Experimental Investigations on the Thermal Characteristics of Domestic Convectors
<p>Type 11 domestic panel convector.</p> "> Figure 2
<p>Domestic convector test rig (<b>a</b>) schematic and (<b>b</b>) experimental setup [(1) Cold water inlet (2) Water Tank (3) Thermal Camera (4) Power Supply (5) Domestic Convector (type 11) (6) Drain (7) PC with Software (8) Water Pump].</p> "> Figure 2 Cont.
<p>Domestic convector test rig (<b>a</b>) schematic and (<b>b</b>) experimental setup [(1) Cold water inlet (2) Water Tank (3) Thermal Camera (4) Power Supply (5) Domestic Convector (type 11) (6) Drain (7) PC with Software (8) Water Pump].</p> "> Figure 3
<p>Local surface temperature data recording points on the domestic convector.</p> "> Figure 4
<p>Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 70 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm after (<b>a</b>) 1.3 min (<b>b</b>) 2.5 min (<b>c</b>) 6.4 min and (<b>d</b>) 17.8 min.</p> "> Figure 4 Cont.
<p>Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 70 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm after (<b>a</b>) 1.3 min (<b>b</b>) 2.5 min (<b>c</b>) 6.4 min and (<b>d</b>) 17.8 min.</p> "> Figure 5
<p>Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 70 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm.</p> "> Figure 6
<p>Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 50 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm after (<b>a</b>) 2.2 min (<b>b</b>) 2.9 min (<b>c</b>) 5.1 min and (<b>d</b>) 10.3 min.</p> "> Figure 7
<p>(<b>a</b>) Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 50 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm and (<b>b</b>) difference in the normalized temperature between T<sub>set</sub> = 50 °C and T<sub>set</sub> = 70 °C.</p> "> Figure 8
<p>Effect of varying T<sub>set</sub> on the average surface temperature of the domestic convector at <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm.</p> "> Figure 9
<p>Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 70 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 2.4 lpm after (<b>a</b>) 0.3 min, (<b>b</b>) 1.4 min, (<b>c</b>) 2.2 min, and (<b>d</b>) 3.9 min.</p> "> Figure 10
<p>(<b>a</b>) Variations in the local temperature on the front surface of the domestic convector at T<sub>set</sub> = 70 °C and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 2.4 lpm. (<b>b</b>) Difference in the normalized temperature between <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 2.4 lpm and <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> = 0.5 lpm.</p> "> Figure 11
<p>Effect of varying <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">m</mi> </mrow> <mo>˙</mo> </mover> </mrow> </semantics></math> on the average surface temperature of the domestic convector at T<sub>set</sub> = 70 °C.</p> "> Figure 12
<p>(<b>a</b>) Comparison of T<sub>avg</sub> between the recorded and predicted values. (<b>b</b>) Difference in the predicted and calculated T<sub>avg</sub> values.</p> ">
Abstract
:1. Introduction
2. Methodology
Scope of Work
3. Results and Discussion
3.1. Thermal Characteristics of a Domestic Convector
3.2. Effect of Inlet Water Temperature
3.3. Effect of Inlet Mass Flow Rate
3.4. Novel Model for Predicting Thermal Characteristics of Domestic Convectors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- BSI Standard EN-442; Convectors Part 1: Technical Specifications and Requirements. British Standards Institute: London, UK, 2014.
- Calisir, T.; Yazar, H.O.; Baskaya, S. Evaluation of flow field over panel radiators to investigate the effect of different convector geometries. J. Build. Eng. 2021, 33, 101600. [Google Scholar] [CrossRef]
- Shati, A.K.A.; Blakey, S.G.; Beck, S.B.M. The effect of surface roughness and emissivity on radiator output. Energy Build. 2011, 43, 400–406. [Google Scholar] [CrossRef]
- Ganesh, G.A.; Sinha, S.L.; Verma, T.N. Numerical simulation for optimization of the indoor environment of an occupied office building using double-panel and ventilation radiator. J. Build. Eng. 2020, 29, 101139. [Google Scholar] [CrossRef]
- Beck, S.B.M.; Blakey, S.G.; Chung, M.C. The effect of wall emissivity on radiator output. Build. Serv. Eng. Res. Technol. 2001, 3, 185–194. [Google Scholar] [CrossRef]
- Calisir, T.; Baskaya, S.; Yazar, H.O.; Yucedag, S. Experimental investigation of panel convector heat output enhancement for efficient thermal use under actual operating conditions. Eur. Phys. J. 2015, 92, 02010. [Google Scholar]
- Embaye, M.; Al-Dadah, R.; Mahmoud, S. Thermal performance of hydronic convector with flow pulsation—Numerical investigation. Appl. Therm. Eng. 2015, 80, 109–117. [Google Scholar] [CrossRef]
- Marchesi, R.; Fabio, R.; Claudio, T.; Fausto, A.; Gino, C.; Marco, D.; Giorgio, F. Experimental analysis of convectors’ thermal output for heat accounting. Therm. Sci. 2019, 23, 989–1002. [Google Scholar] [CrossRef]
- Dziergowski, M. Verification and Improving the Heat Transfer Model in Convectors in the Wide Change Operating Parameters. Energies 2021, 14, 6543. [Google Scholar] [CrossRef]
- Gritzki, R.; Felsmann, C.; Gritzki, A.; Livonen, M.; Naumann, J. Can we still trust in EN 442: New Operating Definitions for Convectors—Part 1: Measurements and Simulations. REHVA 2021, 1, 46–53. [Google Scholar]
- Aydar, E.; Ekmekci, I. Thermal Efficiency estimation of the Panel type Radiators with CFD Analysis. J. Therm. Sci. Technol. 2012, 32, 63–71. [Google Scholar]
- Beck, S.; Grinsted, S.; Blakey, S.; Worden, K. A novel design for panel convectors. Appl. Therm. Eng. 2003, 24, 1291–1300. [Google Scholar] [CrossRef]
- Calisir, T.; Yazar, H.O.; Baskaya, S. Determination of the effects of different inlet-outlet locations and temperatures on PCCP panel convector heat transfer and fluid flow characteristics. Int. J. Therm. Sci. 2017, 121, 322–335. [Google Scholar] [CrossRef]
- Myhren, J.; Holmberg, S. Improving the thermal performance of ventilation convectors—The role of internal convection fins. Int. J. Therm. Sci. 2011, 50, 115–123. [Google Scholar] [CrossRef]
- Ploskic, A.; Holmberg, S. Performance evaluation of radiant baseboards (skirtings) for room heating—An analytical and experimental approach. Appl. Therm. Eng. 2014, 62, 382–389. [Google Scholar] [CrossRef]
- FLIR A50 Smart Sensor. Available online: https://www.flir.co.uk/products/a50_a70-smart-sensor/?vertical=rd+science&segment=solutions (accessed on 26 January 2024).
- Asim, T.; Zala, K.; Mishra, R.; Conor, F.; Conor, S.; Mian, N.; Nsom, B. Thermal characterization of commercial electric radiators. Intern. J. Cond. Monit. Diagn. Eng. Manag. 2019, 22, 27–31. [Google Scholar]
- Freegah, B.; Asim, T.; Albarzenji, D.; Pradhan, S.; Mishra, R. Effect of the shape of connecting pipes on the performance output of a closed-loop hot water solar Thermo-syphon. In Proceedings of the 3rd International Workshop and Congress on eMaintenance, Lulea, Sweden, 17–18 June 2014. [Google Scholar]
- Freegah, B.; Asim, T.; Mishra, R. Computational Fluid Dynamics based Analysis of a Closed Thermo-Siphon Hot Water Solar System. In Proceedings of the 26th International Congress on Condition Monitoring and Diagnostic Engineering Management, Helsinki, Finland, 11–13 June 2013. [Google Scholar]
- Hoque, S.; Farouk, B.; Haas, C.N. Multiple Linear Regression Model Approach for Aerosol Dispersion in Ventilated Spaces Using Computational Fluid Dynamics and Dimensional Analysis. J. Environ. Eng. 2010, 136, 638–649. [Google Scholar] [CrossRef]
- He, Y.; Kou, F.; Wang, X.; Zhu, N.; Song, Y.; Chu, Y.; Shi, S.; Liu, M.; Chen, X. Hybrid model combining multivariate regression and machine learning for the rapid prediction of interior temperatures affected by thermal diodes and solar cavities. Build. Environ. 2022, 211, 108723. [Google Scholar] [CrossRef]
- Olive, D. Multiple Linear Regression. Linear Regression; Springer: Berlin/Heidelberg, Germany, 2016; pp. 17–83. [Google Scholar]
Inlet Water Temperature (Tset); °C | Mass Flowrate of Water (); lpm |
---|---|
70 | 0.5 |
60 | 0.5 |
50 | 0.5 |
70 | 1.0 |
70 | 1.7 |
70 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibb, D.; Oliphant, J.; McIntosh, R.G.; Asim, T.; Karnik, A. Experimental Investigations on the Thermal Characteristics of Domestic Convectors. Energies 2024, 17, 1017. https://doi.org/10.3390/en17051017
Gibb D, Oliphant J, McIntosh RG, Asim T, Karnik A. Experimental Investigations on the Thermal Characteristics of Domestic Convectors. Energies. 2024; 17(5):1017. https://doi.org/10.3390/en17051017
Chicago/Turabian StyleGibb, Duncan, Jack Oliphant, Ross Gary McIntosh, Taimoor Asim, and Aditya Karnik. 2024. "Experimental Investigations on the Thermal Characteristics of Domestic Convectors" Energies 17, no. 5: 1017. https://doi.org/10.3390/en17051017
APA StyleGibb, D., Oliphant, J., McIntosh, R. G., Asim, T., & Karnik, A. (2024). Experimental Investigations on the Thermal Characteristics of Domestic Convectors. Energies, 17(5), 1017. https://doi.org/10.3390/en17051017