Quantile Connectedness of Uncertainty Indices, Carbon Emissions, Energy, and Green Assets: Insights from Extreme Market Conditions
<p>Time variations of variables.</p> "> Figure 2
<p>Volatility connectedness network plot at the median, lower, and upper quantiles. Note: The color of the nodes indicates whether they are net transmitters (red) or net receivers (green) of the system. The size of a node reflects the magnitude of its net connectedness. The edge arrow direction and edge thickness represent the direction and strength of the net pairwise connectedness between a pair of markets, respectively. GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 3
<p>Total spillover effects at the median, lower, and upper quantiles. Note: The dynamic spillover effects were captured using a 200-day rolling window based on a QVAR model with a lag of 5 (BIC) and a 10-step-ahead forecast horizon.</p> "> Figure 3 Cont.
<p>Total spillover effects at the median, lower, and upper quantiles. Note: The dynamic spillover effects were captured using a 200-day rolling window based on a QVAR model with a lag of 5 (BIC) and a 10-step-ahead forecast horizon.</p> "> Figure 4
<p>Net directional spillover effects at the median. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 5
<p>Net directional spillover effects at the lower quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 6
<p>Net directional spillover effects at the upper quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 6 Cont.
<p>Net directional spillover effects at the upper quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 7
<p>Net pairwise directional spillover effects between green assets and other assets at the median. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 8
<p>Net pairwise directional spillover effects between green assets and other assets at the lower quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 8 Cont.
<p>Net pairwise directional spillover effects between green assets and other assets at the lower quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 9
<p>Net pairwise directional spillover effects between green assets and other assets at the upper quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> "> Figure 9 Cont.
<p>Net pairwise directional spillover effects between green assets and other assets at the upper quantile. Note: GB, Solactive Green Bond Index; GS, Standard & Poor Global Clean Energy Index; Oil, Brent Crude Oil; Gas, Henry Hub Natural Gas; Carbon, Carbon Emissions Futures; IDEMV, Infectious Disease Equity Market Volatility Tracker; GPR, Geopolitical Risk Index.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Data
3.2. Methodology
4. Empirical Findings and Discussion
4.1. Static Quantile Connectedness Analysis
4.1.1. Static Spillover Effects at the Median
4.1.2. Static Spillover Effects at the Lower and Upper Quantiles
4.2. Network Analysis of Quantile Connectedness
4.3. Dynamic Quantile Connectedness Analysis
4.3.1. Dynamic Total Spillover Measures at the Median, Lower, and Upper Quantiles
4.3.2. Dynamic Net Directional Spillover Effects at the Median, Lower, and Upper Quantiles
4.3.3. Dynamic Net Pairwise Directional Spillover Effects at the Median, Lower, and Upper Quantiles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banga, J. The green bond market: A potential source of climate finance for developing countries. J. Sustain. Financ. Investig. 2019, 9, 17–32. [Google Scholar] [CrossRef]
- Maltais, A.; Nykvist, B. Understanding the role of green bonds in advancing sustainability. J. Sustain. Financ. Investig. 2020, 1–20. [Google Scholar] [CrossRef]
- Climate Bonds Initiative. Sustainable Debt Market Summary H1 2022. 2022. Available online: https://www.climatebonds.net/files/reports/cbi_susdebtsum_h1_2022_02c.pdf (accessed on 1 March 2024).
- Climate Bonds Initiative. Sustainable Debt Market Summary H1 2023. 2023. Available online: https://www.climatebonds.net/files/reports/cbi_susdebtsum_h12023_01b.pdf (accessed on 1 March 2024).
- Fernandes, N. Economic Effects of Coronavirus Outbreak (COVID-19) on the World Economy. IESE Business School Working Paper No. WP-1240-E 2020. Available online: https://ssrn.com/abstract=3557504 (accessed on 1 March 2024). [CrossRef]
- Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. In Managing Inflation and Supply Chain Disruptions in the Global Economy; IGI Global: Hershey, PA, USA, 2023; pp. 41–61. [Google Scholar] [CrossRef]
- Nerlinger, M.; Utz, S. The impact of the Russia-Ukraine conflict on energy firms: A capital market perspective. Financ. Res. Lett. 2022, 50, 103243. [Google Scholar] [CrossRef]
- Umar, M.; Riaz, Y.; Yousaf, I. Impact of Russian-Ukraine war on clean energy, conventional energy, and metal markets: Evidence from event study approach. Resour. Policy 2022, 79, 102966. [Google Scholar] [CrossRef]
- Bloch, H.; Rafiq, S.; Salim, R. Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution. Econ. Model. 2015, 44, 104–115. [Google Scholar] [CrossRef]
- Liu, T.; Hamori, S. Does investor sentiment affect clean energy stock? Evidence from TVP-VAR-based connectedness approach. Energies 2021, 14, 3442. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Yan, H.; Gusev, A.; Zhang, L.; He, Y.; Yang, S. Greenhouse gas emissions and reduction strategies for the world’s largest greenhouse gas emitters. Sci. Total Environ. 2024, 944, 173895. [Google Scholar] [CrossRef]
- Shoaib, A.; Islam, H.S. Urban Sustainability and Green Spaces: A Comprehensive Analysis of Spatiotemporal Variations and Residents’ Perspective in Lahore, Pakistan. J. Geovis. Spat. Anal. 2024, 8, 28. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Xie, J.; Xiao, Z. Spatiotemporal Patterns and Carbon Emissions of Shared-Electric-Bike Trips in Chicago. J. Geovis. Spat. Anal. 2024, 8, 13. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Da, B.; Zhang, T.; Guan, F. Dependence and risk spillovers between green bonds and clean energy markets. J. Clean. Prod. 2021, 279, 123595. [Google Scholar] [CrossRef]
- Sadorsky, P. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Econ. 2012, 34, 248–255. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Ugolini, A.; Aiube, F.A.L. Network connectedness of green bonds and asset classes. Energy Econ. 2020, 86, 104629. [Google Scholar] [CrossRef]
- Ando, T.; Greenwood-Nimmo, M.; Shin, Y. Quantile connectedness: Modeling tail behavior in the topology of financial networks. Manag. Sci. 2022, 68, 2401–2431. [Google Scholar] [CrossRef]
- Chatziantoniou, I.; Abakah, E.J.A.; Gabauer, D.; Tiwari, A.K. Quantile time–frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets. J. Clean. Prod. 2022, 361, 132088. [Google Scholar] [CrossRef]
- Pham, L. Frequency connectedness and cross-quantile dependence between green bond and green equity markets. Energy Econ. 2021, 98, 105257. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Naeem, M.A.; Balli, F.; Balli, H.O.; Vo, X.V. Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds. Financ. Res. Lett. 2021, 40, 101739. [Google Scholar] [CrossRef]
- Naeem, M.A.; Adekoya, O.B.; Oliyide, J.A. Asymmetric spillovers between green bonds and commodities. J. Clean. Prod. 2021, 314, 128100. [Google Scholar] [CrossRef]
- Liu, T.; Hamori, S. Spillovers to renewable energy stocks in the US and Europe: Are they different? Energies. 2020, 13, 3162. [Google Scholar] [CrossRef]
- Kumar, S.; Managi, S.; Matsuda, A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Econ. 2012, 34, 215–226. [Google Scholar] [CrossRef]
- Xia, T.; Ji, Q.; Zhang, D.; Han, J. Asymmetric and extreme influence of energy price changes on renewable energy stock performance. J. Clean. Prod. 2019, 241, 118338. [Google Scholar] [CrossRef]
- Jin, J.; Han, L.; Wu, L.; Zeng, H. The hedging effect of green bonds on carbon market risk. Int. Rev. Financ. Anal. 2020, 71, 101509. [Google Scholar] [CrossRef]
- Hammoudeh, S.; Ajmi, A.N.; Mokni, K. Relationship between green bonds and financial and environmental variables: A novel time-varying causality. Energy Econ. 2020, 92, 104941. [Google Scholar] [CrossRef]
- Dutta, A.; Bouri, E.; Noor, M.H. Return and volatility linkages between CO2 emission and clean energy stock prices. Energy. 2018, 164, 803–810. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Abakah, E.J.A.; Adewuyi, A.O.; Lee, C.C. Quantile risk spillovers between energy and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak. Energy Econ. 2022, 113, 106235. [Google Scholar] [CrossRef]
- Arif, M.; Hasan, M.; Alawi, S.M.; Naeem, M.A. COVID-19 and time-frequency connectedness between green and conventional financial markets. Glob. Financ. J. 2021, 49, 100650. [Google Scholar] [CrossRef]
- Chai, S.; Chu, W.; Zhang, Z.; Li, Z.; Abedin, M.Z. Dynamic nonlinear connectedness between the green bonds, clean energy, and stock price: The impact of the COVID-19 pandemic. Ann. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Liu, T.; Nakajima, T.; Hamori, S. The impact of economic uncertainty caused by COVID-19 on renewable energy stocks. Empir. Econ. 2021, 62, 1495–1515. [Google Scholar] [CrossRef]
- Caldara, D.; Iacoviello, M. Measuring geopolitical risk. Am. Econ. Rev. 2022, 112, 1194–1225. [Google Scholar] [CrossRef]
- Ahmed, S.; Hasan, M.M.; Kamal, M.R. Russia–Ukraine crisis: The effects on the European stock market. Eur. Financ. Manag. 2023, 29, 1078–1118. [Google Scholar] [CrossRef]
- Chien, F.; Sadiq, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Raza, M. Co-movement of energy prices and stock market return: Environmental wavelet nexus of COVID-19 pandemic from the USA, Europe, and China. Environ. Sci. Pollut. Res. 2021, 28, 32359–32373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hamori, S. A connectedness analysis among BRICS’s geopolitical risks and the US macroeconomy. Econ. Anal. Policy. 2022, 76, 182–203. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Abakah, E.J.A.; Gabauer, D.; Dwumfour, R.A. Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies. Glob. Financ. J. 2022, 51, 100692. [Google Scholar] [CrossRef] [PubMed]
- Bouri, E.; Saeed, T.; Vo, X.V.; Roubaud, D. Quantile connectedness in the cryptocurrency market. J. Int. Financ. Mark. Inst. Money 2021, 71, 101302. [Google Scholar] [CrossRef]
- Naeem, M.A.; Conlon, T.; Cotter, J. Green bonds and other assets: Evidence from extreme risk transmission. J. Environ. Manag. 2022, 305, 114358. [Google Scholar] [CrossRef]
- Reboredo, J.C. Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Econ. 2018, 74, 38–50. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J.; Kost, K.J.; Sammon, M.C.; Viratyosin, T. The Unprecedented Stock Market Impact of COVID-19; No. w26945; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econom. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Dutta, A.; Park, D.; Uddin, G.S.; Kanjilal, K.; Ghosh, S. Do dirty and clean energy investments react to infectious disease-induced uncertainty? Technol. Forecast. Soc. Change. 2024, 205, 123515. [Google Scholar] [CrossRef]
- Tian, H.; Long, S.; Li, Z. Asymmetric effects of climate policy uncertainty, infectious diseases-related uncertainty, crude oil volatility, and geopolitical risks on green bond prices. Financ. Res. Lett. 2022, 48, 103008. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Z.; Ding, Q.; Liu, Z. Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis. Energy Econ. 2022, 107, 105880. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Gao, W.; Li, Y. Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets. Int. Rev. Financ. Anal. 2023, 86, 102474. [Google Scholar] [CrossRef]
- Bouri, E.; Remzi, G.Ö.K.; Gemici, E.; Erkan, K.A.R.A. Do geopolitical risk, economic policy uncertainty, and oil implied volatility drive assets across quantiles and time-horizons? Q. Rev. Econ. Finance. 2023, 93, 137–154. [Google Scholar] [CrossRef]
- Lorente, D.B.; Mohammed, K.S.; Cifuentes-Faura, J.; Shahzad, U. Dynamic connectedness among climate change index, green financial assets and renewable energy markets: Novel evidence from sustainable development perspective. Renew. Energy 2023, 204, 94–105. [Google Scholar] [CrossRef]
- Zhang, W.; He, X.; Hamori, S. The impact of the COVID-19 pandemic and Russia-Ukraine war on multiscale spillovers in green finance markets: Evidence from lower and higher order moments. Int. Rev. Financ. Anal. 2023, 89, 102735. [Google Scholar] [CrossRef]
- Khalfaoui, R.; Jabeur, S.B.; Dogan, B. The spillover effects and connectedness among green commodities, Bitcoins, and US stock markets: Evidence from the quantile VAR network. J. Environ. Manag. 2022, 306, 114493. [Google Scholar] [CrossRef]
- Sharif, A.; Brahim, M.; Dogan, E.; Tzeremes, P. Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies. Energy Econ. 2023, 120, 106594. [Google Scholar] [CrossRef]
- Long, S.; Tian, H.; Li, Z. Dynamic spillovers between uncertainties and green bond markets in the US, Europe, and China: Evidence from the quantile VAR framework. Int. Rev. Financ. Anal. 2022, 84, 102416. [Google Scholar] [CrossRef]
Variable | Data |
---|---|
GB | Solactive Green Bond Index |
GS | Standard & Poor Global Clean Energy Index |
Oil | Brent Crude Oil |
Gas | Henry Hub Natural Gas |
Carbon | Carbon Emissions Futures |
IDEMV | Infectious Disease Equity Market Volatility Tracker |
GPR | Geopolitical Risk Index |
Mean | Std. Dev. | Skewness Kurtosis | JB | ADF | ||
---|---|---|---|---|---|---|
Volatility Series | ||||||
GB | 0.000 | 0.000 | 2.729 | 11.284 | 11,497.979 *** | −2.022 ** |
GS | 0.000 | 0.000 | 7.519 | 77.351 | 672,290.241 *** | −3.849 *** |
Oil | 0.001 | 0.001 | 6.300 | 51.232 | 290,323.386 *** | −6.576 *** |
Carbon | 0.001 | 0.001 | 6.998 | 79.565 | 707,783.123 *** | −7.247 *** |
Gas | 0.001 | 0.002 | 5.671 | 57.366 | 360,350.077 *** | −6.203 *** |
Uncertainty Index | ||||||
GPR | 109.644 | 50.336 | 2.307 | 14.195 | 17,129.585 *** | −6.247 *** |
IDEMV | 104.351 | 8.303 | 2.848 | 13.409 | 16,449.114 *** | −10.170 *** |
Panel A: Volatility Spillover Measures at the Median () | ||||||||
GB | GS | Oil | Carbon | Gas | GPR | IDEMV | FROM | |
GB | 82.17 | 13.87 | 1.04 | 1.67 | 0.37 | 0.26 | 0.60 | 17.83 |
GS | 9.73 | 77.11 | 8.60 | 1.69 | 0.19 | 0.11 | 2.57 | 22.89 |
Oil | 1.01 | 9.29 | 86.08 | 0.37 | 0.09 | 0.22 | 2.94 | 13.92 |
Carbon | 1.48 | 2.02 | 0.31 | 95.80 | 0.15 | 0.22 | 0.02 | 4.20 |
Gas | 0.65 | 0.13 | 0.23 | 0.21 | 98.02 | 0.08 | 0.68 | 1.98 |
GPR | 0.41 | 0.36 | 0.37 | 0.80 | 0.53 | 97.26 | 0.27 | 2.74 |
IDEMV | 0.95 | 3.60 | 3.96 | 0.12 | 0.24 | 0.05 | 91.08 | 8.92 |
TO | 14.23 | 29.28 | 14.52 | 4.87 | 1.57 | 0.93 | 7.09 | TCI: 10.35 |
NET | −3.60 | 6.39 | 0.60 | 0.66 | −0.41 | −1.81 | −1.83 | |
Panel B: Volatility Spillover Measures at the Lower Quantile () | ||||||||
GB | GS | Oil | Carbon | Gas | GPR | IDEMV | FROM | |
GB | 70.01 | 12.16 | 2.15 | 1.92 | 1.73 | 5.59 | 6.45 | 29.99 |
GS | 10.92 | 64.13 | 8.58 | 1.95 | 0.69 | 3.71 | 10.03 | 35.87 |
Oil | 2.20 | 10.14 | 76.08 | 0.65 | 0.48 | 2.49 | 7.96 | 23.92 |
Carbon | 2.43 | 2.71 | 0.78 | 88.76 | 0.49 | 3.78 | 1.05 | 11.24 |
Gas | 2.20 | 0.99 | 0.61 | 0.49 | 87.74 | 3.70 | 4.28 | 12.26 |
GPR | 6.19 | 4.40 | 2.56 | 3.18 | 3.22 | 73.24 | 7.20 | 26.76 |
IDEMV | 6.09 | 10.9 | 6.91 | 0.82 | 3.12 | 6.87 | 65.3 | 34.70 |
TO | 30.02 | 41.29 | 21.58 | 9.01 | 9.74 | 26.13 | 36.97 | TCI: 24.96 |
NET | 0.03 | 5.41 | −2.34 | −2.23 | −2.52 | −0.63 | 2.27 | |
Panel C: Volatility Spillover Measures at the Upper Quantile () | ||||||||
GB | GS | Oil | Carbon | Gas | GPR | IDEMV | FROM | |
GB | 25.17 | 28.95 | 13.05 | 4.60 | 4.71 | 7.96 | 15.56 | 74.83 |
GS | 18.49 | 32.54 | 14.65 | 4.23 | 6.34 | 6.76 | 17.00 | 67.46 |
Oil | 12.35 | 23.50 | 35.85 | 3.28 | 3.22 | 8.07 | 13.72 | 64.15 |
Carbon | 13.13 | 22.29 | 8.90 | 34.91 | 4.60 | 7.60 | 8.57 | 65.09 |
Gas | 11.70 | 8.99 | 2.44 | 2.12 | 55.34 | 4.67 | 14.73 | 44.66 |
GPR | 7.86 | 6.53 | 2.75 | 2.81 | 3.28 | 60.27 | 16.50 | 39.73 |
IDEMV | 13.70 | 14.64 | 5.00 | 2.55 | 9.35 | 6.42 | 48.34 | 51.66 |
TO | 77.23 | 104.91 | 46.79 | 19.58 | 31.5 | 41.48 | 86.08 | TCI: 58.23 |
NET | 2.41 | 37.45 | −17.35 | −45.52 | −13.16 | 1.75 | 34.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Zhang, Y.; Zhang, W.; Hamori, S. Quantile Connectedness of Uncertainty Indices, Carbon Emissions, Energy, and Green Assets: Insights from Extreme Market Conditions. Energies 2024, 17, 5806. https://doi.org/10.3390/en17225806
Liu T, Zhang Y, Zhang W, Hamori S. Quantile Connectedness of Uncertainty Indices, Carbon Emissions, Energy, and Green Assets: Insights from Extreme Market Conditions. Energies. 2024; 17(22):5806. https://doi.org/10.3390/en17225806
Chicago/Turabian StyleLiu, Tiantian, Yulian Zhang, Wenting Zhang, and Shigeyuki Hamori. 2024. "Quantile Connectedness of Uncertainty Indices, Carbon Emissions, Energy, and Green Assets: Insights from Extreme Market Conditions" Energies 17, no. 22: 5806. https://doi.org/10.3390/en17225806
APA StyleLiu, T., Zhang, Y., Zhang, W., & Hamori, S. (2024). Quantile Connectedness of Uncertainty Indices, Carbon Emissions, Energy, and Green Assets: Insights from Extreme Market Conditions. Energies, 17(22), 5806. https://doi.org/10.3390/en17225806