained system, thereby streamlining the controller design process. Refer-
ence [15] proposed an observer scheme utilizing neural networks along with a sensorless
robust optimal control approach to address the speed and current tracking challenges in
partially unknown PMSM systems under disturbances and saturation voltages. The pa-
per [16] integrates the adaptive integral sliding mode method and employs a self-regulation
approach to adjust the amplitude of the sliding mode function as well as compensate
for load disturbances, thereby enhancing the dynamic performance of the system. The
paper [17–19] utilizes deep reinforcement learning (DRL) to solve the control problem
of PMSM. By introducing artificial intelligence algorithms into the traditional parameter
optimization process, a DRL model is constructed that can automatically optimize and
adjust parameters in different application scenarios, thereby achieving optimal control
effects in various environments.

In the domain of prediction-based control strategies, reference [20] introduces an
advanced model-free active disturbance rejection dead-zone predictive current control
approach specifically designed for PMSM. This approach is based on a data-driven method-
ology, aiming to address the issue of parameter mismatching in dead-zone prediction
current control and improve the performance of PMSM control systems. The paper [21]
introduces a model-free predictive current control drive system that incorporates an ex-
tended Kalman filter to address performance degradation in model predictive control
due to variations in motor parameters. The paper [22] introduces a model-free predictive
current control strategy for the drive system of PMSMs in electric vehicles. This innovative
approach effectively mitigates performance limitations caused by inaccurate inertia esti-
mation through real-time dynamic adjustment of inertia parameters. Paper [23] presents a
novel speed control strategy that combines an adaptive speed controller with a radial basis
function neural network for precise speed regulation of PMSM. This approach effectively
mitigates the impact of parameter uncertainties and load variations on system performance.
The paper [24] utilizes a linear–nonlinear switching active disturbance rejection control
strategy to design speed and current controllers for PMSM in servo systems, aiming to
improve the disturbance rejection performance of PMSM speed and current controllers.
Paper [25] presents an optimal tracking control strategy for PMSM systems characterized
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by partially unknown dynamics, voltage saturation, and varying speed and current. By
integrating an advanced feedforward control input, conventional velocity and current
tracking challenges are redefined as novel optimal control problems within a cascaded
framework. Experimental results demonstrate that both tracking and approximation errors
are uniformly bounded.

In the vector control system of a three-phase PMSM, the conventional PI regulator is
widely adopted as the speed controller due to its simplicity and robustness. However, the
PMSM exhibits nonlinear dynamics and strong coupling among multiple variables. In the
presence of external disturbances or variations in internal parameters, the traditional PI
control method struggles to meet stringent control requirements. To improve the dynamic
performance of the PMSM speed regulation system, it is crucial to implement a control
strategy that remains insensitive to external disturbances and parameter changes while
ensuring rapid response and high accuracy. Furthermore, achieving high-performance con-
trol for a PMSM requires precise rotor position and speed information within the magnetic
field-oriented vector control framework. The use of mechanical sensors for this purpose,
however, increases system cost, size, and weight, and imposes strict operating environ-
ment constraints. Sensorless control technology addresses these challenges by monitoring
electrical signals within the motor windings and employing advanced algorithms to accu-
rately estimate rotor position and speed, thereby enhancing the robustness and reliability
of the PMSM vector control system. This paper introduces an energy-optimized speed
control algorithm based on the TD3 for PMSM drive systems. Based on the traditional
double closed-loop control structure for PMSM speed and current, the TD3 algorithm is
employed to train an intelligent agent aimed at optimizing the inner-loop current controller.
In designing the reward function for this intelligent agent, both the speed tracking error
of the PMSM and the energy consumption of the controller are taken into account. The
performance of this optimized controller is then compared with that of PI and LADRC
controllers. The main contributions are summarized as follows.

• The TD3-based optimal control reduces the difficulty of designing a speed tracking
controller for nonlinear PMSM.

• Adding energy consumption optimization control to the traditional control objective
of steadiness, accuracy, and speed effectively improves the efficiency of the motor.

• The better generalization of the algorithm enables the motor to exhibit better control
performance under different operating conditions.

The rest of this article is organized as follows. In Section 2, the paper details the
modeling process of PMSM and clearly defines the control objectives. In Section 3, we
introduce a PMSM speed tracking control algorithm utilizing TD3 and present an in-depth
analysis of both the foundational environment and the implementation process of this
algorithm. Section 4 analyzes and discusses the experimental results in detail. Finally,
Section 5 provides a summary of the article.

2. Description of the Control Problem
2.1. Control Object Model

The motion equation of PMSM can be described as follows:

J
dωm

dt
= Te − TL − Bωm (1)

Te =
3
2

pniq

[
id
(

Ld − Lq
)
+ φ f

]
(2)
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Among them, ωm, J, B, pn, Te and TL represent the mechanical angular velocity,
moment of inertia, damping coefficient, number of pole pairs, electromagnetic torque, and
load torque of the motor, respectively. To facilitate controller design in a synchronous
rotating coordinate system, d − q for PMSM models are commonly established. The stator
voltage equation can be expressed as Equation (3):{

ud = Rid + d
dt φd − ωe φq

uq = Riq + d
dt φq + ωe φd

(3)

The stator magnetic flux equation is given by Equation (4):{
φd = Ldid + φ f

φq = Lqiq
(4)

The substitution of Equation (4) into Equation (3) yields the stator voltage equation as
shown (5): {

ud = Rid + Ld
d
dt id − ωeLqiq

uq = Riq + Lq
d
dt iq + ωe

(
Ldid + φ f

) (5)

Among them, ud, uq are the components of the stator voltage on the d − q axis, while
id, iq are the components of the stator current on the d − q axis; R represents the stator
resistance. φd, φq are the X-axis components of the stator magnetic flux. ωe represents the
angular velocity of electricity, Ld, Lq are the inductance components of the d − q axis, and
φ f represents the magnetic flux of a permanent magnet. In addition, it is important to pay
attention to the relationship between variables in Equation (6) when constructing a PMSM
simulation model. 

ωe = pnωm

Nr =
30
π ωm

θe =
∫

ωedt
(6)

where ωm represents the mechanical angular velocity of the motor (rad/s), and Nr repre-
sents the motor speed (r/min). The common methods of traditional vector control include
id = 0 control and maximum torque current ratio control. The control method where
the dq-axis inductance of surface-mounted PMSM is equal, i.e., Ld = Lq and id = 0, is
mainly applicable to three-phase surface-mounted PMSMs. In this case, Equation (2) can
be rewritten as Equation (7):

Te =
3
2

pniq φ f (7)

For surface-mounted three-phase PMSMs, id = 0 control and the maximum torque
current ratio control are equivalent.

2.2. Speed Loop Control

Assuming the motor starts with no load, i.e., TL = 0, when adopting control strategy
id = 0, the active damping is defined as in Equation (8):

iq = i′q − Baωm (8)

The combination of Equations (1) and (2) yields Equation (9), thereby establishing a
comprehensive relationship.

dωm

dt
=

1.5pn φ f

J
(
i′q − Baωm

)
− B

J
ωm (9)
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Repositioning the poles of Equation (9) at the desired closed-loop bandwidth β and
applying a Laplace transform derives the transfer function representing motor speed in
relation to shaft current as shown in Equation (10).

ωm(s) =
1.5pn φ f /J

s + β
i′q(s) (10)

The β represents the desired bandwidth of the speed control loop. The coefficient
Ba of active damping, as derived from the comparison between Equations (9) and (10), is
presented in Equation (11).

Ba =
βJ − B

1.5pn φ f
(11)

The speed loop controller can be mathematically represented as Equation (12) when
employing a conventional PI controller.

iq∗ =

(
Kp +

Ki
s

)
(ωm∗ − ωm)− Baωm (12)

where Kp = βJ
1.5pn φ f

, Ki = βKp.

2.3. Current Loop Control

The current equation for the d − q-axis, which corresponds to Equation (13), can be
obtained by rewriting Equation (5).

d
dt id = − R

Ld
id +

Lq
Ld

ωeiq +
1

Ld
ud

d
dt iq = − R

Ld
id − 1

Lq ωe

(
Ldid + φ f

)
+ 1

Lq
uq

(13)

The complete decoupling of id and iq yields Equation (14).{
ud0 = ud + ωeLqiq

uq0 = uq − ωe

(
Ldid + φ f

) (14)

The substitution of Equation (5) into Equation (14) results in the derivation of Equa-
tion (15). {

ud0 = Rid + Ld
d
dt id

uq0 = Riq + Lq
d
dt iq

(15)

where ud0, uq0 are the d-axis and q-axis voltages after current decoupling, respectively.
Using the conventional PI controller and combining with the feed-forward decoupling
control strategy, the d − q-axis voltage can be obtained as shown in Equation (16). ud∗ =

(
Kpd +

Kid
s

)
(id∗ − id)− ωeLqiq

uq∗ =
(

Kpd +
Kiq
s

)
(iq∗ − iq) + ωe(Ldid + ψ f )

(16)

where Kpd, Kpq is the proportional gain of the PI regulator and Kid, Kiq is the integral gain
of the PI regulator.

The block diagram in Figure 1 illustrates the three-phase PMSM vector control em-
ploying the method with id = 0. It is evident from the figure that three-phase PMSM vector
control primarily comprises three components, namely a speed loop controller, a current
loop controller, and the space vector pulse width modulation (SVPWM) algorithm.
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 Figure 1. Three-phase PMSM vector control block diagram.

3. TD3 of PMSM
The TD3 algorithm proposes three key enhancement techniques based on the deep

deterministic policy gradient (DDPG) algorithm, as delineated below [26]. (1) The double
network refers to the utilization of two Critic networks, wherein the smaller one is employed
for computing the target value in order to mitigate potential issues related to overestimation.
(2) Target policy smoothing regularization incorporates perturbations to the action in the
subsequent state while calculating the target value, aiming to enhance the precision of
value evaluation. (3) Following multiple updates to the Critic network, subsequent updates
are made to the Actor network to enhance training stability. Figure 2 shows the structure of
the TD3 algorithm [27].

Environment

Gaussion Noise

Optimizer
Actor

ActorNet 
Parament:

μθ

Target-ActorNet 
Parament: 'μθ

Experience replay buffer

Optimizer
Critic

CriticNet 
Parament: Qθ

Target-CriticNet 
Parament: 1Qθ
Target-CriticNet 
Parament: 2Qθ

Store ( )1, , ,t t t ts a r s +

Sample 
mini-batch

Update: μθ Policy gradient

Soft update

Update: Q gradient

Soft update( )1,2min ' ,i i iy Q ε=

Qθ
Jμθ∇

Gradient:a

( )1* , , ,t t t tN s a r s +

( )ta sμ=

( )1jsμ +

Action ta ( )tsμ

( )1, ,t t ts r s +

 
 
 

 
Figure 2. Structure of the TD3 algorithm.

The Actor network updates by maximizing the cumulative expected return through a
deterministic policy gradient, while both Critic1 and Critic2 networks update by minimiz-
ing the error between the evaluation value and the target value using mean squared error.
All target networks are updated using an exponential moving average (EMA) soft update
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method. During the training phase, a batch of data are sampled from the Replay Buffer
with a specific batch size. The Replay Buffer plays a pivotal role in reinforcement learning.
It enhances the efficiency of sample utilization and accelerates training speed. Additionally,
by mitigating data correlation, it improves both the stability and generalization capability of
the model. In this study, the capacity of the Replay Buffer is configured to 10,000. Assuming
one sample is denoted as (s, a, r, s′, done), the update process for all networks follows.
The updating procedure for the Critic1 and Critic2 networks entails employing the Target
Actor network to calculate the action a′ = µ′

(
s′
∣∣∣θµ′

)
in state s′. Subsequently, target policy

smoothing regularization is implemented, and ε is incorporated into the target action a′.
ε represents Gaussian noise, which adheres to a normal distribution. s′ and a′ denote the
state and action at the subsequent time step, respectively. µ′(·) signifies the target neural
network function, while θµ′

represents the parameters of this target neural network.

a′ = a′ + ε

ε ∼ clip(N(0, σ),−c, c)
(17)

Building upon the concept of dual networks, Equation (18) is employed for the com-
putation of the target value y.

y = r + γmini=1,2Qi
′
(

s′, a′
∣∣∣θQ′

i

)
(18)

The gradient descent algorithm is ultimately employed to minimize the error between
the evaluation value and the target value, thereby facilitating parameter updates in both
the Critic1 and Actor network update process.

y = r + γmini=1,2Qi
′
(

s′, a′
∣∣∣θQ′

i

)
(19)

After updating the Critic1 and Critic2 networks for d steps, an update of the Actor
network is initiated. The Actor network is employed to compute action anew for state s,
where anew = µ(s|θµ).

It is crucial to emphasize that there is no necessity to introduce noise after computing
the action, as our objective is for the Actor network to update towards the direction of
maximum value. Adding noise would be inconsequential in this context. Subsequently,
we employ either Critic1 or Critic2 network to assess the state–action pair (s, anew), as-
suming utilization of the Critic1 network qnew = Q1

(
s, anew

∣∣θQ1
)
. The qnew optimization is

ultimately achieved by employing a gradient ascent algorithm to facilitate updates in the
Actor network.

The target network is updated using a soft update method, wherein a learning rate
τ is introduced to calculate the weighted average between the old parameters of the
target network and their corresponding new parameters. Subsequently, these averaged
parameters are assigned to the target network (Equation (20)).

θQi ′ = τθQi + (1 − τ)θQi
′
, (i = 1, 2)

θµ′
= τθµ + (1 − τ)θµ′ (20)

where τ ∈ (0, 1), The value of t is usually set to 0.005.
In this paper, the traditional vector control double closed-loop system’s current loop

control algorithm is upgraded to the TD3 reinforcement learning algorithm, consequently
updating Figures 1–3 as illustrated. The agent operates within the current inner loop of
the PMSM, regulating the voltage inputs to its d-axis and q-axis. During training, the state
quantities selected are the q-axis current error, d-axis current error, integral of the q-axis
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current error, integral of the d-axis current error, motor speed ωm, and motor reference
speed ωm∗, with the execution action being the q-axis input voltage and d-axis input voltage.
The reward at each time step is

rt = (α1 ∗ iderr
2 + α2 ∗ iqerr

2 + β ∗ ∑
j

uj
t−1

2
). (21) 

4 

 

 

 

 

Figure 3. The dual closed-loop control structure of PMSM speed and current based on TD3.

Here, α1, α2, β are the coefficients of each term, iderr is the d-axis current error, iqerr is
the q-axis current error, and uj

t−1 are the actions from the previous time step.
The hyperparameter settings for the training process are shown in Table 1.

Table 1. The hyperparameter settings for the training process.

Parameters Value

Sample Time 0.0001
Discount Factor 0.99

Experience Buffer Length 10000
Target Smoothing Factor 0.006
Target Update Frequency 10

Mini Batch Size 256

4. Results and Analysis
The parameters of the motor utilized in the simulation presented in this paper are

detailed in Table 2. In addition, the PI, LADRC, and TD3 controllers proposed in this
article can be implemented in MATLAB/Simulink to control the PMSM. The simulation
was performed using MATLAB version R2024b on a personal computer equipped with a
Windows 11 64-bit operating system, 16 GB of memory, and a CPU running at 3.7 GHz.
The snapshot of the implemented software is shown in Figure 4, as follows.

In this article, simulation experiments and data analysis employ per-unit (pu) values.
Per-unit values are a dimensionless indicator commonly utilized in power systems to
represent the ratio between actual values and reference values. This enables relative
comparisons among different systems, electrical quantities, or engineering parameters,
facilitating quantitative analysis and research. The reference values used in this article can
be found in Table 3.
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Table 2. Parameters of PMSM.

Parameters Symbol Value

Rated current IN 7.2600
Rated torque TN 0.3471

Maximum speed Nmax 4300
Number of pole pairs Np 7

Nominal phase resistance Rs 0.2930
Nominal d-axis inductance Ld 8.7678 × 10−5

Nominal q-axis inductance Lq 7.7724 × 10−5

Nominal permanent flux Φm 0.0046
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Table 3. The reference values used in this article.

Name Value

Speed base (RPM) 3476
Current base (A) 21.4286
Voltage base (V) 13.8564

To evaluate the effectiveness and robustness of the algorithm, simulation experiments
were conducted under two representative PMSM operating conditions.

Working condition 1: The PMSM load is constant, the starting moment is given as
0.5 pu, and the reference speed trajectory is a sinusoidal signal, Speedre f = 0.3 ∗ sin(t) + 0.5;
there is a no-load startup. The experimental results are shown in Figures 5 and 6. In
Figure 5, Episode Q0 refers to the value of the initial state estimated by the critic (i.e., Q(S0)).
The same applies to Figure 7 below.
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As can be seen from Figure 5, the agent’s Episode reward value converges around −310
after approximately 100 episodes. An episode consists of a sequence of time steps. During
each time step, the agent performs an action, receives a reward from the environment, and
transitions to a new state. This sequence of interactions forms a complete episode. The
duration of different episodes can vary significantly.

From Figure 6a, it is evident that the TD3 algorithm of this design achieves faster
tracking of the upper reference trajectory speed with minimal overshoot compared to the
other controllers. The traditional PI controller exhibits significant overshoot, whereas the
LADRC controller requires a longer time to reach a steady state. From Figure 6b, it can be
observed that the TD3-based controller stabilizes the q-axis current closer to the reference
value more rapidly and with less fluctuation. In contrast, the PI controller shows substantial
overshoot, and the LADRC controller experiences greater fluctuations. From Figure 6c, it
is clear that the TD3 algorithm, as a reinforcement learning approach, demonstrates the
smallest speed tracking error and superior stability.

Working condition 2: The PMSM speed is suddenly increased, the load is constant,
the given speed is 0.5 pu at the starting moment, and it is suddenly changed to 0.8 pu at 1 s;
there is a no-load startup. The experimental results are shown in Figures 7 and 8.

As can be seen from Figure 7, the agent’s Episode reward value converges around
−230 after approximately 100 episodes.

From Figure 8a, it is evident that the controller using the LADRC algorithm exhibits
the smallest overshoot but requires the longest time to reach a steady state. In contrast, the
RL algorithm achieves the fastest return to a steady state with significantly less overshoot
compared to the PI algorithm. From Figure 8b, it can be observed that the torque fluctuation
caused by a sudden change in rotational speed is also minimized. Furthermore, as shown
in Figure 8c, the proposed algorithm demonstrates the smallest overall rotational speed
tracking error. Table 4 summarizes the performance comparison of the three algorithms
over a 1 s period.

Table 4. Performance comparison under different control algorithms.

Performance
Parameters PI LADRC RL

Settlingtime (s) 0.25 0.50 0.18
Risetime (s) 0.03 0.15 0.04

Undershoot (%) 11.25 2.38 5.01
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From Table 3, it is evident that the RL algorithm demonstrates superior adaptability to
sudden speed changes. It can rapidly return to a steady state, with the overshoot remaining
within an acceptable range.

To verify the stability of the proposed algorithm, torque disturbances with abrupt
changes were introduced under two typical operating conditions. In condition 1, a torque
load of 1 N was applied at 2 s, while in condition 2, the same load was applied at 1.5 s.
The experimental results are presented in Figure 9. Under both conditions, the proposed
method exhibited robust anti-interference performance.
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(a) Working condition 1; (b) working condition 2.

5. Conclusions
The PMSM drive system is a typical dual-timescale system characterized by control

challenges such as parameter variations, external disturbances, and nonlinearities. In
this paper, we propose a TD3-based optimal control method aimed at minimizing the
energy consumption of PMSM drive systems. We conducted simulation experiments
under two typical operating conditions to validate the effectiveness and robustness of the
proposed algorithm. At the same time, when designing the algorithm, the energy loss
of the controller was taken into account, that is, the control quantity was added to the
reward function of the agent. The experimental results demonstrate that the TD3 algorithm
surpasses both the traditional PI controller and the linear active disturbance rejection
control (LADRC) algorithm in terms of reference trajectory tracking accuracy, q-axis current
regulation, and speed tracking error minimization. Furthermore, when the PMSM was
subjected to torque mutations, the algorithm proposed in this paper exhibited superior
control performance. This study offers a novel approach to PMSM drive system control,
significantly enhancing motor efficiency and system robustness through the integration of
deep reinforcement learning.
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