Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change
<p>AOI overview. (<b>A</b>) Location of the AOI within Poland. (<b>B</b>) Detailed map of the AOI, indicating current mining operations, major lakes and rivers, roads, railways, urban areas, the meteorological station, landscape features, and the locations of boreholes and hydrogeological cross-sections. Data sources: National Geoportal of Poland [<a href="#B49-energies-17-05540" class="html-bibr">49</a>], Polish Geological Institute–National Research Institute [<a href="#B52-energies-17-05540" class="html-bibr">52</a>]. Basemap: OpenStreetMap contributors [<a href="#B50-energies-17-05540" class="html-bibr">50</a>].</p> "> Figure 2
<p>Schematic hydrogeological cross-sections through the AOI. See <a href="#energies-17-05540-f001" class="html-fig">Figure 1</a> for the locations of the cross-sections. Geological formations are interpolated using kriging with semi-variogram analysis of data from 30 boreholes retrieved from the Polish Geological Institute–National Research Institute [<a href="#B52-energies-17-05540" class="html-bibr">52</a>]. The approximate positions of Quaternary, Paleogene–Neogene, and Cretaceous aquifer systems are based on data from the Polish Geological Institute–National Research Institute [<a href="#B52-energies-17-05540" class="html-bibr">52</a>] and from Wilk et al. [<a href="#B54-energies-17-05540" class="html-bibr">54</a>].</p> "> Figure 3
<p>Lignite mining history, current operations, and water recultivation areas in the AOI, including prospective lignite deposits. The extent of current lignite mines is based on data from the Polish Geological Institute–National Research Institute [<a href="#B52-energies-17-05540" class="html-bibr">52</a>]. Although active lignite mining in September 2024 was limited to the “Tomisławice” mine, the delineated areas of the “Jóźwin” and “Drzewce” mines, where operations ceased in 2023 and 2022, respectively, are still designated as mining areas undergoing water recultivation [<a href="#B52-energies-17-05540" class="html-bibr">52</a>]. The approximate extent of depression cones primarily affecting the Quaternary aquifer system is also shown, based on Wilk et al. [<a href="#B54-energies-17-05540" class="html-bibr">54</a>]. Additionally, the map displays piezometers monitoring groundwater levels in the “Tomisławice” mine [<a href="#B59-energies-17-05540" class="html-bibr">59</a>], as well as the national monitoring network of the Polish Geological Institute–National Research Institute [<a href="#B52-energies-17-05540" class="html-bibr">52</a>].</p> "> Figure 4
<p>Land surface movement in the AOI from EGMS data for periods (<b>A</b>) 2015–2021 and (<b>B</b>) 2018–2022. Points indicate measurement locations and annual displacement rate (mm/year), while contour lines represent interpolated total displacement (mm) for the respective periods.</p> "> Figure 5
<p>Groundwater level and land surface movement time series from piezometers at the “Tomisławice” mine. Raw data, LOESS trend lines, and linear regression fits. Coefficients of determination (R<sup>2</sup>) and Pearson correlation coefficients (R) are provided for each linear regression. The joint observation period is highlighted in red.</p> "> Figure 6
<p>Groundwater level and land surface movement time series from piezometers monitoring the unconfined Quaternary aquifer system, located outside the mining influence zone. Raw data, LOESS trend lines, and linear regression fits. Coefficients of determination (R<sup>2</sup>) and Pearson correlation coefficients (R) are provided for each linear regression. The joint observation period is highlighted in red.</p> "> Figure 7
<p>Groundwater level and land surface movement time series from piezometers monitoring the confined aquifer system, located outside, but proximal to, the mining influence zone. Raw data, LOESS trend lines, and linear regression fits. Coefficients of determination (R<sup>2</sup>) and Pearson correlation coefficients (R) are provided for each linear regression. The joint observation period is highlighted in red.</p> "> Figure 8
<p>Groundwater level and land surface movement time series from piezometers monitoring the confined aquifer system, located outside and farther from the mining influence zone. Raw data, LOESS trend lines, and linear regression fits. Coefficients of determination (R<sup>2</sup>) and Pearson correlation coefficients (R) are provided for each linear regression. The joint observation period is highlighted in red.</p> "> Figure 9
<p>Time series of mean monthly temperature and precipitation with linear trends and confidence intervals as well as means recorded at Kołuda Wielka meteorological station over periods (<b>A</b>) 1991–2023 and (<b>B</b>) 2009–2023.</p> "> Figure 10
<p>Cross-correlation between groundwater level and meteorological data: (<b>A</b>) mean monthly temperature and (<b>B</b>) monthly precipitation data for the period 2009–2023, for piezometers of the Polish national hydrogeological network monitoring the unconfined aquifer.</p> "> Figure 11
<p>Cross-correlation between groundwater level and meteorological data: (<b>A</b>) mean monthly temperature and (<b>B</b>) monthly precipitation data for the period 2009–2023, for piezometers of the Polish national hydrogeological network monitoring the confined aquifer system.</p> "> Figure A1
<p>Land surface movement in the vicinity of the “Tomisławice” mine from EGMS data for periods (<b>A</b>) 2015–2021 and (<b>B</b>) 2018–2022. Points indicate measurement locations and annual displacement rate (mm/year), while contour lines represent interpolated total displacement (mm) for the respective periods.</p> "> Figure A2
<p>Land surface movement in the vicinity of “Drzewce” and “Lubstów” mines from EGMS data for periods (<b>A</b>) 2015–2021 and (<b>B</b>) 2018–2022. Points indicate measurement locations and annual displacement rate (mm/year), while contour lines represent interpolated total displacement (mm) for the respective periods.</p> "> Figure A3
<p>Land surface movement in the vicinity of the “Jóźwin” mine from EGMS data for periods (<b>A</b>) 2015–2021 and (<b>B</b>) 2018–2022. Points indicate measurement locations and annual displacement rate (mm/year), while contour lines represent interpolated total displacement (mm) for the respective periods.</p> ">
Abstract
:1. Introduction
- Quantify and differentiate land surface movements in both mining-affected and unaffected areas using InSAR data to distinguish between subsidence caused by lignite extraction and broader regional impacts related to climate factors.
- Evaluate the impacts of lignite extraction and climate change on aquifer systems by assessing changes in groundwater levels and aquifer storage capacity retrieved from extensive networks of piezometers, under both anthropogenic influences and natural climatic conditions.
- Investigate long-term climate trends and their environmental impacts on groundwater level changes and land surface dynamics to provide insights into the complex relationship between climate change, groundwater resources, and land stability in a region transitioning away from lignite mining.
2. Study Area
2.1. Morphology and Hydrology
2.2. Geology
2.3. Hydrogeology
2.4. Mining Exploitation in the “Konin” Lignite Basin
2.4.1. Past and Current Open-Pit Mines
2.4.2. From Mining Impacts to Energy Transition and Mine Closure
3. Materials and Methods
- InSAR-Based Spatial and Temporal Land Surface Movement
- Aquifer System Depletion Analysis
- Meteorological Data, Groundwater Level, and Land Surface Movement Correlation
3.1. InSAR-Based Spatial and Temporal Land Surface Movement
3.2. Aquifer System Depletion Analysis
3.3. Meteorological Data, Groundwater Level, and Land Surface Movement Correlation
4. Results and Discussion
4.1. Land Surface Movement in Mining and Non-Mining Areas
4.2. Spatial and Temporal Characteristics of the Aquifer System
4.3. Long-Term Climate Trends and Their Environmental Impact
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Land Surface Movement in the AOI from EGMS Data
Appendix B. Observation Data for Groundwater Levels and Land Surface Movements
No. | Number | Change in Groundwater Level [m] | Change in Land Surface Movement [m] | Ratio of the Change in Land Surface Movement to Groundwater Level | ||||||
---|---|---|---|---|---|---|---|---|---|---|
December 2009–December 2019 * | December 2015–December 2019 | December 2015–December 2021 | December 2015–December 2019 | |||||||
[m] | [m/year] | [m] | [m/year] | [mm] | [mm/ year] | [mm] | [mm/ year] | |||
1 | PT3 (Q) | −12.33 | −1.23 | +3.57 | +0.89 | −34.2 | −5.7 | −35.9 | −8.8 | 9.89 × 10−3 |
PT3 (P + N) | −16.09 | −1.61 | +1.32 | +0.33 | 2.67 × 10−2 | |||||
2 | PT20 (Q) | −7.92 | −0.79 | −2.10 | −0.52 | −38.4 | −6.4 | −36.2 | −9.1 | 1.75 × 10−2 |
PT20 (P + N) | −25.97 | −2.60 | −14.94 | −3.74 | 2.43 × 10−3 | |||||
3 | PI-1 (Q) | −11.10 | −1.11 | −3.32 | −0.83 | −18.0 | −3.0 | −19.7 | −4.9 | 5.90 × 10−3 |
PI-1 (P + N) | −18.30 | −1.83 | −5.76 | −1.44 | 3.40 × 10−3 | |||||
4. | PT15 (Q) | −5.29 | −0.53 | +0.85 | +0.21 | −3.0 | −0.5 | −4.5 | −1.1 | 5.24 × 10−3 |
PT15 (P + N) | −5.75 | −0.58 | +0.50 | +0.12 | 9.17 × 10−3 | |||||
5. | PIII-1 (Q) | −1.26 | −0.13 | +0.27 | +0.07 | −8.4 | −1.4 | −11.0 | −2.8 | 4.00 × 10−2 |
PIII-1 (P + N) | −12.84 | −1.28 | −5.22 | −1.30 | 2.15 × 10−3 | |||||
6. | PT34 (Q) | −2.95 | −0.42 | −1.31 | −0.33 | −12.0 | −2.0 | −12.6 | −3.1 | 9.39 × 10−3 |
PT34 (P + N) | −8.14 | −1.16 | −7.21 | −1.80 | 1.72 × 10−3 | |||||
7. | PIII-2 (Q) | −1.11 | −0.11 | +0.51 | +0.17 | −6.0 | −1.0 | −5.4 | −1.4 | 8.24 × 10−3 |
PIII-2 (P + N) | −6.96 | −0.70 | −1.46 | −0.49 | 2.86 × 10−3 | |||||
8. | PIII-3 (Q) | −0.99 | −0.10 | −0.08 | −0.03 | −4.8 | −0.8 | −6.0 | −1.5 | 5.00 × 10−2 |
PIII-3 (P + N) | −0.95 | −0.09 | −0.49 | −0.16 | 9.38 × 10−3 |
No. | Number | Change in Groundwater Level [m] * | Change in Land Surface Movement [m] | Ratio of the Change in Land Surface Movement to Groundwater Level (December 2015–December 2019) | ||||
---|---|---|---|---|---|---|---|---|
December 2009–December 2023 ** | December 2015/–December 2021 | December 2015/–December 2021 | ||||||
[m] | [m/year] | [m] | [m/year] | [mm] | [mm/year] | |||
1. | II/1270/1 | −0.98 | −0.07 | −0.26 | −0.04 | −4.8 | −0.8 | 1.85 × 10−2 |
2. | II/1273/1 | −0.56 | −0.04 | −0.23 | −0.04 | −7.2 | −1.2 | 3.13 × 10−2 |
3. | II/1271/1 | −0.85 | −0.06 | −0.03 | 0.00 | +0.6 | +0.1 | 2.08 × 10−2 |
4. | II/27/3 | −0.28 | −0.02 | +0.04 | +0.01 | −6.6 | −1.1 | 1.83 × 10−1 |
5. | II/197/1 | −2.48 | −0.18 | No data | No data | −7.2 | −1.2 | - |
6. | II/1270/2 | −0.28 | −0.02 | 0.78 | 0.13 | −4.8 | −0.8 | 1.85 × 10−2 |
7. | II/909/1 | −0.26 | −0.02 | −0.01 | 0.00 | −4.2 | −0.7 | 2.92 × 10−1 |
8. | II/902/1 | −2.24 | −0.16 | −0.80 | −0.13 | −4.2 | −0.7 | 5.26 × 10−3 |
9. | II/1277/1 | −0.39 | −0.03 | +0.35 | +0.06 | −6.0 | −1.0 | 1.70 × 10−2 |
10. | II/72/1 | −3.78 | −0.27 | −0.25 | −0.04 | −4.8 | −0.8 | 1.90 × 10−2 |
11. | II/536/1 | −0.59 | −0.04 | +0.47 | 0.08 | 0.0 | 0.0 | 1.28 × 10−3 |
12. | I/999/1 | −0.28 | −0.02 | +0.21 | 0.03 | +0.6 | +0.1 | 2.87 × 10−3 |
References
- Yang, Y.; Xia, S.; Huang, P.; Qian, J. Energy Transition: Connotations, Mechanisms and Effects. Energy Strateg. Rev. 2024, 52, 101320. [Google Scholar] [CrossRef]
- Zhou, P.; Gao, S.; Lv, Y.; Zhao, G. Energy Transition Management towards a Low-Carbon World. Front. Eng. Manag. 2022, 9, 499–503. [Google Scholar] [CrossRef]
- Eisenberg, R.; Gray, H.B.; Crabtree, G.W. Addressing the Challenge of Carbon-Free Energy. Proc. Natl. Acad. Sci. USA 2020, 117, 12543–12549. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Production and Consumption of Solid Fossil Fuels—Annual Data. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_cb_sff/default/table?lang=en (accessed on 16 October 2024).
- Eurostat. Production and Consumption of Solid Fossil Fuels—Monthly Data. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_cb_sffm/default/table?lang=en (accessed on 16 October 2024).
- Eurostat. Energy Balance Sheets—Annual Data. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_bal_peh/default/table?lang=en (accessed on 16 October 2024).
- Zhao, J.; Hong, J.; Song, Z.; Wang, Q.; Zhao, X.; Ma, C. Cost Combined Life Cycle Assessment of Lignite-Based Electricity Generation. Fuel 2015, 159, 666–674. [Google Scholar] [CrossRef]
- Oei, P.Y.; Hermann, H.; Herpich, P.; Holtemöller, O.; Lünenbürger, B.; Schult, C. Coal Phase-Out in Germany—Implications and Policies for Affected Regions. Energy 2020, 196, 117004. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. 2024. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 16 October 2024).
- European Council on Foreign Relations. From Coal to Consensus: Poland’s Energy Transition and Its European Future. 2024. Available online: https://ecfr.eu/publication/from-coal-to-consensus-polands-energy-transition-and-its-european-future (accessed on 16 October 2024).
- Jarosławska-Sobór, S.; Jarosławska-Sob, S. Decarbonisation–Origins and Evolution of the Process on the European Level. J. Sustain. Min. 2021, 20, 250–259. [Google Scholar] [CrossRef]
- Dmochowska-Dudek, K.; Wójcik, M. Socio-Economic Resilience of Poland’s Lignite Regions. Energies 2022, 15, 4966. [Google Scholar] [CrossRef]
- European Commission. European Commission Presents New Measures to Accelerate the Green Transition in the EU. 2024. Available online: https://reform-support.ec.europa.eu/what-we-do/green-transition_en (accessed on 16 October 2024).
- Reuters. Poland Plans to Set End Date for Coal Power. 2024. Available online: https://www.reuters.com/sustainability/poland-plans-set-end-date-coal-power-2024-01-15 (accessed on 16 October 2024).
- Guzy, A.; Malinowska, A.A. Assessment of the Impact of the Spatial Extent of Land Subsidence and Aquifer System Drainage Induced by Underground Mining. Sustainability 2020, 12, 7871. [Google Scholar] [CrossRef]
- Guzy, A.; Malinowska, A.A. State of the Art and Recent Advancements in the Modelling of Land Subsidence Induced by Groundwater Withdrawal. Water 2020, 12, 2051. [Google Scholar] [CrossRef]
- Guzy, A.; Witkowski, W.T. Land Subsidence Estimation for Aquifer Drainage Induced by Underground Mining. Energies 2021, 14, 4658. [Google Scholar] [CrossRef]
- Vervoort, A. Challenge to Explain the Upward Surface Movement Above Abandoned Coal Mines. In Proceedings of Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures; Lecture Notes in Civil Engineering; Springer: Singapore, 2022; Volume 228, pp. 155–165. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Guzy, A.; Hejmanowski, R. Satellite-Based Monitoring and Modeling of Ground Movements Caused by Water Rebound. Remote Sens. 2020, 12, 1786. [Google Scholar] [CrossRef]
- Vervoort, A. Uplift of the Surface of the Earth above Abandoned Coal Mines. Part B: Framework to Understand and Explain Uplift. Int. J. Rock Mech. Min. Sci. 2021, 148, 104947. [Google Scholar] [CrossRef]
- Witkowski, W.T.; Guzy, A.; Lucka, M.; Kusztykiewicz, K. Study on Sinkhole Formation Mechanism in Abandoned Mines. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 2462–2465. [Google Scholar] [CrossRef]
- Becek, K.; Ibrahim, K.; Bayik, C.; Abdikan, S.; Kutoglu, H.; Glabicki, D.; Blachowski, J. Identifying Land Subsidence Using Global Digital Elevation Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8989–8998. [Google Scholar] [CrossRef]
- Blachowski, J.; Ellefmo, S.L. Mining Ground Deformation Estimation Based on Pre-Processed InSAR Open Data—A Norwegian Case Study. Minerals 2023, 13, 328. [Google Scholar] [CrossRef]
- Witkowski, W.T.; Mrochen, D.; Sopata, P.; Stoch, T. Integration of the Leveling Observations and PSInSAR Results for Monitoring Deformations Caused by Underground Mining. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 6614–6617. [Google Scholar] [CrossRef]
- Matwij, W.; Gruszczyński, W.; Puniach, E.; Ćwiąkała, P. Determination of Underground Mining-Induced Displacement Field Using Multi-Temporal TLS Point Cloud Registration. Measurement 2021, 180, 109482. [Google Scholar] [CrossRef]
- Ćwiąkała, P.; Gruszczyński, W.; Stoch, T.; Puniach, E.; Mrochen, D.; Matwij, W.; Matwij, K.; Nedzka, M.; Sopata, P.; Wójcik, A. UAV Applications for Determination of Land Deformations Caused by Underground Mining. Remote Sens. 2020, 12, 1733. [Google Scholar] [CrossRef]
- Kopec, A. Long-Term Monitoring of the Impact of Mining Operations on the Ground Surface at the Regional Scale Based on the InSAR-SBAS Technique, the Upper Silesian Coal Basin (Poland). Case Study. Acta Geodyn. Geomater. 2021, 18, 93–110. [Google Scholar] [CrossRef]
- Vervoort, A. Various Phases in Surface Movements Linked to Deep Coal Longwall Mining: From Start-up till the Period after Closure. Int. J. Coal Sci. Technol. 2020, 8, 412–426. [Google Scholar] [CrossRef]
- Dudek, M.; Sroka, A.; Tajduś, K.; Misa, R.; Mrochen, D. Assessment and Duration of the Surface Subsidence after the End of Mining Operations. Energies 2022, 15, 8711. [Google Scholar] [CrossRef]
- Dudek, M.; Tajduś, K.; Rusek, J. The Land Surface Deformation Caused by the Liquidation of the Anna Mine by Flooding. Arch. Environ. Prot. 2022, 48, 100–108. [Google Scholar]
- Milczarek, W.; Blachowski, J.; Grzempowski, P. Application of PSInSAR for Assessment of Surface Deformations in Post-Mining Area—Case Study of the Former Walbrzych Hard Coal Basin (SW Poland). Acta Geodyn. Geomater. 2017, 14, 41–52. [Google Scholar] [CrossRef]
- Vervoort, A. Uplift of the Surface of the Earth above Abandoned Coal Mines. Part A: Analysis of Satellite Data Related to the Movement of the Surface. Int. J. Rock Mech. Min. Sci. 2021, 148, 104896. [Google Scholar] [CrossRef]
- European Commission. EU Emissions Trading System (EU ETS). Available online: https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en (accessed on 22 October 2024).
- Zevgolis, I.E.; Theocharis, A.I.; Koukouzas, N.C. Geotechnical engineering perspectives: Challenges and solutions in the transition to a post-lignite era. Mater. Proc. 2021, 5, 17. [Google Scholar] [CrossRef]
- Saha, G.C.; Quinn, M. Integrated Surface Water and Groundwater Analysis under the Effects of Climate Change, Hydraulic Fracturing and Its Associated Activities: A Case Study from Northwestern Alberta, Canada. Hydrology 2020, 7, 70. [Google Scholar] [CrossRef]
- Ashraf, B.; Aghakouchak, A.; Alizadeh, A.; Mousavi Baygi, M.; Moftakhari, H.R.; Mirchi, A.; Anjileli, H.; Madani, K. Quantifying Anthropogenic Stress on Groundwater Resources. Sci. Rep. 2017, 7, 12910. [Google Scholar] [CrossRef]
- Kelley, V.; Turco, M.; Deeds, N.; Petersen, C.; Canonico, C. Assessment of Subsidence Risk Associated with Aquifer Storage and Recovery in the Coastal Lowlands Aquifer System, Houston, Texas, USA. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 487–491. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2023: Synthesis Report; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch (accessed on 16 October 2024).
- van Daalen, K.R.; Romanello, M.; Rocklöv, J.; Semenza, J.C.; Tonne, C.; Markandya, A.; Dasandi, N.; Jankin, S.; Achebak, H.; Ballester, J.; et al. The 2022 Europe Report of the Lancet Countdown on Health and Climate Change: Towards a Climate-Resilient Future. Lancet Public Health 2022, 7, e942–e965. [Google Scholar] [CrossRef]
- Dupuy, J.L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review. Ann. For. Sci. 2020, 77, 2. [Google Scholar] [CrossRef]
- Laino, E.; Iglesias, G. High-Level Characterisation and Mapping of Key Climate-Change Hazards in European Coastal Cities. Nat. Hazards 2024, 120, 3623–3659. [Google Scholar] [CrossRef]
- Tradowsky, J.S.; Philip, S.Y.; Kreienkamp, F.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; De Cruz, L.; et al. Attribution of the Heavy Rainfall Events Leading to Severe Flooding in Western Europe during July 2021. Clim. Chang. 2023, 176, 90. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased Economic Drought Impacts in Europe with Anthropogenic Warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Cammalleri, C.; Naumann, G.; Mentaschi, L.; Formetta, G.; Forzieri, G.; Gosling, S.; Bisselink, B.; De Roo, A.; Feyen, L. Global Warming and Drought Impacts in the EU; Publications Office of the European Union: Luxembourg, 2020; Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/global-warming-and-drought-impacts-eu (accessed on 16 October 2024).
- Jalota, S.K.; Vashisht, B.B.; Sharma, S.; Kaur, S. Climate Change and Groundwater. In Understanding Climate Change Impacts on Crop Production and Water Balance; Elsevier: Amsterdam, The Netherlands, 2018; pp. 149–181. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Brauers, H.; Oei, P.Y. The Political Economy of Coal in Poland: Drivers and Barriers for a Shift Away from Fossil Fuels. Energy Policy 2020, 144, 111621. [Google Scholar] [CrossRef]
- European Environment Agency. European Climate Risk Assessment. Available online: https://www.eea.europa.eu/publications/european-climate-risk-assessment (accessed on 16 October 2024).
- National Geoportal of Poland. Available online: https://www.geoportal.gov.pl/en/ (accessed on 16 October 2024).
- OpenStreetMap Contributors. OpenStreetMap. 2024. Available online: https://www.openstreetmap.org/ (accessed on 16 October 2024).
- Ostaszewska, K.; Richling, A. (Eds.) Geografia Fizyczna Polski, 1st ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006; ISBN 9788301144265. [Google Scholar]
- Kisielewski, F. Polish Geological Institute-National Research Institute. Available online: https://www.pgi.gov.pl/en/ (accessed on 14 March 2020).
- Dadlez, R. Mapa Geologiczna Polski Bez Utworów Kenozoiku; Polish Geological Institute: Warsaw, Poland, 2000.
- Wilk, Z. (Ed.) Hydrogeologia Polskich Złóż Kopalin i Problemy Wodne Górnictwa. Tom 1, 1st ed.; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2003; ISBN 83-89388-20-0. [Google Scholar]
- Chomiak, L.; Urbański, P.; Widera, M. Architecture and Origin of Clays within the Upper Part of Lignites of the Poznań Formation (Middle Miocene): The Tomisławice Lignite Open-Cast Mine near Konin, Central Poland. Przegląd Geol. 2020, 68, 526–534. [Google Scholar] [CrossRef]
- Dąbrowski, S.; Rynarzewski, W.; Zachaś-Janecka, J. Groundwater Renewal in the Dynamics System of the Right-Bank Basin of Warta, Górna Noteć and Zgłowiączka Rivers Strongly Affected by Mine Dewatering. Przegląd Geol. 2015, 63, 666–671. [Google Scholar]
- Starzycka, A.; Kasiński, J.; Saternus, A.; Urbański, P. Mineral Resources of Poland as Seen by Polish Geological Survey-Lignite; Polish Geological Institute: Warszawa, Poland, 2020.
- PAK Kopalnia Węgla Brunatnego Konin. Available online: https://www.kwbkonin.pl/index.html (accessed on 16 October 2024).
- Przybyłek, J. Analysis of the Development of the Depression Cone of the Tomisławice Lignite Open Pit Mine in 2009–2019 and Its Impact on the Soil and Water Relations of the Kujawy Lakeland. Przegląd Geol. 2022, 70, 527–557. [Google Scholar] [CrossRef]
- Przybyłek, J. Current Problems of the Lignite Open Cast Mines Dewatering in the Wielkopolska Region. Górnictwo Odkryw. 2018, 59, 5–14. [Google Scholar]
- Nowak, B.; Szadek, P.; Widera, M.; Kruczyńska, E. Przyrodnicze i Gospodarcze Wyzwania Związane z Eksploatacją i Rekul-tywacją Konińskich Odkrywek Węgla Brunatnego. In IV Polski Kongres Geologiczny: Przewodnik do Wycieczek Terenowych; Polskie Towarzystwo Geologiczne: Kraków, Poland, 2024. [Google Scholar]
- Gazeta.pl. Wielkopolska Jako Pierwsza Wygasza Górnictwo. Nawet 150 Tys. Zł Wsparcia Dla Zwalnianych. Available online: https://next.gazeta.pl/next/7,172392,30972731,to-bedzie-pierwszy-region-z-wygaszonym-gornictwem-dla-pracownikow.html (accessed on 16 October 2024).
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L. Satellite Interferometry Data Interpretation and Exploitation: Case Studies from the European Ground Motion Service (EGMS); Elsevier: Amsterdam, The Netherlands, 2023; ISBN 9780443133978. [Google Scholar]
- Vradi, A.; Sala, J.; Solari, L.; Balasis-Levinsen, J. Validating the European Ground Motion Service: An Assessment of Measurement Point Density. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives; Copernicus GmbH: Göttingen, Germany, 2023; Volume 48, pp. 247–252. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001; ISBN 0-13-088239-9. [Google Scholar]
- Hoffmann, J.; Galloway, D.L.; Zebker, H.A. Inverse Modeling of Interbed Storage Parameters Using Land Subsidence Observations, Antelope Valley, California. Water Resour. Res. 2003, 39, 1031. [Google Scholar] [CrossRef]
- Bonì, R.; Cigna, F.; Bricker, S.; Meisina, C.; McCormack, H. Characterisation of Hydraulic Head Changes and Aquifer Properties in the London Basin Using Persistent Scatterer Interferometry Ground Motion Data. J. Hydrol. 2016, 540, 835–849. [Google Scholar] [CrossRef]
- Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.J.; Baker, B. Predictability of Hydraulic Head Changes and Characterization of Aquifer-System and Fault Properties from InSAR-Derived Ground Deformation. J. Geophys. Res. Solid Earth 2014, 119, 6572–6590. [Google Scholar] [CrossRef]
- Polish Institute of Meteorology and Water Management-National Research Institute. Available online: https://www.imgw.pl/ (accessed on 16 October 2024).
- Nowicki, Z.; Sadurski, A. Hydrogeological Aspects of Quaternary Sediments in Poland. Biul. Państwowego Inst. Geol. 2010, 441, 123–130. [Google Scholar]
- Alley, W.M.; Healy, R.W.; LaBaugh, J.W.; Reilly, T.E. Flow and Storage in Groundwater Systems. Science 2002, 296, 1985–1990. [Google Scholar] [CrossRef]
No. | Mine | Start Year of Construction | Start Year of Exploitation | End Year of Exploitation | Average Overburden Thickness [m] | Average Lignite Seam Thickness [m] | Lignite Production | Volume of Water Pumped | ||
---|---|---|---|---|---|---|---|---|---|---|
Average [Mg/year] | Total [Mg] | Average [×106 m3/ year] | Total [×106 m3] | |||||||
1. | Morzysław | 1945 | 1945 | 1955 | 9.5 | 5.5 | 0.06 | 1.04 | No data | No data |
2. | Niesłusz | 1946 | 1953 | 1961 | 14.5 | 9.5 | 0.45 | 4.08 | 2.00 | 18.00 |
3. | Gosławice | 1953 | 1958 | 1974 | 18.7 | 8.3 | 2.70 | 38.85 | 9.06 | 181.26 |
4. | Pątnów | 1957 | 1962 | 2001 | 50.5 | 8.8 | 3.05 | 129.78 | 33.53 | 1173.63 |
5. | Kazimierz Południe | 1962 | 1965 | 1997 | 47.5 | 6.6 | 2.46 | 76.11 | 23.42 | 726.12 |
6. | Kazimierz Północ | 1992 | 1995 | 2011 | 48.0 | 6.5 | 3.43 | 54.89 | No data | No data |
7. | Jóźwin | 1965 | 1971 | 2023 | 46.9 | 7.0 | 2.81 | 159.27 | 19.88 | 556.52 |
8. | Lubstów | 1979 | 1982 | 2009 | 46.1 | 28.8 | 4.26 | 107.33 | 13.93 | 195.00 |
9. | Drzewce | 2003 | 2005 | 2022 | 51.6 | 5.8 | 2.40 | 40.81 | No data | No data |
10. | Tomisławice | 2010 | 2011 | 2031 | 42.5 | 6.2 | 2.50 | 27.80 | 16.59 | 215.65 |
No. | Number | Stratigraphy | Aquifer Type | Observation Period [mm/yyyy] | Observation Frequency [months] | Elevation [masl] | Piezometer Depth [m] |
---|---|---|---|---|---|---|---|
1. | PT3 | Quaternary/ Paleogene+ Neogene | Unconfined /Confined | March 2009–December 2019 | 3 | 96.0 | 50 |
2. | PT20 | Quaternary/ Paleogene+ Neogene | Unconfined /Confined | March 2009–December 2019 | 3 | 105.2 | 79 |
3. | PI-1 | Quaternary/ Cretaceous | Unconfined /Confined | March 2009–December 2019 | 3 | 102.2 | 69 |
4. | PT15 | Quaternary/ Paleogene+ Neogene | Unconfined /Confined | March 2009–December 2019 | 3 | 93.8 | 41 |
5. | PIII-1 | Quaternary/ Cretaceous | Unconfined /Confined | March 2009–December 2019 | 3 | 102.9 | 79 |
6. | PT34 | Quaternary/ Paleogene+ Neogene | Unconfined /Confined | March 2012–December 2019 | 3 | 105.8 | 72 |
7. | PIII-2 | Quaternary/ Cretaceous | Unconfined /Confined | March 2009–September 2019 | 3 | 92.9 | 74 |
8. | PIII-3 | Quaternary/ Paleogene+ Neogene | Unconfined /Confined | March 2009–September 2019 | 3 | 89.5 | 94 |
No. | Number | Stratigraphy | Aquifer Type | Observation Period [mm/yyyy] | Observation Frequency [months] | Elevation [masl] | Piezometer Depth [m] |
---|---|---|---|---|---|---|---|
1. | II/1270/1 | Quaternary | Unconfined | January 2009–December 2023 | 1 | 107.9 | 23 |
2. | II/1273/1 | Quaternary | Unconfined | January 2009–December 2023 | 1 | 79.8 | 19 |
3. | II/1271/1 | Quaternary | Unconfined | January 2009–December 2023 | 1 | 101.3 | 28 |
4. | II/27/3 | Quaternary/ Cretaceous | Unconfined | January 2009–December 2023 | 1 | 100.0 | 80 |
5. | II/197/1 | Quaternary/ Paleogene+ Neogene | Confined | January 2009–October 2015 | 1 | 106.2 | 98 |
6. | II/1270/2 | Quaternary | Confined | November 2020–December 2023 | 1 | 107.9 | 23 |
7. | II/909/1 | Quaternary | Confined | November 2009–December 2023 | 1 | 88.2 | 9 |
8. | II/902/1 | Quaternary/ Cretaceous | Confined | January 2009–December 2023 | 1 | 114.8 | 56 |
9. | II/1277/1 | Quaternary | Confined | January 2009–December 2023 | 1 | 107.8 | 22 |
10. | II/72/1 | Quaternary/ Paleogene+ Neogene | Confined | April 2010–December 2023 | 1 | 100.0 | 60 |
11. | II/536/1 | Quaternary | Confined | January 2009–December 2023 | 1 | 100.0 | 50 |
12. | I/999/1 | Quaternary/ Jurassic | Confined | January 2011–December 2023 | 1 | 118.5 | 181.3 |
No. | Region | Area [km2] | Number of EGMS-Retrieved Points | Land Surface Movement [mm/year] | |||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Standard Deviation | ||||
1. | AOI | 3646.3 | 52,115 | −23.3 | 13.7 | −1.11 | ±1.027 |
2. | Mining areas, terrains, and depression cones | 915.9 | 12,855 | −17.6 | 7.2 | −1.08 | ±1.578 |
3. | AOI excluding mining areas, terrains, and depression cones | 2730.4 | 39,260 | −23.3 | 13.7 | −1.11 | ±0.765 |
4. | “Tomisławice” mining area | 17.4 | 143 | −10.5 | 3.2 | −5.17 | ±2.109 |
5. | “Tomisławice” mining terrain | 135.6 | 1637 | −14.2 | 2.6 | −2.26 | ±1.736 |
6. | “Jóźwin” mining area | 47.2 | 404 | −7.4 | 3.4 | −0.65 | ±1.572 |
7. | “Jóźwin” mining terrain | 372.3 | 5557 | −17.6 | 6.7 | −0.56 | ±1.390 |
8. | “Drzewce” mining area | 17.1 | 117 | −9.2 | 2.2 | −1.36 | ±1.720 |
9. | “Drzewce” mining terrain | 124.8 | 2048 | −8.6 | 1.9 | −1.39 | ±1.329 |
10. | “Tomisławice” depression cone area | 269.8 | 3297 | −14.2 | 7.2 | −1.72 | ±1.574 |
11. | “Jóźwin” depression cone area | 360.7 | 5068 | −17.6 | 6.7 | −0.46 | ±1.459 |
12. | “Lubstów” depression cone area | 96.7 | 1546 | −9.2 | 4.4 | −0.90 | ±1.152 |
No. | Region | Area [km2] | Number of EGMS-Retrieved Points | Land Surface Movement [mm/year] | |||
---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Standard Deviation | ||||
1. | AOI | 3646.3 | 57,440 | −73.2 | 11.2 | −1.18 | ±1.356 |
2. | Mining areas, terrains, and depression cones | 915.9 | 14,938 | −73.2 | 11.2 | −1.35 | ±2.217 |
3. | AOI excluding mining areas, terrains, and depression cones | 2730.4 | 42,502 | −22.5 | 7.5 | −1.13 | ±0.862 |
4. | “Tomisławice” mining area | 17.4 | 320 | −25.7 | 6.7 | −4.92 | ±4.621 |
5. | “Tomisławice” mining terrain | 135.6 | 1888 | −20.8 | 4.1 | −1.67 | ±1.185 |
6. | “Jóźwin” mining area | 47.2 | 595 | −73.2 | 11.2 | −2.49 | ±6.935 |
7. | “Jóźwin” mining terrain | 372.3 | 6412 | −28.5 | 8.1 | −0.74 | ±1.660 |
8. | “Drzewce” mining area | 17.1 | 304 | −15.2 | 2.5 | −3.53 | ±3.381 |
9. | “Drzewce” mining terrain | 124.8 | 2207 | −12.0 | 2.4 | −1.66 | ±1.027 |
10. | “Tomisławice” depression cone area | 269.8 | 3703 | −20.8 | 4.5 | −1.54 | ±1.078 |
11. | “Jóźwin” depression cone area | 360.7 | 6040 | −73.2 | 11.2 | −0.87 | ±2.780 |
12. | “Lubstów” depression cone area | 96.7 | 1669 | −9.3 | 1.8 | −1.40 | ±0.888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzy, A. Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change. Energies 2024, 17, 5540. https://doi.org/10.3390/en17225540
Guzy A. Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change. Energies. 2024; 17(22):5540. https://doi.org/10.3390/en17225540
Chicago/Turabian StyleGuzy, Artur. 2024. "Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change" Energies 17, no. 22: 5540. https://doi.org/10.3390/en17225540
APA StyleGuzy, A. (2024). Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change. Energies, 17(22), 5540. https://doi.org/10.3390/en17225540