Numerical Analysis of the Influence of Inner Tubes Arrangement on the Thermal Performance of Thermal Energy Storage Unit
<p>Schematic of a household water heater supplied with an HX and PCM.</p> "> Figure 2
<p>The physical domain: (<bold>a</bold>) TTHX geometry, (<bold>b</bold>) 2D TTHX with boundary conditions, (<bold>c</bold>) 2D TTHX mesh.</p> "> Figure 3
<p>The meshing of a selected case.</p> "> Figure 4
<p>(<bold>A</bold>) Comparison of numerical results with [<xref ref-type="bibr" rid="B33-energies-16-03663">33</xref>]. (<bold>B</bold>) Melted fraction as a function of time for the three meshes studied.</p> "> Figure 5
<p>The effect of tube distribution on the temperature over different times.</p> "> Figure 5 Cont.
<p>The effect of tube distribution on the temperature over different times.</p> "> Figure 6
<p>The effect of tube distribution: (<bold>a</bold>) average temperature and (<bold>b</bold>) average Nusselt number.</p> "> Figure 7
<p>The effect of tube distribution on the PCM melting process over different times.</p> "> Figure 7 Cont.
<p>The effect of tube distribution on the PCM melting process over different times.</p> "> Figure 8
<p>The impact of tube distribution inside on the liquid fraction.</p> "> Figure 9
<p>The effect of tube distribution on the Bejan number.</p> "> Figure 9 Cont.
<p>The effect of tube distribution on the Bejan number.</p> "> Figure 10
<p>The effect of tube distribution on Bejan number.</p> ">
Abstract
:1. Introduction
2. Problem Description
2.1. Governing Equations
- The flow of liquid PCM is incompressible and laminar;
- We have not taken into account the heat that is lost via the outside shell as it is insulated;
- The viscous dissipation impact is ignored;
- The Boussinesq approximation was used to take into account the impact that density fluctuations have. As a result, the density of PCM was considered to be averaged for both solid and liquid forms;
2.2. Grid Independency and Method Validation
3. Results and Discussion
3.1. Temperature Distribution and Heat Transfer Behavior
3.2. Liquid Friction Distribution
3.3. Bejan Number and Entropy Generation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Specific heat capacity at constant pressure (J/kg·K) | |
Gravity (m/s2) | |
Specific enthalpy (J/kg) | |
Total enthalpy (J) | |
Thermal conductivity (W/m·K) | |
Latent specific heat (J/kg) | |
Radius (mm) | |
Source term | |
Stefan number | |
Temperature (K) | |
Velocity vector (m/s) | |
Greek symbols | |
Expansion coefficient | |
Dynamic viscosity (Pa·s) | |
Volume fraction of nanoparticle | |
Liquid fraction | |
Density (kg/m3) | |
Subscripts | |
Mushy zone | |
Melting | |
Cold water | |
Solid | |
PCM | |
NEPCM | |
Nanoparticle | |
Liquid |
References
- Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Dincer, I. Thermal Energy Storage. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Ma, T.; Li, Z.; Zhao, J. Photovoltaic panel integrated with phase change materials (PV-PCM): Technology overview and materials selection. Renew. Sustain. Energy Rev. 2019, 116, 109406. [Google Scholar] [CrossRef]
- Pandey, A.; Hossain, M.; Tyagi, V.; Rahim, N.A.; Selvaraj, J.A.; Sari, A. Novel approaches and recent developments on potential applications of phase change materials in solar energy. Renew. Sustain. Energy Rev. 2018, 82, 281–323. [Google Scholar] [CrossRef]
- Vogel, J.; Thess, A. Validation of a numerical model with a benchmark experiment for melting governed by natural convection in latent thermal energy storage. Appl. Therm. Eng. 2019, 148, 147–159. [Google Scholar] [CrossRef]
- Behi, H.; Ghanbarpour, M.; Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Appl. Therm. Eng. 2017, 127, 1132–1142. [Google Scholar] [CrossRef]
- da Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials—A review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef]
- Mourad, A.; Qasem, N.A.; Abderrahmane, A.; Marzouki, R.; Guedri, K.; Younis, O.; Shah, N.A.; Botmart, T. Numerical study on n-octadecane PCM melting process inside a pear-shaped finned container. Case Stud. Therm. Eng. 2022, 38, 102328. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Qasem, N.A.A.; Mourad, A.; Al-Khaleel, M.; Said, Z.; Guedri, K.; Younis, O.; Marzouki, R. Enhancing the Melting Process of Shell-and-Tube PCM Thermal Energy Storage Unit Using Modified Tube Design. Nanomaterials 2022, 12, 3078. [Google Scholar] [CrossRef]
- Tariq, S.L.; Ali, H.M.; Akram, M.A.; Janjua, M.M.; Ahmadlouydarab, M. Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Appl. Therm. Eng. 2020, 176, 115305. [Google Scholar] [CrossRef]
- Saeed, A.M.; Abderrahmane, A.; Qasem, N.A.; Mourad, A.; Alhazmi, M.; Ahmed, S.E.; Guedri, K. A numerical investigation of a heat transfer augmentation finned pear-shaped thermal energy storage system with nano-enhanced phase change materials. J. Energy Storage 2022, 53, 105172. [Google Scholar] [CrossRef]
- Qasem, N.A.; Abderrahmane, A.; Ahmed, S.; Younis, O.; Guedri, K.; Said, Z.; Mourad, A. Effect of a rotating cylinder on convective flow, heat and entropy production of a 3D wavy enclosure filled by a phase change material. Appl. Therm. Eng. 2022, 214, 118818. [Google Scholar] [CrossRef]
- Ghorabaee, H.; Emami, M.R.S.; Moosakazemi, F.; Karimi, N.; Cheraghian, G.; Afrand, M. The use of nanofluids in thermosyphon heat pipe: A comprehensive review. Powder Technol. 2021, 394, 250–269. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Al-Khaleel, M.; Mourad, A.; Laidoudi, H.; Driss, Z.; Younis, O.; Guedri, K.; Marzouki, R. Natural Convection within Inversed T-Shaped Enclosure Filled by Nano-Enhanced Phase Change Material: Numerical Investigation. Nanomaterials 2022, 12, 2917. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.; Aghakhani, S.; Pordanjani, A.H.; Afrand, M.; Cheraghian, G.; Oztop, H.F.; Shadloo, M.S. A Review on the Control Parameters of Natural Convection in Different Shaped Cavities with and without Nanofluid. Processes 2020, 8, 1011. [Google Scholar] [CrossRef]
- Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Sharifpur, M.; Meyer, J.P.; Xu, H.; Ali, H.M.; Karimi, N.; Cheraghian, G. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects- a critical review. J. Clean. Prod. 2021, 320, 128573. [Google Scholar] [CrossRef]
- Kibria, M.; Anisur, M.; Mahfuz, M.; Saidur, R.; Metselaar, I. Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. Int. Commun. Heat Mass Transf. 2014, 53, 71–78. [Google Scholar] [CrossRef]
- Bazai, H.; Moghimi, M.A.; Mohammed, H.I.; Babaei-Mahani, R.; Talebizadehsardari, P. Numerical study of circular-elliptical double-pipe thermal energy storage systems. J. Energy Storage 2020, 30, 101440. [Google Scholar] [CrossRef]
- Talebizadehsardari, P.; Mohammed, H.I.; Mahdi, J.M.; Gillott, M.; Walker, G.S.; Grant, D.; Giddings, D. Effect of airflow channel arrangement on the discharge of a composite metal foam-phase change material heat exchanger. Int. J. Energy Res. 2021, 45, 2593–2609. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Eisapour, A.H.; Mohammed, H.I.; Islam, M.S.; Younis, O.; Sardari, P.T.; Yaïci, W. Impact of Tube Bundle Placement on the Thermal Charging of a Latent Heat Storage Unit. Energies 2021, 14, 1289. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Mehryan, S.; Veismoradi, A.; Mahdavi, M.; Zahmatkesh, I.; Kazemi, Z.; Younis, O.; Ghalambaz, M.; Chamkha, A.J. Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach. Appl. Therm. Eng. 2021, 193, 116945. [Google Scholar] [CrossRef]
- Mozafari, M.; Lee, A.; Cheng, S. Simulation Study of Solidification in the Shell-And-Tube Energy Storage System with a Novel Dual-PCM Configuration. Energies 2022, 15, 832. [Google Scholar] [CrossRef]
- Yang, X.; Guo, J.; Yang, B.; Cheng, H.; Wei, P.; He, Y.-L. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Appl. Energy 2020, 279, 115772. [Google Scholar] [CrossRef]
- Brent, A.D.; Voller, V.R.; Reid, K.J. Enthalpy-Porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. Numer. Heat Transf. 1988, 13, 297–318. [Google Scholar] [CrossRef]
- Gong, Z.-X.; Devahastin, S.; Mujumdar, A.S. Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall. Appl. Therm. Eng. 1999, 19, 1237–1251. [Google Scholar] [CrossRef]
- Voller, V.R.; Prakash, C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. Int. J. Heat Mass Transf. 1987, 30, 1709–1719. [Google Scholar] [CrossRef]
- Brinkman, H.C. The Viscosity of Concentrated Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Maxwell, J. A Treatise on Electricity and Magnetism; Oxford University Press: Cambridge, UK, 1904. [Google Scholar]
- Wakao, N.; Kaguei, S. Heat and Mass Transfer in Packed Beds; Gordon and Breach Science Publishers: New York, NY, USA, 1982. [Google Scholar]
- Khodadadi, J.; Zhang, Y. Effects of buoyancy-driven convection on melting within spherical containers. Int. J. Heat Mass Transf. 2001, 44, 1605–1618. [Google Scholar] [CrossRef]
- Ye, W.-B.; Zhu, D.-S.; Wang, N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Appl. Therm. Eng. 2011, 31, 3871–3884. [Google Scholar] [CrossRef]
- Arasu, A.V.; Mujumdar, A.S. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int. Commun. Heat Mass Transf. 2012, 39, 8–16. [Google Scholar] [CrossRef]
Properties | PCM (n-Octadecane) | Copper |
---|---|---|
774 (Liquid phase) | 8960 | |
814 (Solid-phase) | ||
2180 (Liquid phase) | 385 | |
2150 (Solid-phase) | ||
(Liquid phase) | 400 | |
(Solid phase) | ||
189 | ||
Grid | G1 | G2 | G3 |
---|---|---|---|
Number of Element | 29,674 | 57,252 | 127,602 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, O.; Samir, L.; Belazreg, A.; Qasem, N.A.A. Numerical Analysis of the Influence of Inner Tubes Arrangement on the Thermal Performance of Thermal Energy Storage Unit. Energies 2023, 16, 3663. https://doi.org/10.3390/en16093663
Younis O, Samir L, Belazreg A, Qasem NAA. Numerical Analysis of the Influence of Inner Tubes Arrangement on the Thermal Performance of Thermal Energy Storage Unit. Energies. 2023; 16(9):3663. https://doi.org/10.3390/en16093663
Chicago/Turabian StyleYounis, Obai, Laouedj Samir, Abdeldjalil Belazreg, and Naef A. A. Qasem. 2023. "Numerical Analysis of the Influence of Inner Tubes Arrangement on the Thermal Performance of Thermal Energy Storage Unit" Energies 16, no. 9: 3663. https://doi.org/10.3390/en16093663
APA StyleYounis, O., Samir, L., Belazreg, A., & Qasem, N. A. A. (2023). Numerical Analysis of the Influence of Inner Tubes Arrangement on the Thermal Performance of Thermal Energy Storage Unit. Energies, 16(9), 3663. https://doi.org/10.3390/en16093663