Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers
<p>Classification of SoC estimation methods.</p> "> Figure 2
<p>Classification of battery models for SoC estimation.</p> "> Figure 3
<p>First order resistor-capacitor electrical modelling of a LIB.</p> "> Figure 4
<p>Open circuit voltage vs. SoC of LIB for different temperatures [<a href="#B101-energies-17-05754" class="html-bibr">101</a>].</p> "> Figure 5
<p>First order battery equivalent circuit model with hysteresis.</p> "> Figure 6
<p>Hysteresis loop in battery charging/discharging OCV curves [<a href="#B103-energies-17-05754" class="html-bibr">103</a>].</p> "> Figure 7
<p>Simplified first-order ECM of the LIB.</p> "> Figure 8
<p>Second Order RC ECM.</p> "> Figure 9
<p>Second order battery ECM with the hysteresis.</p> "> Figure 10
<p>Nth-order Randle battery ECM.</p> "> Figure 11
<p>Fractional order RC ECM.</p> "> Figure 12
<p>Classification of SMO-based SoC estimation methods.</p> "> Figure 13
<p>Considered second-order battery ECM for the simulation test.</p> "> Figure 14
<p>Estimation results using the conventional first-order sliding mode observer.</p> "> Figure 15
<p>Estimation results using the approximated first-order sliding mode observer.</p> "> Figure 16
<p>Estimation results using the conventional adaptive sliding mode observer.</p> "> Figure 17
<p>Estimation results using the approximated adaptive sliding mode observer.</p> "> Figure 18
<p>Estimation results using the second-order super-twisting sliding mode observer.</p> "> Figure 19
<p>Estimation results using the conventional terminal sliding mode observer.</p> "> Figure 20
<p>Estimation results using the approximated terminal sliding mode observer.</p> "> Figure 21
<p>Comparison of the V<sub>oc</sub> estimation by the conventional first-order, adaptive, and terminal SMOs and the super-twisting method at the beginning of simulation.</p> "> Figure 22
<p>Comparison of the SoC estimation by the conventional first-order, adaptive, and terminal SMOs and super-twisting method.</p> "> Figure 23
<p>Comparison of the SoC estimation by the approximated first-order, adaptive, and terminal SMOs and super-twisting method.</p> ">
Abstract
:1. Introduction
2. SoC Estimation
2.1. Estimation Methods
2.2. Challenges in SoC Estimation Methods
3. Models for SoC Estimation
3.1. First Order RC ECMs
3.2. Second Order RC ECMs
3.3. n-th Order RC ECMs
3.4. Fractional Order RC ECMs
3.5. LIB ECMs Comparision
4. Existing SMOs for SoC Estimation
4.1. Conventional SMOs
4.2. Adaptive SMOs
4.3. High Order SMOs
4.4. Terminal SMOs
4.5. Fractional-Order SMOs
4.6. Advanced SMOs
4.7. Combined-SMOs
5. Simulation Results
5.1. Performance of Various SMOs in SoC Estimation
5.2. SMOs Performance Comparision
6. Conclusions
- Observer-Based Techniques: Non-linear observer-based methods, especially SMOs, provide accurate SoC estimates even with model inaccuracies or initial state errors. SMOs are particularly noted for their robustness and stability in the face of system uncertainties and environmental disturbances.
- Traditional SMOs: While conventional SMOs are robust and accurate, they require a precise understanding of uncertainty boundaries for optimal parameter tuning, such as switching gains. These methods can suffer from chattering, which affects their practical application. Continuous approximation SMOs offer smoother estimations but at the cost of reduced precision and potential stability issues.
- High-Order Sliding Mode Theories: These methods offer smooth estimations, but are constrained by the need for high-order derivatives and complex stability analyses. The trade-offs include restrictive observer gains and challenges in balancing convergence time with accuracy.
- Adaptive Switching Gain SMOs: These methods eliminate the need for pre-defined uncertainty bounds, but struggle with chattering and reduced accuracy. They also face limitations in providing finite-time convergence due to reliance on boundary layer methods.
- Terminal SMOs: Designed to ensure finite-time stability, these observers still experience chattering due to the direct use of the sign function. While asymptotic stability is achievable in approximated versions, uncertainty bounds are necessary for tuning observer gains, and convergence time remains uncalculated.
- Fractional Order SMOs: Offering more adjustable parameters than integer-order methods, fractional order SMOs face challenges such as chattering and decreased precision. They require knowledge of uncertainty bounds for stability, and finite-time convergence is not always guaranteed.
- Integration with Intelligent Methods: Combining SMOs with neural networks or fuzzy systems can optimize gain selection, but may lead to issues with stability, convergence time, and chattering. These methods often require extensive offline training and may result in overestimation.
- Recent Advances: Newer SMO techniques, such as adaptive super-twisting, second-order fast non-singular terminal SMOs, and integral terminal SMOs, have significantly improved SoC estimation by addressing the limitations of traditional methods through adaptive gains, higher-order sliding modes, and finite-time stabilization.
- Enhancing Chattering Reduction: Further development is needed to mitigate chattering while maintaining estimation accuracy and stability.
- Finite-Time Convergence: Research could focus on guaranteeing finite-time convergence across various SMO methods, especially in practical applications.
- Integration with Intelligent Systems: Exploring more robust methods for integrating SMOs with artificial intelligence to enhance stability and performance.
- Practical Implementation: Investigating the real-world implementation challenges and optimizing parameter tuning for SMOs in diverse operational environments.
- Integration of Intelligent Techniques: Incorporating advanced methods such as neural networks for real-time tuning of SMO adaptive gains holds significant promise. This integration could enhance both the accuracy and robustness of SMOs by allowing dynamic adjustment to system changes and uncertainties.
- Development of Advanced Battery Models: Creating more sophisticated battery models that capture complex electrochemical dynamics will improve SoC estimation precision. Such models need to account for non-ideal battery behaviours and interactions, leading to more accurate and reliable estimations.
- Design of Finite-Time, Smooth, and Simple SMOs: There is a need for SMOs that ensure finite-time convergence while maintaining smooth operation and simplicity. Addressing challenges such as discretization, communication delays, and measurement noise during design, along with implementing hardware-in-the-loop simulations for real-time validation, will be beneficial.
Funding
Conflicts of Interest
Nomenclature
Symbol | Description |
Voc | Open Circuit Voltage |
Cp | Diffusion Capacitance |
Rp | Diffusion Resistance |
i | Current |
Rt | Ohmic Resistance |
Vt | Terminal Voltage |
Voc Dynamic Uncertainty | |
Vt Dynamic Uncertainty | |
Vp Dynamic Uncertainty | |
SoC Dynamic Uncertainty | |
Model Parameters | |
Battery Capacity | |
Vp | RpCp Network Voltage |
Rated Capacity | |
Capacity Fading Factor | |
Constant Matrix Corresponding to the SoC Range | |
Modelling Error, and Uncertainty | |
Nonlinear Part of the System | |
Total System Uncertainties | |
Cn | Stored Energy |
H | Maximum Amount of Hysteresis Voltage |
k | Decaying Factor |
Rpe | Electrochemical Polarization Resistance |
Cpe | Electrochemical Polarization Capasitance |
Rpc | Concentration Polarization Resistance |
Cpc | Concentration Polarization Capacitance |
Vpe | Electrochemical Polarization Voltage |
Vpc | Concentration Polarization Voltage |
Vh | Hysteresis Voltage |
h | Upper Bound of Uncertainty |
First Order SMO Gains | |
Boundary Layer Thickness Adjustment Gain | |
Adaptive Switching Gains | |
Speed Adaptation Adjustment Gains | |
Desired Switching Gain | |
Nonlinear Functions in Dynamics | |
Nonlinear Functions in Dynamics | |
Time Constant of Low Pass Filter | |
Nonlinear Function Upper Bound | |
Uncertainty Upper Bound | |
γ, δ | High Order SMO Gains |
, , | Terminal SMO Gains |
References
- Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC estimation for lithium-ion batteries: Review and future challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef]
- Meng, J.; Ricco, M.; Luo, G.; Swierczynski, M.; Stroe, D.-I.; Stroe, A.-I.; Teodorescu, R. An overview and comparison of online implementable SOC estimation methods for lithium-ion battery. IEEE Trans. Ind. Appl. 2017, 54, 1583–1591. [Google Scholar] [CrossRef]
- Román-Ramírez, L.; Apachitei, G.; Faraji-Niri, M.; Lain, M.; Widanage, D.; Marco, J. Effect of coating operating parameters on electrode physical characteristics and final electrochemical performance of lithium-ion batteries. Int. J. Energy Environ. Eng. 2022, 13, 943–953. [Google Scholar] [CrossRef]
- Hidalgo, M.; Apachitei, G.; Dogaru, D.; Faraji-Niri, M.; Lain, M.; Copley, M.; Marco, J. Design of experiments for optimizing the calendering process in Li-ion battery manufacturing. J. Power Sources 2023, 573, 233091. [Google Scholar] [CrossRef]
- Niri, M.F.; Reynolds, C.; Ramírez, L.A.R.; Kendrick, E.; Marco, J. Systematic analysis of the impact of slurry coating on manufacture of Li-ion battery electrodes via explainable machine learning. Energy Storage Mater. 2022, 51, 223–238. [Google Scholar] [CrossRef]
- Grant, P.S.; Greenwood, D.; Pardikar, K.; Smith, R.; Entwistle, T.; Middlemiss, L.A.; Murray, G.; Cussen, S.A.; Lain, M.J.; Capener, M. Roadmap on Li-ion battery manufacturing research. J. Phys. Energy 2022, 4, 042006. [Google Scholar] [CrossRef]
- Demirci, O.; Taskin, S.; Schaltz, E.; Demirci, B.A. Review of battery state estimation methods for electric vehicles-Part I: SOC estimation. J. Energy Storage 2024, 87, 111435. [Google Scholar] [CrossRef]
- Niri, M.F.; Apachitei, G.; Lain, M.; Copley, M.; Marco, J. Machine learning for investigating the relative importance of electrodes’ N: P areal capacity ratio in the manufacturing of lithium-ion battery cells. J. Power Sources 2022, 549, 232124. [Google Scholar] [CrossRef]
- Faraji Niri, M.; Apachitei, G.; Lain, M.; Copley, M.; Marco, J. The Impact of Calendering Process Variables on the Impedance and Capacity Fade of Lithium-Ion Cells: An Explainable Machine Learning Approach. Energy Technol. 2022, 10, 2200893. [Google Scholar] [CrossRef]
- Haghi, S.; Hidalgo, M.F.V.; Niri, M.F.; Daub, R.; Marco, J. Machine learning in lithium-ion battery cell production: A comprehensive mapping study. Batter. Supercaps 2023, 6, e202300046. [Google Scholar] [CrossRef]
- Niri, M.F.; Aslansefat, K.; Haghi, S.; Hashemian, M.; Daub, R.; Marco, J. A review of the applications of explainable machine learning for lithium–ion batteries: From production to state and performance estimation. Energies 2023, 16, 6360. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.; Lipu, M.H.; Ker, P.J. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review. IEEE Access 2019, 7, 136116–136136. [Google Scholar] [CrossRef]
- Faraji-Niri, M.; Rashid, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Accelerated state of health estimation of second life lithium-ion batteries via electrochemical impedance spectroscopy tests and machine learning techniques. J. Energy Storage 2023, 58, 106295. [Google Scholar] [CrossRef]
- Espedal, I.B.; Jinasena, A.; Burheim, O.S.; Lamb, J.J. Current trends for state-of-charge (SoC) estimation in lithium-ion battery electric vehicles. Energies 2021, 14, 3284. [Google Scholar] [CrossRef]
- Kim, I.-S. The novel state of charge estimation method for lithium battery using sliding mode observer. J. Power Sources 2006, 163, 584–590. [Google Scholar] [CrossRef]
- Meng, J.; Luo, G.; Ricco, M.; Swierczynski, M.; Stroe, D.-I.; Teodorescu, R. Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles. Appl. Sci. 2018, 8, 659. [Google Scholar] [CrossRef]
- Zhou, W.; Zheng, Y.; Pan, Z.; Lu, Q. Review on the battery model and SOC estimation method. Processes 2021, 9, 1685. [Google Scholar] [CrossRef]
- Sun, L.; Li, G.; You, F. Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer. Renew. Sustain. Energy Rev. 2020, 131, 109994. [Google Scholar] [CrossRef]
- Zhong, F.; Li, H.; Zhong, S.; Zhong, Q.; Yin, C. An SOC estimation approach based on adaptive sliding mode observer and fractional order equivalent circuit model for lithium-ion batteries. Commun. Nonlinear Sci. Numer. Simul. 2015, 24, 127–144. [Google Scholar] [CrossRef]
- Ma, D.; Gao, K.; Mu, Y.; Wei, Z.; Du, R. An adaptive tracking-extended Kalman filter for SOC estimation of batteries with model uncertainty and sensor error. Energies 2022, 15, 3499. [Google Scholar] [CrossRef]
- Sun, D.; Yu, X.; Wang, C.; Zhang, C.; Huang, R.; Zhou, Q.; Amietszajew, T.; Bhagat, R. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. Energy 2021, 214, 119025. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles. J. Power Sources 2014, 246, 667–678. [Google Scholar] [CrossRef]
- Behnamgol, V.; Vali, A.; Mohammadi, A. A new observer-based chattering-free sliding mode guidance law. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1486–1495. [Google Scholar] [CrossRef]
- Ali Akbar Semnani, M.; Vali, A.; Hakimi, S.; Behnamgol, V. Modelling and design of observer based smooth sliding mode controller for heart rhythm regulation. Int. J. Dyn. Control 2021, 10, 828–842. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the art of lithium-ion battery SOC estimation for electrical vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Chen, B. A review of lithium-ion battery state of charge estimation methods based on machine learning. World Electr. Veh. J. 2024, 15, 131. [Google Scholar] [CrossRef]
- Xiong, R.; Cao, J.; Yu, Q.; He, H.; Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 2017, 6, 1832–1843. [Google Scholar] [CrossRef]
- Srivastav, S.; Lacey, M.J.; Brandell, D. State-of-charge indication in Li-ion batteries by simulated impedance spectroscopy. J. Appl. Electrochem. 2017, 47, 229–236. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, X. Design of battery management system based on improved ampere-hour integration method. Int. J. Electr. Hybrid Veh. 2022, 14, 1–29. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. Robust sliding mode observer using RBF neural network for lithium-ion battery state of charge estimation in electric vehicles. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 42–47. [Google Scholar] [CrossRef]
- Chang, W.-Y. The state of charge estimating methods for battery: A review. Int. Sch. Res. Not. 2013, 2013, 953792. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Q.; Duanmu, F.; Shen, J.; Jin, L.; Gou, B.; Wu, F.; Zhang, W. State of Charge Estimation of Lithium-ion Batteries Based on EKF Integrated with PSO-LSTM for Electric Vehicles. IEEE Trans. Transp. Electrif. 2024. [Google Scholar] [CrossRef]
- Yang, T.; Li, Y.; Zeng, Y. Secure state of charge estimation for lithium-ion batteries under deception attacks based on attack-resilient fractional-order extended Kalman filter. J. Energy Storage 2024, 95, 112438. [Google Scholar] [CrossRef]
- Geevarghese, P.A.; Suresh, L.P.; Thankachan, A.P. Methods for Estimating SOC of LiBs in Electric Vehicles: A Review. In Proceedings of the 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT), Kollam, India, 10–11 August 2023; pp. 1–7. [Google Scholar] [CrossRef]
- How, D.N.; Hannan, M.A.; Lipu, M.S.H.; Sahari, K.S.; Ker, P.J.; Muttaqi, K.M. State-of-charge estimation of li-ion battery in electric vehicles: A deep neural network approach. IEEE Trans. Ind. Appl. 2020, 56, 5565–5574. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, E.; Jiang, K.; Wang, K. Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery. Appl. Energy 2022, 327, 120091. [Google Scholar] [CrossRef]
- Hatherall, O.; Niri, M.F.; Barai, A.; Li, Y.; Marco, J. Remaining discharge energy estimation for lithium-ion batteries using pattern recognition and power prediction. J. Energy Storage 2023, 64, 107091. [Google Scholar] [CrossRef]
- Rashid, M.; Faraji-Niri, M.; Sansom, J.; Sheikh, M.; Widanage, D.; Marco, J. Dataset for rapid state of health estimation of lithium batteries using EIS and machine learning: Training and validation. Data Brief 2023, 48, 109157. [Google Scholar] [CrossRef]
- Xu, J.; Mi, C.C.; Cao, B.; Deng, J.; Chen, Z.; Li, S. The state of charge estimation of lithium-ion batteries based on a proportional-integral observer. IEEE Trans. Veh. Technol. 2013, 63, 1614–1621. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xia, B.; Sun, W.; Xu, Z.; Zheng, W. An adaptive gain nonlinear observer for state of charge estimation of lithium-ion batteries in electric vehicles. Energies 2014, 7, 5995–6012. [Google Scholar] [CrossRef]
- Messier, P.; Nguyễn, B.-H.; LeBel, F.-A.; Trovao, J.P.F. Disturbance observer-based state-of-charge estimation for Li-ion battery used in light electric vehicles. J. Energy Storage 2020, 27, 101144. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, R.; Pang, S.; Xu, L.; Zhao, D.; Wei, J.; Huangfu, Y.; Gao, F. A nonlinear observer SOC estimation method based on electrochemical model for lithium-ion battery. IEEE Trans. Ind. Appl. 2020, 57, 1094–1104. [Google Scholar] [CrossRef]
- Xia, B.; Chen, C.; Tian, Y.; Sun, W.; Xu, Z.; Zheng, W. A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer. J. Power Sources 2014, 270, 359–366. [Google Scholar] [CrossRef]
- Chen, Y.; Li, R.; Sun, Z.; Zhao, L.; Guo, X. SOC estimation of retired lithium-ion batteries for electric vehicle with improved particle filter by H-infinity filter. Energy Rep. 2023, 9, 1937–1947. [Google Scholar] [CrossRef]
- Souaihia, M.; Belmadani, B.; Chabni, F.; Gadoum, A. A Comparison State of Charge Estimation Between Kalman Filter and Sliding Mode Observer for Lithium Battery. In Proceedings of the Advances in Green Energies and Materials Technology: Selected Articles from the Algerian Symposium on Renewable Energy and Materials (ASREM-2020); Springer Proceedings in Energy; Springer: Singapore, 2021; pp. 107–114. [Google Scholar]
- Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. Sliding mode observer for state of charge estimation based on battery equivalent circuit in electric vehicles. Aust. J. Electr. Electron. Eng. 2012, 9, 225–234. [Google Scholar] [CrossRef]
- Nath, A.; Gupta, R.; Mehta, R.; Bahga, S.S.; Gupta, A.; Bhasin, S. Attractive ellipsoid sliding mode observer design for state of charge estimation of lithium-ion cells. IEEE Trans. Veh. Technol. 2020, 69, 14701–14712. [Google Scholar] [CrossRef]
- He, L.; Wang, G.; Hu, B.; Liu, X.; Liu, J.; Shi, M. State-of-charge estimation by extended sliding mode observer based on lithium-ion battery voltage dynamics. J. Power Sources 2024, 611, 234718. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, J.; Liu, S.; Zhang, C. A novel sliding mode observer for state of charge estimation of EV lithium batteries. J. Power Electron. 2016, 16, 1131–1140. [Google Scholar] [CrossRef]
- Wu, T.Z.; Wang, M.Y.; Xiao, Q. State of Charge Estimation of Power Lithium-Ion Battery Based on Sliding Mode Observer. Adv. Mater. Res. 2013, 805, 1692–1699. [Google Scholar] [CrossRef]
- Zhong, F.; Li, H.; Zhong, Q. An approach for SOC estimation based on sliding mode observer and fractional order equivalent circuit model of lithium-ion batteries. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 1497–1503. [Google Scholar]
- Mao, J.; Zhao, L.; Lin, Y. State-of-charge estimation of lithium-ion polymer battery based on sliding mode observer. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; pp. 269–273. [Google Scholar]
- Ma, Y.; Li, B.; Xie, Y.; Chen, H. Estimating the state of charge of lithium-ion battery based on sliding mode observer. IFAC-Pap. 2016, 49, 54–61. [Google Scholar] [CrossRef]
- Gong, X.; Huang, Z.; Li, L.; Lu, H.; Liu, S.; Wu, Z. A new state of charge estimation for lithium-ion battery based on sliding-mode observer and battery status. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 8693–8697. [Google Scholar]
- Chen, Q.; Jiang, J.; Ruan, H.; Zhang, C. A new double sliding mode observer for EV lithium battery SOC estimation. Math. Probl. Eng. 2016, 2016, 8048905. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, J.; Ruan, H.; Zhang, C. Simply designed and universal sliding mode observer for the SOC estimation of lithium-ion batteries. IET Power Electron. 2017, 10, 697–705. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, Y.; Chen, H. State of charge and state of health estimation for lithium-ion battery through dual sliding mode observer based on AMESim-Simulink co-simulation. J. Renew. Sustain. Energy 2018, 10, 034103. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, Z.; Tao, F. Improved sliding mode observer-based SOC estimation for lithium battery. AIP Conf. Proc. 2019, 2122, 020058. [Google Scholar]
- Dai, K.; Wang, J.; He, H. An improved SOC estimator using time-varying discrete sliding mode observer. IEEE Access 2019, 7, 115463–115472. [Google Scholar] [CrossRef]
- Han, H.; Xu, H.; Yuan, Z.; Zhao, Y. State of Charge estimation of Li-ion battery in EVs based on second-order sliding mode observer. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–5. [Google Scholar]
- Huangfu, Y.; Xu, J.; Zhao, D.; Liu, Y.; Gao, F. A novel battery state of charge estimation method based on a super-twisting sliding mode observer. Energies 2018, 11, 1211. [Google Scholar] [CrossRef]
- Obeid, H.; Petrone, R.; Chaoui, H.; Gualous, H. Higher order sliding-mode observers for state-of-charge and state-of-health estimation of lithium-ion batteries. IEEE Trans. Veh. Technol. 2022, 72, 4482–4492. [Google Scholar] [CrossRef]
- Fornaro, P.; Puleston, T.; Puleston, P.; Serra-Prat, M.; Costa-Castelló, R.; Battaiotto, P. Redox flow battery time-varying parameter estimation based on high-order sliding mode differentiators. Int. J. Energy Res. 2022, 46, 16576–16592. [Google Scholar] [CrossRef]
- Fornaro, P.; Puleston, P.; Battaiotto, P. State-of-Charge and State-of-Health variable-gain estimation based on tracking sliding mode differentiators for an electric vehicle Lithium-ion battery. J. Energy Storage 2023, 65, 107298. [Google Scholar] [CrossRef]
- Kim, T.; Qiao, W.; Qu, L. Online SOC and SOH estimation for multicell lithium-ion batteries based on an adaptive hybrid battery model and sliding-mode observer. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 292–298. [Google Scholar]
- Chen, X.; Shen, W.; Dai, M.; Cao, Z.; Jin, J.; Kapoor, A. Robust adaptive sliding-mode observer using RBF neural network for lithium-ion battery state of charge estimation in electric vehicles. IEEE Trans. Veh. Technol. 2015, 65, 1936–1947. [Google Scholar] [CrossRef]
- Chen, X.; Shen, W.; Cao, Z.; Kapoor, A. Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model. Comput. Chem. Eng. 2014, 64, 114–123. [Google Scholar] [CrossRef]
- Du, J.; Liu, Z.; Wang, Y.; Wen, C. An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles. Control Eng. Pract. 2016, 54, 81–90. [Google Scholar] [CrossRef]
- Huangfu, Y.; Xu, J.; Zhuo, S.; Xie, M.; Liu, Y. A novel adaptive sliding mode observer for SOC estimation of lithium batteries in electric vehicles. In Proceedings of the 2017 7th International Conference on Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security (PESA), Hong Kong, China, 12–14 December 2017; pp. 1–6. [Google Scholar]
- Ning, B.; Cao, B.; Wang, B.; Zou, Z. Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online. Energy 2018, 153, 732–742. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, J.; Gao, T.; Ren, S. State of charge estimation of li-ion battery based on adaptive sliding mode observer. Sensors 2022, 22, 7678. [Google Scholar] [CrossRef] [PubMed]
- Fereydooni, A.; Vafa, E.; Pishvaie, M.R.; Choobar, B.G. Robust adaptive sliding mode observer for core temperature and state of charge monitoring of Li-ion battery: A simulation study. J. Energy Storage 2023, 70, 107960. [Google Scholar] [CrossRef]
- Qian, W.; Li, W.; Guo, X.; Wang, H. A switching gain adaptive sliding mode observer for SoC estimation of lithium-ion battery. Energy 2024, 292, 130585. [Google Scholar] [CrossRef]
- Jiani, D.; Youyi, W.; Changyun, W. Li-ion battery SOC estimation using particle filter based on an equivalent circuit model. In Proceedings of the 2013 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 12–14 June 2013; pp. 580–585. [Google Scholar]
- Feng, Y.; Du, J.; Xue, C.; Han, F.; Yu, X. Estimation of SoC of batteries using terminal sliding-mode observer. In Proceedings of the 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 19–23 July 2018; pp. 1260–1263. [Google Scholar]
- Feng, Y.; Xue, C.; Han, Q.-L.; Han, F.; Du, J. Robust estimation for state-of-charge and state-of-health of lithium-ion batteries using integral-type terminal sliding-mode observers. IEEE Trans. Ind. Electron. 2019, 67, 4013–4023. [Google Scholar] [CrossRef]
- Rezaei, O.; Moghaddam, H.A.; Papari, B. A fast sliding-mode-based estimation of state-of-charge for Lithium-ion batteries for electric vehicle applications. J. Energy Storage 2022, 45, 103484. [Google Scholar] [CrossRef]
- Chen, M.; Han, F.; Shi, L.; Feng, Y.; Xue, C.; Gao, W.; Xu, J. Sliding mode observer for state-of-charge estimation using hysteresis-based Li-ion battery model. Energies 2022, 15, 2658. [Google Scholar] [CrossRef]
- Yin, C.; Zhong, Q.; Chen, Y.; Zhong, S.-m. Estimating the state of charge of lithium batteries based on fractional-order sliding-mode observer. In Proceedings of the ICFDA’14 International Conference on Fractional Differentiation and Its Applications 2014, Catania, Italy, 23–25 June 2014; pp. 1–6. [Google Scholar]
- Zhong, Q.; Zhong, F.; Cheng, J.; Li, H.; Zhong, S. State of charge estimation of lithium-ion batteries using fractional order sliding mode observer. ISA Trans. 2017, 66, 448–459. [Google Scholar] [CrossRef]
- Zhou, M.; Wei, K.; Wu, X.; Weng, L.; Su, H.; Wang, D.; Zhang, Y.; Li, J. Fractional-order sliding-mode observers for the estimation of state-of-charge and state-of-health of lithium batteries. Batteries 2023, 9, 213. [Google Scholar] [CrossRef]
- Sethia, G.; Nayak, S.K.; Majhi, S. An approach to estimate lithium-ion battery state of charge based on adaptive Lyapunov super twisting observer. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 1319–1329. [Google Scholar] [CrossRef]
- Zheng, W.; Xia, B.; Wang, W.; Lai, Y.; Wang, M.; Wang, H. State of charge estimation for power lithium-ion battery using a fuzzy logic sliding mode observer. Energies 2019, 12, 2491. [Google Scholar] [CrossRef]
- Rezaei, O.; Alinejad, M.; Nejati, S.A.; Chong, B. An optimized adaptive estimation of state of charge for Lithium-ion battery based on sliding mode observer for electric vehicle application. In Proceedings of the 2020 8th International Conference on Intelligent and Advanced Systems (ICIAS), Kuching, Malaysia, 13–15 July 2021; pp. 1–6. [Google Scholar]
- Feng, L.; Ding, J.; Han, Y. Improved sliding mode based EKF for the SOC estimation of lithium-ion batteries. Ionics 2020, 26, 2875–2882. [Google Scholar] [CrossRef]
- Meng, S.; Meng, F.; Chi, H.; Chen, H.; Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Frankl. Inst. 2023, 360, 11397–11413. [Google Scholar] [CrossRef]
- Sakile, R.; Sinha, U.K. Lithium-Ion Battery State of Charge Estimation Using a New Extended Nonlinear State Observer. Adv. Theory Simul. 2022, 5, 2100552. [Google Scholar] [CrossRef]
- Sakile, R.; Sinha, U.K. Estimation of lithium-ion battery state of charge for electric vehicles using a nonlinear state observer. Energy Storage 2022, 4, e290. [Google Scholar] [CrossRef]
- Li, W.; Liang, L.; Liu, W.; Wu, X. State of charge estimation of lithium-ion batteries using a discrete-time nonlinear observer. IEEE Trans. Ind. Electron. 2017, 64, 8557–8565. [Google Scholar] [CrossRef]
- Tian, Y.; Li, D.; Tian, J.; Xia, B. A comparative study of state-of-charge estimation algorithms for lithium-ion batteries in wireless charging electric vehicles. In Proceedings of the 2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Knoxville, TN, USA, 4–6 October 2016; pp. 186–190. [Google Scholar]
- Munisamy, S.; Wu, W. State of charge estimation of lithium sulfur batteries using sliding mode observer. In Proceedings of the 2022 IEEE 7th International Energy Conference (ENERGYCON), Riga, Latvia, 9–12 May 2022. [Google Scholar]
- Feng, Y.; Xue, C.; Han, F.; Cao, Z.; Yang, R.J. State-of-Charge and State-of-Health Estimation in Li-Ion Batteries Using Cascade Electrochemical Model-Based Sliding-Mode Observers. Batteries 2024, 10, 290. [Google Scholar] [CrossRef]
- Lin, C.; Xing, J.; Tang, A. Lithium-ion battery state of charge/state of health estimation using SMO for EVs. Energy Procedia 2017, 105, 4383–4388. [Google Scholar] [CrossRef]
- Karamov, D.; Sidorov, D.; Muftahov, I.; Zhukov, A.; Liu, F. Optimization of isolated power systems with renewables and storage batteries based on nonlinear Volterra models for the specially protected natural area of lake Baikal. J. Phys. Conf. Ser. 2021, 1847, 012037. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Van Mierlo, J.; Berecibar, M. Equivalent circuit model for high-power lithium-ion batteries under high current rates, wide temperature range, and various state of charges. Batteries 2023, 9, 101. [Google Scholar] [CrossRef]
- Song, Y.; Liu, W.; Li, H.; Zhou, Y.; Huang, Z.; Jiang, F. Robust and accurate state-of-charge estimation for lithium-ion batteries using generalized extended state observer. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2146–2151. [Google Scholar]
- Sandoval-Chileño, M.A.; Castañeda, L.A.; Luviano-Juárez, A.; Gutiérrez-Frías, O.; Vazquez-Arenas, J. Robust State of Charge estimation for Li-ion batteries based on Extended State Observers. J. Energy Storage 2020, 31, 101718. [Google Scholar] [CrossRef]
- Kim, W.; Lee, P.-Y.; Kim, J.; Kim, K.-S. A robust state of charge estimation approach based on nonlinear battery cell model for lithium-ion batteries in electric vehicles. IEEE Trans. Veh. Technol. 2021, 70, 5638–5647. [Google Scholar] [CrossRef]
- Feng, Y.; Bai, F.; Xue, C.; Han, F. State-of-Charge and State-of-Energy Estimation for Lithium-ion Batteries Using Sliding-Mode Observers. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 2382–2385. [Google Scholar]
- Niri, M.F.; Bui, T.M.; Dinh, T.Q.; Hosseinzadeh, E.; Yu, T.F.; Marco, J. Remaining energy estimation for lithium-ion batteries via Gaussian mixture and Markov models for future load prediction. J. Energy Storage 2020, 28, 101271. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Chow, M.-Y. Adaptive parameter identification and state-of-charge estimation of lithium-ion batteries. In Proceedings of the IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 4012–4017. [Google Scholar]
- Zhu, L.; Sun, Z.; Dai, H.; Wei, X. A novel modeling methodology of open circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete Preisach model. Appl. Energy 2015, 155, 91–109. [Google Scholar] [CrossRef]
- Ma, Y.; Li, B.; Li, G.; Zhang, J.; Chen, H. A nonlinear observer approach of SOC estimation based on hysteresis model for lithium-ion battery. IEEE/CAA J. Autom. Sin. 2017, 4, 195–204. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 2012, 64, 113–121. [Google Scholar] [CrossRef]
- Tran, M.-K.; DaCosta, A.; Mevawalla, A.; Panchal, S.; Fowler, M. Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries 2021, 7, 51. [Google Scholar] [CrossRef]
- Ehsani, M.; Oraee, A.; Abdi, B.; Behnamgol, V.; Hakimi, M. Adaptive dynamic sliding mode controller based on extended state observer for brushless doubly fed induction generator. Int. J. Dyn. Control 2024, 12, 3719–3732. [Google Scholar] [CrossRef]
- Sui, X.; He, S.; Stroe, D.-I.; Huang, X.; Meng, J.; Teodorescu, R. A review of sliding mode observers based on equivalent circuit model for battery SoC estimation. In Proceedings of the 2019 IEEE 28th international symposium on industrial electronics (ISIE), Vancouver, BC, Canada, 12–14 June 2019; pp. 1965–1970. [Google Scholar]
- Zhang, F.; Liu, G.; Fang, L. A battery state of charge estimation method using sliding mode observer. In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 989–994. [Google Scholar]
- Xiong, B.; Zhao, J.; Su, Y.; Wei, Z.; Skyllas-Kazacos, M. State of charge estimation of vanadium redox flow battery based on sliding mode observer and dynamic model including capacity fading factor. IEEE Trans. Sustain. Energy 2017, 8, 1658–1667. [Google Scholar] [CrossRef]
- Dey, S.; Ayalew, B.; Pisu, P. Combined estimation of state-of-charge and state-of-health of Li-ion battery cells using SMO on electrochemical model. In Proceedings of the 2014 13th International Workshop on Variable Structure Systems (VSS), Nantes, France, 29 June–2 July 2014; pp. 1–6. [Google Scholar]
- Tudoroiu, N.; Elefterie, L.; Tudoroiu, E.-R.; Kecs, W.; Dobritoiu, M.; Ilias, N. Real-time sliding mode observer estimator integration in hybrid electric vehicles battery management systems. In Proceedings of the Information Systems Architecture and Technology: Proceedings of 37th International Conference on Information Systems Architecture and Technology–ISAT 2016–Part III, Karpacz, Poland, 18–20 September 2017; pp. 15–28. [Google Scholar]
- Wang, C.; Cui, N.; Liu, M.; Zhang, C. A new state of charge estimation method for lithium-ion battery based on sliding mode observer. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 5625–5630. [Google Scholar]
- Vicidomini, G.; Petrone, G.; Monmasson, E.; Spagnuolo, G. FPGA based implementation of a sliding-mode observer for battery state of charge estimation. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 1268–1273. [Google Scholar]
- Sassi, H.B.; Errahimi, F.; Es-Sbai, N.; Alaoui, C. A comparative study of Kalman filtering based observer and sliding mode observer for state of charge estimation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 353, 012012. [Google Scholar]
- Mazzi, Y.; Ben Sassi, H.; Errahimi, F.; Es-Sbai, N. PIL implementation of adaptive gain sliding mode observer and ANN for SOC estimation. In Proceedings of the Artificial Intelligence and Industrial Applications: Artificial Intelligence Techniques for Cyber-Physical, Digital Twin Systems and Engineering Applications, Meknes, Morocco, 19–20 March 2021; pp. 270–278. [Google Scholar]
- Choobar, B.G.; Hamed, H.; Safari, M. Sliding mode observer with adaptive switching gain for estimating state of charge and internal temperature of a commercial Li-ion pouch cell. J. Energy Storage 2024, 96, 112628. [Google Scholar] [CrossRef]
- Kim, D.; Koo, K.; Jeong, J.J.; Goh, T.; Kim, S.W. Second-order discrete-time sliding mode observer for state of charge determination based on a dynamic resistance li-ion battery model. Energies 2013, 6, 5538–5551. [Google Scholar] [CrossRef]
- Feng, Y.; Duan, J.; Xue, C.; Han, F. State-of-charge and state-of-health estimation algorithms of lithium-ion batteries using SMO. In Proceedings of the 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 22–24 October 2021; pp. 2104–2108. [Google Scholar]
- Behnamgol, V.; Vali, A.; Mohammadi, A. Lyapunov-basedAdaptive SmoothSecond-order Sliding Mode Guidance Law with Proving Finite Time Stability. Space Sci. Technol. 2018, 11, 33–39. [Google Scholar]
- Zhang, S.; Wang, X.; Li, C.; Xiao, D. Robust State of Charge Estimation for Battery with Self-Adaptive Super Twisting Sliding Mode Observer. In Proceedings of the IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 16–19 October 2023; pp. 1–6. [Google Scholar]
- Kim, D.; Goh, T.; Park, M.; Kim, S.W. Fuzzy sliding mode observer with grey prediction for the estimation of the state-of-charge of a lithium-ion battery. Energies 2015, 8, 12409–12428. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, E.; Yan, S.; Jiang, K.; Wang, K.; Wang, Z.; Cheng, S. State of charge estimation for liquid metal battery based on an improved sliding mode observer. J. Energy Storage 2022, 45, 103701. [Google Scholar] [CrossRef]
- Ali Akbar Semnani, M.; Vali, A.; Hakimi, S.M. Heartbeat ECG tracking systems using observer based nonlinear controller. J. Appl. Dyn. Syst. Control 2021, 1, 69. [Google Scholar]
- Omrani, G.; Abdi, B.; Derakhshan, G. Control of permanent magnet synchronous motor using observer based vector nonlinear controller. J. Iran. Assoc. Electr. Electron. Eng. 2022, 19, 237–246. [Google Scholar] [CrossRef]
- Siahi, K.; Arvan, M.R.; Behnamgol, V.; Mosayebi, M. Design of observer-based nonlinear controller for tracking maximum power point in the solar cell. In Proceedings of the 2022 30th International Conference on Electrical Engineering (ICEE), Tehran, Iran, 17–19 May 2022. [Google Scholar]
Method | Challenges | |
---|---|---|
Direct Methods | Ampere-Hour | Requires accurate current sensors, accumulates errors over time, precision depends on initial SoC determination, sensor accuracy, and sampling frequency, open-loop estimator, cannot determine initial SoC, affected by temperature and aging. |
Open Circuit Voltage | Requires battery to be at rest for extended periods, unsuitable for real-time estimation, sensitive to sensor imprecision, efficiency depends on table accuracy. | |
Impedance Measurement-Based | Challenging to implement online, affected by measurement difficulties and environmental factors. Sensitive to temperature changes, may not represent battery dynamics under high discharge currents, requires bulky and expensive equipment. | |
Indirect Methods | Filter-Based (KF Family) | Accuracy depends on model accuracy, requires substantial computational resources, challenges in selecting appropriate feedback gain, limitations in real-world implementation, assumes constant noise covariance values. Challenges in selecting feedback gain, requires perfect system modelling, assumes Gaussian noise distribution, performance degrades if conditions are not met, requires accurate battery model parameters (in KF). Linearization errors, complex Jacobian matrix computations, sensitivity to parameters, convergence issues, computational complexity, parameter tuning challenges (in EKF). |
Data-Driven-Based | High computational cost, long processing time, precision depends on training data, imposes large computational burden, requires comprehensive training data, sensitive to discharge current profile deviations. Requires reliable training data, advanced electronic devices for processing, computational burden on battery management controller, sensitive to training data quality (in NN). Requires precise information and experiences, complemented with optimization methods, computational burden on battery management controller (in Fuzzy Logic). | |
Observer-Based | Complex calculations, high computational demands, requires accurate system model, deep understanding of mathematics needed (in H∞ Observers). Requires understanding of uncertainty boundaries, trade-off between smoothness and convergence accuracy, parameter selection challenges (in SMOs). |
Parameter | Value |
---|---|
Parameter | Value |
---|---|
0.1 | |
50 | |
10 |
Parameter | Value |
---|---|
0.1 | |
50 | |
10 | |
0.1 |
Parameter | Value |
---|---|
0.1 | |
1 | |
0.1 | |
10 | |
5 |
Parameter | Value |
---|---|
0.1 | |
5 | |
2 | |
0.7 | |
0.5 | |
2 |
Parameter | Value |
---|---|
0.07 | |
0.1 | |
5 | |
2 | |
7 | |
9 |
Method | Benefits | Challenges |
---|---|---|
Conventional SMO | Considering nonlinearities Robust estimation Finite time convergence Accurate estimation | Produces non-smooth estimation signal Requires understanding of uncertainty boundaries |
Approximated SMO | Smooth estimation | Trade-off between smoothness and convergence accuracy Non-Finite time convergence guarantee Absence of convergence time relation |
High Order SMO | Smooth estimation High accuracy | Complexity Parameter selection challenges |
Terminal SMO | Robust Estimation Finite time convergence in sliding phase | Produces non-smooth estimation signal Requires understanding of uncertainty boundaries |
Adaptive SMO | Independent to uncertainties bound Lower chattering | Produces non-smooth estimation signal Non-Finite time convergence guarantee Overestimation Absence of convergence time relation |
Fractional Order SMO | Better estimation behaviour | Produces non-smooth estimation signal Requires understanding of uncertainty boundaries |
Advanced SMOs | Independent to uncertainties bound and smooth estimation (adaptive super-twisting SMO) Finite time convergence in sliding phase and smooth estimation (terminal high order SMO) | Complex calculation (adaptive super- twisting SMO) Requires understanding of uncertainty boundaries (terminal high order SMO) |
Combined SMO | Optimal gains | Produces non-smooth estimation signal (Using sign function) Decreased accuracy (in approximated versions) Non-finite time convergence guarantee Absence of convergence time relation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behnamgol, V.; Asadi, M.; Mohamed, M.A.A.; Aphale, S.S.; Faraji Niri, M. Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers. Energies 2024, 17, 5754. https://doi.org/10.3390/en17225754
Behnamgol V, Asadi M, Mohamed MAA, Aphale SS, Faraji Niri M. Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers. Energies. 2024; 17(22):5754. https://doi.org/10.3390/en17225754
Chicago/Turabian StyleBehnamgol, Vahid, Mohammad Asadi, Mohamed A. A. Mohamed, Sumeet S. Aphale, and Mona Faraji Niri. 2024. "Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers" Energies 17, no. 22: 5754. https://doi.org/10.3390/en17225754
APA StyleBehnamgol, V., Asadi, M., Mohamed, M. A. A., Aphale, S. S., & Faraji Niri, M. (2024). Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers. Energies, 17(22), 5754. https://doi.org/10.3390/en17225754