Characterization of Wind Resources of the East Coast of Maranhão, Brazil
<p>(<b>a</b>) Brazil equatorial margin. The study region is indicated by a red square with an arrow. Within the equatorial coast, Rio Grande do Norte (RN) has the largest installed wind capacity: 6855 MW; followed by Piauí (PI): 3428 MW; Ceará (CE): 2568 MW; Pernambuco (PE): 1025 MW; Paraíba (PB): 672 MW and Maranhão (MA): 426 MW [<a href="#B31-energies-16-05555" class="html-bibr">31</a>]. (<b>b</b>) Eastern coast of Maranhão, Brazil. Barreirinhas and Paulino Neves counties are indicated. EOSOLAR study region is located in a region known as “little Lençóis”, east of the Preguiças River. Observation points are indicated by green squares, numbered from P0 to P5. Point P0 is located 1.5 km from the beach. Point P4 and point P5 are located 26 and 32 km, respectively, from P1. Turbine locations are identified by magenta dots. ERA5 refers to the grid point location (2.5° S, 42.5° W) derived from the atmospheric reanalysis, which is 26 km from P1. Stations’ geographical coordinates are P0 (2.694107° S, 42.554807° W), P1 (2.724877° S, 42.575182° W), P2 (2.725162° S, 42.606507° W), P3 (2.733535° S, 42.589530° W), P4 (2.759033° S, 42.807133° W) and P5 (2.787355° S, 42.855720° W). Image source: Google Earth.</p> "> Figure 2
<p>(<b>a</b>) Wind speed time series comparing ERA5 with observed winds derived from LIDAR and SODAR measurements at P1 location. All series are relative to the height of 100 m and averaged for a 6-hour resolution. A light red line indicates ERA5, dark blue represents the LIDAR and light blue the SODAR. Two-sided arrows on the top of the graph indicate the period of EOSOLAR field campaigns FC1 to FC6. (<b>b</b>) Wind speed climatology (1979–2021) at 100 m height derived from ERA5 monthly database. EOSOLAR observations are plotted as blue bullets (SODAR) and triangles (LIDAR). (<b>c</b>) Precipitation climatology (1979–2021) derived from ERA5. Bullets represent observations derived from micrometeorological towers. Box plot edges on panels (<b>b</b>,<b>c</b>) are the 25th and 75th percentiles. The central mark in each box represents the median. Whiskers extend to the most extreme data points not considered outliers. Outliers are plotted as empty circles. Although this article focuses on the field campaigns FC1 to FC6, up to 27 July 2022, data from August 2022 are included in panels (<b>b</b>,<b>c</b>) for completeness.</p> "> Figure 3
<p>Atmospheric conditions during EOSOLAR field campaigns. Maps are organized from top to bottom covering, respectively, the field campaigns FC1 to FC6. The left panels display mean wind speed and direction at 100 m height above the surface. Right panels refer to accumulated precipitation in each field campaign converted to mm month<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math>. Fields were constructed based on ERA5 Atmospheric Reanalysis hourly fields. Labels refer to Intertropical Convergence Zone (ITCZ), northeast (NE) and southeast (SE) Trade winds. A black dot indicates the study region. <a href="#energies-16-05555-t002" class="html-table">Table 2</a> lists the timing of each field campaign.</p> "> Figure 4
<p>Time series of wind speed at the height of wind turbines (z = 100 m) derived from the LIDAR and SODAR wind profilers. A thin gray line illustrates the SODAR series at a 10 min time resolution. Thick red and blue lines, respectively, depict the LIDAR and SODAR averaged to 3 h time resolution. Panels refer to the EOSOLAR campaigns FC1 (top) to FC6 (bottom). Equipment locations are indicated in the legend of each panel. SODAR was installed on station P0 for FC1 but was repositioned to point P1 for all other campaigns. LIDAR started positioned on P1 for FC1 then moved to P0 for FC2. The equipment was reinstalled on points P2 to P5 for subsequent campaigns. In all panels, the <span class="html-italic">x</span>-axis is rescaled to represent the time covered for each campaign. Stations locations are indicated in <a href="#energies-16-05555-f001" class="html-fig">Figure 1</a>b.</p> "> Figure 5
<p>Statistical distributions of wind speed and direction. All panels refer to winds at the height of 100 m above the surface, derived from LIDAR and SODAR measurements at the monitoring point P1 (see <a href="#energies-16-05555-f001" class="html-fig">Figure 1</a>b for location). (<b>a</b>) Histograms of wind speed. Each field campaign (FC1 to FC6) is depicted by different line colors. The gray shading represents the distribution considering all campaigns and histogram bins are 0.5 m s<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math> wide. (<b>b</b>) Histogram of wind direction for each field campaign (colored lines) and the entire period of observations (gray shading). Vertical bars are 15° wide and indicate the direction from which the wind blows. All analyses are based on 10 min time resolution dataset.</p> "> Figure 6
<p>Wind roses of each measurement campaign FC1 to FC6 at station P1. Direction bins have 5° increments and follow the meteorological convention, indicating the direction from which the wind blows. The radial distance indicates the percentage of occurrence of any particular direction, while the colors represent the intervals of wind speeds. A green shade indicates the coastline’s general orientation, considering a radius of 30 km from point P1 location.</p> "> Figure 7
<p>Average vertical wind speed profiles. Panels depict station locations from P0 (right) to P5 (left). Line colors represent the field campaigns covered by observations. Station P1 is the reference station, with data coverage for all field campaigns. Colored symbols indicate the wind profiler. Squares are used to represent the LIDAR and triangles for the SODAR. A gray line is drawn on panels P0 and P2 to P5 to facilitate comparison, based on SODAR observations at P1 during the same field campaign. Station locations are indicated in <a href="#energies-16-05555-f001" class="html-fig">Figure 1</a>b.</p> "> Figure 8
<p>Diurnal variability of wind speeds as a function of height, position and field campaign. Columns are organized according to field campaigns, with FC1 on the left and FC6 on the right. The top row refers to observations at the fixed station P1. Lower panels refer to positions P0 and P2 to P5. Line colors represent the height (m) of observations in reference to the surface. The title in each panel indicates the source of data (LIDAR or SODAR). Data loss on SODAR P0 (FC1) was substantial, so data above 130 m are not displayed. SODAR P1 (FC4) loss data for heights above 180 m.</p> "> Figure 9
<p>Local wind hodographs, depicting the sea and land breeze interaction with the mean winds. Columns represent field campaigns, top row depicts station P1 and the bottom row stations P0 and P2 to P5. Winds were vertically averaged between 100 and 130 m. Hodographs were obtained by computing the mean wind vectors for each hour of the day. Winds at the peak of the land breeze (8 h) and sea breeze (16 h) are indicated by light blue and orange vectors, respectively. For other hours, vectors are omitted and their heads are indicated as bullets. A color scale represents the local time of observations. A thick black arrow indicates the mean wind vector for each campaign and location. Concentric gray circles indicate the magnitude of the winds with 2 m s<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math> increments. A dashed line represents the general coastline orientation. Data loss on SODAR P0 was substantial so only data up to 130 m are displayed. SODAR P1 loss data are for heights above 180 m.</p> "> Figure 10
<p>Roughness length <math display="inline"><semantics><msub><mi>z</mi><mi>o</mi></msub></semantics></math> and friction velocity <math display="inline"><semantics><msub><mi>u</mi><mo>∗</mo></msub></semantics></math> results obtained from the analysis of EOSOLAR micrometeorological towers. (<b>a</b>) Roughness length <math display="inline"><semantics><msub><mi>z</mi><mi>o</mi></msub></semantics></math> estimation, without accounting for atmospheric stability. (<b>b</b>) Same as (<b>a</b>) but accounting for the stability function <math display="inline"><semantics><mi>ψ</mi></semantics></math>. Line colors on panels (<b>a</b>,<b>b</b>) depict the different terrain locations P0 to P5. (<b>c</b>) Diurnal variability of the mean friction velocity <math display="inline"><semantics><msub><mi>u</mi><mo>∗</mo></msub></semantics></math> computed for points P0 and P2 to P5. Line colors indicate the field campaign. (<b>d</b>) Same as (<b>c</b>), but for station P1.</p> "> Figure 11
<p>Diurnal cycle of heat flux <math display="inline"><semantics><msub><mi>Q</mi><mrow><mi>h</mi><mi>b</mi></mrow></msub></semantics></math> computed from EOSOLAR micrometeorological towers. Panels are organized vertically following the field campaigns, with FC1 positioned at the top and FC6 at the bottom. The left column illustrates the distributions for station P1, while the right column depicts the moving tower for locations P0 and P2 to P5. <math display="inline"><semantics><msub><mi>Q</mi><mrow><mi>h</mi><mi>b</mi></mrow></msub></semantics></math> is given in W m<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math> units and positive (negative) values indicate the surface heating up (cooling down) the atmosphere from below. Vertical bars illustrate <math display="inline"><semantics><mrow><mo>±</mo><mi>σ</mi></mrow></semantics></math> standard deviations. Red and blue labels indicate, respectively, the percentage of occurrence of positive <math display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>h</mi><mi>b</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></semantics></math> and negative <math display="inline"><semantics><mrow><msub><mi>Q</mi><mrow><mi>h</mi><mi>b</mi></mrow></msub><mo><</mo><mn>0</mn></mrow></semantics></math> fluxes. Labels on the left represent the statistics before dawn (0 to 6 h) and labels on the right indicate after dusk hours (18 to 24 h).</p> "> Figure 12
<p>Frequency distributions of atmospheric stability based on Obukhov length <span class="html-italic">L</span>, estimated from micrometeorological tower data. Panels are organized vertically following the field campaigns, with FC1 positioned at the top and FC6 at the bottom. The left column illustrates the distributions for station P1, while the right column depicts the moving tower for locations P0 and P2 to P5. Limits used for stability classification are strongly stable (<math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>L</mi><mo>≤</mo><mn>40</mn></mrow></semantics></math>), stable (<math display="inline"><semantics><mrow><mn>40</mn><mo><</mo><mi>L</mi><mo>≤</mo><mn>200</mn></mrow></semantics></math>), neutral (<math display="inline"><semantics><mrow><mo>|</mo><mi>L</mi><mo>|</mo><mo>></mo><mn>200</mn></mrow></semantics></math>), convective (<math display="inline"><semantics><mrow><mo>−</mo><mn>200</mn><mo>≤</mo><mi>L</mi><mo><</mo><mo>−</mo><mn>40</mn></mrow></semantics></math>), strongly convective (<math display="inline"><semantics><mrow><mo>−</mo><mn>40</mn><mo>≤</mo><mi>L</mi><mo><</mo><mn>0</mn></mrow></semantics></math>).</p> "> Figure 13
<p>Frequency distributions of shear exponent computed from the LIDAR and SODAR wind profilers. Panels are organized vertically following the field campaigns, with FC1 positioned at the top and FC6 at the bottom. The left column illustrates the distributions for the fixed station P1, while the right column depicts the tower for P0 and P2 to P5 stations. Colors represent shear exponent classes following Wharton and Lundquist (2012) [<a href="#B36-energies-16-05555" class="html-bibr">36</a>]: strongly stable (<math display="inline"><semantics><mrow><mi>α</mi><mo>></mo><mn>0.3</mn></mrow></semantics></math>), stable (<math display="inline"><semantics><mrow><mn>0.2</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>0.3</mn></mrow></semantics></math>), neutral (<math display="inline"><semantics><mrow><mn>0.1</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>0.2</mn></mrow></semantics></math>), convective (<math display="inline"><semantics><mrow><mn>0.0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mn>0.1</mn></mrow></semantics></math>), strongly convective (<math display="inline"><semantics><mrow><mi>α</mi><mo>≤</mo><mn>0</mn></mrow></semantics></math>).</p> "> Figure 14
<p>Shear exponent average distributions as a function of wind speed (m s<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math>) and direction (degrees) at 100 m height. (<b>a</b>) Station P0 distribution based on LIDAR and SODAR observations obtained during FC1 and FC2 campaigns. (<b>b</b>) As in panel (<b>a</b>) but for station P0. (<b>c</b>) Station P2 distribution derived from LIDAR data for FC3. (<b>d</b>) Station P3 based on LIDAR data for FC4. Here, direction refers to the angle from which the wind blows. Average shear exponents are evaluated for a grid of 0.5 m s<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math>× 6° bins, taking the average of at least 3 observations. A dashed line indicates the coastline’s general orientation.</p> "> Figure 15
<p>Resource variability as a function of time, location and height. (<b>a</b>) Average wind speeds (m s<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math>) as function of field campaigns and the heights of 100, 130, 150, 200 and 260 m. (<b>b</b>) Capacity factor changes across field campaigns and the heights of 100, 130 and 150 m. The monitoring station P1 is illustrated with horizontal bars, whereas stations P0 and P2 to P5 are shown as a stem plot (vertical bars). Datasets are paired for same-time coverage. Heights with less than 50% coverage were not drawn.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Instrumentation
2.2. Study Region and Field Campaigns
2.3. ERA5 Atmospheric Reanalysis
2.4. Wind Profile and Atmospheric Stability
2.5. Wind Shear Exponent
2.6. Weibull Probability Distribution
3. Results
3.1. Meteorological Conditions
3.1.1. Reanalysis vs. Observations
3.1.2. Winds and Precipitation Fields
3.1.3. Climatology of Winds and Precipitation
3.2. Wind Variability and Statistics
3.2.1. Time Series at Hub Height
3.2.2. Speed and Directional Statistics
3.2.3. Mean Vertical Profiles
3.2.4. Diurnal Variability of Speeds
3.2.5. Diurnal Hodographs
3.3. Micrometeorology and Profile Characterization
3.3.1. Roughness Length and Friction Velocity
3.3.2. Buoyancy Heat Fluxes
3.3.3. Obukhov Length and Stability Classification
3.3.4. Shear Exponent Diurnal and Directional Variability
3.4. Resource Spatial and Temporal Variability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALC | Alcântara Launch Center |
CE | Ceará state |
CF | Capacity factor |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA5 | ECMWF fifth generation of atmospheric reanalysis |
FC1 to FC6 | Field campaigns 1 to 6 (see Table 2) |
ITCZ | Intertropical Convergence Zone. |
LIDAR | Light Detection and Ranging |
MA | Maranhão state |
P1 to P5 | Observation points 1 to 5 (see Table 2 and Figure 1b) |
PB | Paraíba state |
PE | Pernambuco state |
PI | Piauí state |
RN | Rio Grande do Norte state |
SAMS | South American summer monsoon |
SASH | South Atlantic Subtropical High pressure |
SODAR | Sound Detection and Ranging |
References
- Watson, S. Quantifying the variability of wind energy. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Kempton, W.; Pimenta, F.M.; Veron, D.E.; Colle, B.A. Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl. Acad. Sci. USA 2010, 107, 7240–7245. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, F.; Assireu, A. Simulating reservoir storage for a wind-hydro hydrid system. Renew. Energy 2015, 76, 757–767. [Google Scholar] [CrossRef]
- Engeland, K.; Borga, M.; Creutin, J.D.; François, B.; Ramos, M.H.; Vidal, J.P. Space-time variability of climate variables and intermittent renewable electricity production—A review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [Google Scholar] [CrossRef]
- Fernandes, I.; Pimenta, F.M.; Saavedra, O.R.; Assireu, A.T. Exploring the Complementarity of Offshore Wind Sites to Reduce the Seasonal Variability of Generation. Energies 2022, 15, 7182. [Google Scholar] [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained. Theory, Design and Application; Wiley: West Sussex, UK, 2009; p. 689. [Google Scholar]
- Wharton, S.; Lundquist, J.K. Atmospheric stability affects wind turbine power collection. Environ. Res. Lett. 2012, 7, 014005. [Google Scholar] [CrossRef]
- Dimitrov, N.; Natarajan, A.; Kelly, M. Model of wind shear conditional on turbulence and its impact on wind turbine loads. Wind Energy 2015, 18, 1917–1931. [Google Scholar] [CrossRef]
- Slot, R.M.; Sørensen, J.D.; Svenningsen, L.; Moser, W.; Thøgersen, M.L. Effective turbulence and its implications in wind turbine fatigue assessment. Wind Energy 2019, 22, 1699–1715. [Google Scholar] [CrossRef]
- Pimenta, F.M.; Silva, A.R.; Assireu, A.T.; Almeida, V.D.S.E.; Saavedra, O.R. Brazil offshore wind resources and atmospheric surface layer stability. Energies 2019, 12, 4195. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.R.; Pimenta, F.M.; Assireu, A.T.; Spyrides, M.H.C. Complementarity of Brazil’s hydro and offshore wind power. Renew. Sustain. Energy Rev. 2016, 56, 413–427. [Google Scholar] [CrossRef]
- Souza, D.C.; Oyama, M.D. Breeze potential along the Brazilian northern and northeastern coast. J. Aerosp. Technol. Manag. 2017, 9, 368–378. [Google Scholar] [CrossRef]
- Planchon, O.; Dubreuil, V.; Gouery, P. A method of identifying and locating sea breeze fronts in north-eastern Brazil by remote sensing. Meteorol. Appl. 2006, 13, 225–234. [Google Scholar] [CrossRef]
- Medeiros, L.E.; Fisch, G.; Iriart, P.; Costa, F.D.; Oliveira, D.W.; Schuch, D. Padrões De Vento a Nível De Superfície Para Região Da Costa Norte Do Brasil. Ciência Nat. 2016, 38, 383. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, L.E.; Fisch, G.; Acevedo, O.C.; Costa, F.D.; Iriart, P.G.; Anabor, V.; Schuch, D. Low-Level Atmospheric Flow at the Central North Coast of Brazil. Bound. Layer Meteorol. 2021, 180, 289–317. [Google Scholar] [CrossRef]
- Marciotto, E.R.; Fisch, G. Investigation of Approaching Ocean Flow and its Interaction with Land Internal Boundary Layer. Am. J. Environ. Eng. 2013, 3, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, L.E.; Magnago, R.d.O.; Fisch, G.; Marciotto, E.R. Observational study of the surface layer at an ocean-land transition region. J. Aerosp. Technol. Manag. 2013, 5, 449–458. [Google Scholar] [CrossRef]
- Couto, V.M.; Fisch, G. Análise espacial dos ventos no Centro de Lançamento de Alcântara, Maranhão. Ciência Nat. 2018, 40, 57. [Google Scholar] [CrossRef]
- Ramos, D.N.d.S.; Fisch, G.; Fernandez, J.P.R. Perfil do vento e estabilidade atmosférica próxima da superfície no Centro de Lançamento de Alcântara. Ciência Nat. 2018, 40, 14. [Google Scholar] [CrossRef]
- Sakagami, Y.; Santos, P.A.A.; Haas, R.; Passos, J.C.; Taves, F.F. Logarithmic Wind Profile: A Stability Wind Shear Term. arXiv 2014, arXiv:1405.5158. [Google Scholar]
- Santos, P.; Sakagami, Y.; Haas, R.; Passos, J.C.; Taves, F. Lidar measurements validation under coastal condition. Opt. Pura Apl. 2015, 48, 193–198. [Google Scholar] [CrossRef]
- Sakagami, Y.; Radünz, W.C.; Santos, P.; Haas, R.; Passos, J.C.; Taves, F.F. Power curve performance of coastal turbines subject to low turbulence intensity offshore winds. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 1–17. [Google Scholar] [CrossRef]
- Melo, A.B.C.; Cavalcanti, I.F.; Souza, P.P. Zona de Convergência Intertropical do Atlântico. In Tempo e Clima no Brasil; Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J., Dias, M.A.F.S., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; Chapter 2; pp. 25–41. [Google Scholar]
- Stull, R. General circulation. In Practical Meteorology: An Algebra-Based Survey of Atmospheric Science; Stull, R., Ed.; The University of British Columbia: Vancouver, BC, Canada, 2017; pp. 196–210. [Google Scholar]
- Sun, X.; Cook, K.H.; Vizy, E.K. The South Atlantic subtropical high: Climatology and interannual variability. J. Clim. 2017, 30, 3279–3296. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; da Rocha, R.P. The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Waliser, D.E.; Gautier, C. A Satellite-derived Climatology of the ITCZ. J. Clim. 1993, 6, 2162–2174. [Google Scholar] [CrossRef]
- Rosário, N.; Nobre, P.; Melo, A.B.C. Zona de Convergência Intertropical do Atlântico: Um Estudo Comparativo entre Simulações do MGCA CPTEC/COLA, Observações e Reanálises do NCEP. Rev. Climanálise 2003, 2, 10. [Google Scholar]
- Sakagami, Y.; Santos, P.A.; Haas, R.; Passos, J.C.; Taves, F.F. A simple method to estimate atmospheric stability using LIDAR wind profiler. In Proceedings of the EWEA OFFSHORE 2015, Copenhagen, Denmark, 10–12 March 2015. [Google Scholar]
- Campos, R.M.; Palmeira, R.M.J.; Pereira, H.P.P.; Azevedo, L.C. Mid-to-Long Range Wind Forecast in Brazil Using Numerical Modeling and Neural Networks. Wind 2022, 2, 221–245. [Google Scholar] [CrossRef]
- ABEEólica. Infovento 29; Technical Report; Associação Brasileira de Energia Eólica e Novas Tecnologias: São Paulo, Brazil, 2023. [Google Scholar]
- Assireu, A.T.; Pimenta, F.M.; de Freitas, R.M.; Saavedra, O.R.; Neto, F.L.; Torres Júnior, A.R.; Oliveira, C.B.; Lopes, D.C.; de Lima, S.L.; Veras, R.B.; et al. EOSOLAR Project: Assessment of Wind Resources of a Coastal Equatorial Region of Brazil—Overview and Preliminary Results. Energies 2022, 15, 2319. [Google Scholar] [CrossRef]
- Torres Junior, A.R.; Saraiva, N.P.; Assireu, A.T.; Neto, F.L.; Pimenta, F.M.; de Freitas, R.M.; Saavedra, O.R.; Oliveira, C.B.; Lopes, D.C.; de Lima, S.L.; et al. Performance Evaluation of LIDAR and SODAR Wind Profilers on the Brazilian Equatorial Margin. Sustainability 2022, 14, 14654. [Google Scholar] [CrossRef]
- Barthelmie, R.J. The effects of atmospheric stability on coastal wind climates. Meteorol. Appl. 1999, 6, 39–47. [Google Scholar] [CrossRef]
- Sathe, A.; Gryning, S.E.; Peña, A. Comparison of the atmospheric stability and wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy 2011, 14, 767–780. [Google Scholar] [CrossRef]
- Wharton, S.; Lundquist, J.K. Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy 2012, 15, 525–546. [Google Scholar] [CrossRef]
- Archer, C.L.; Colle, B.A.; Veron, D.L.; Veron, F.; Sienkiewicz, M.J. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast. J. Geophys. Res. 2016, 121, 8869–8885. [Google Scholar] [CrossRef]
- Garvine, R.W.; Kempton, W. Assessing the wind field over the continental shelf as a resource for electric power. J. Mar. Res. 2008, 66, 751–773. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Comparison of potential power production at on- and offshore sites. Wind Energy 2001, 4, 173–181. [Google Scholar] [CrossRef]
- Arya, P.S. Introduction to Micrometeorology, 2nd ed.; Academic Press: San Diego, CA, USA, 2001; Volume 79, p. 420. [Google Scholar]
- Leosphere. Windcube User Guide; Technical Report August; Vaisala Company: Saclay, France, 2019. [Google Scholar]
- Scintec. Scintec Flat Array Sodar Theory Manual. SFAS, MFAS, XFAS including RASS RAE2 and windRAS; Technical Report; Scintec: Rottenburg, Germany, 2017. [Google Scholar]
- Mauder, M.; Cuntz, M.; Drüe, C.; Graf, A.; Rebmann, C.; Schmid, H.P.; Schmidt, M.; Steinbrecher, R. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteorol. 2013, 169, 122–135. [Google Scholar] [CrossRef]
- ANEEL. Sistema de informações geográficas do setor elétrico—SIGEL; ANEEL: Brasilia, Brazil, 2023.
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. Ecmwf Newsl. 2019, 159, 17–24. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Ramon, J.; Lledó, L.; Torralba, V.; Soret, A.; Doblas-Reyes, F.J. What global reanalysis best represents near-surface winds? Q. J. R. Meteorol. Soc. 2019, 145, 3236–3251. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, L.M.; Krishnamurthy, R.; Gorton, A.M.; Shaw, W.J.; Newsom, R.K. Validation of reanalysis-based offshore wind resource characterization using lidar buoy observations. Mar. Technol. Soc. J. 2020, 54, 44–61. [Google Scholar] [CrossRef]
- Gualtieri, G. Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review. Renew. Sustain. Energy Rev. 2022, 167, 112741. [Google Scholar] [CrossRef]
- Fernandes, I.G.; Pimenta, F.M.; Saavedra, O.R.; Silva, A.R. Offshore validation of ERA5 reanalysis with hub height wind observations of Brazil. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference—Latin America, ISGT Latin America, Lima, Peru, 15–17 September 2021. [Google Scholar] [CrossRef]
- Foken, T. 50 years of the Monin-Obukhov similarity theory. Bound. Layer Meteorol. 2006, 119, 431–447. [Google Scholar] [CrossRef]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–362. [Google Scholar] [CrossRef]
- Golzio, A.; Bollati, I.M.; Ferrarese, S. An assessment of coordinate rotation methods in sonic anemometer measurements of turbulent fluxes over complex mountainous terrain. Atmosphere 2019, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Kaimal, J.C.; Gaynor, J.E. Another look at sonic thermometry. Bound. Layer Meteorol. 1991, 56, 401–410. [Google Scholar] [CrossRef]
- Stull, R. An Introduction to Boundary Layer Meteorology; Atmospheric and Oceanographic Sciences Library; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge: New York, NY, USA, 1994; p. 334. [Google Scholar]
- Holtslag, A.A.M.; De Bruin, H.A.R. Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol. Climatol. 1988, 27, 689–704. [Google Scholar] [CrossRef]
- Capps, S.B.; Zender, C.S. Global ocean wind power sensitivity to surface layer stability. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Golbazi, M.; Archer, C.L. Methods to estimate surface roughness length for offshore wind energy. Adv. Meteorol. 2019, 2019, 5695481. [Google Scholar] [CrossRef] [Green Version]
- Sisterson, D.L.; Hicks, B.B.; Coulter, R.L.; Wesely, M.L. Difficulties in using power laws for wind energy assessment. Sol. Energy 1983, 31, 201–204. [Google Scholar] [CrossRef]
- Archer, C.L.; Jacobson, M.Z. Spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Stevens, M.J.; Smulders, P.T. Estimation of the Parameters of the Weibull Wind Speed Distribution for Wind Energy Utilization Purposes. Wind Eng. 1979, 3, 132–145. [Google Scholar]
- Seguro, J.V.; Lambert, T.W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind. Eng. Ind. Aerodyn. 2000, 85, 75–84. [Google Scholar] [CrossRef]
- Abbs, D.J.; Physick, W.L. Sea breeze observations and modelling: A review. Aust. Meteorol. Mag. 1992, 41, 7–19. [Google Scholar]
- Gille, S.T.; Llewellyn Smith, S.G.; Statom, N.M. Global observations of the land breeze. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Stull, R. The Atmospheric Boundary Layer. In Atmospheric Science: An Introductory Survey, 2nd ed.; Wallace, J.M., Hobbs, P.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 375–417. [Google Scholar] [CrossRef]
- Haurwitz, B. Comments on the sea breeze circulation. J. Meteorol. 1947, 4, 1–8. [Google Scholar] [CrossRef]
- Dexter, R.V. The Sea-Breeze Hodograph at Halifax. Bull. Am. Meteorol. Soc. 1958, 39, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Van Wijk, A.J.; Beljaars, A.C.; Holtslag, A.A.; Turkenburg, W.C. Evaluation of stability corrections in wind speed profiles over the North Sea. J. Wind. Eng. Ind. Aerodyn. 1990, 33, 551–566. [Google Scholar] [CrossRef]
- Motta, M.; Barthelmie, R.J.; Pvølund. The influence of non-logarithmic wind speed profiles on potential power output at danish offshore sites. Wind Energy 2005, 8, 219–236. [Google Scholar] [CrossRef]
- Sathe, A.; Bierbooms, W. Influence of different wind profiles due to varying atmospheric stability on the fatigue life of wind turbines. J. Phys. Conf. Ser. 2007, 75, 012056. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Cañadillas, B.; Neumann, T.; Van Beeck, J. Turbulent fluxes, stability and shear in the offshore environment: Mesoscale modelling and field observations at FINO1. J. Renew. Sustain. Energy 2012, 4, 063136. [Google Scholar] [CrossRef]
- Argyle, P.; Watson, S.J. Assessing the dependence of surface layer atmospheric stability on measurement height at offshore locations. J. Wind. Eng. Ind. Aerodyn. 2014, 131, 88–99. [Google Scholar] [CrossRef] [Green Version]
- Radünz, W.C.; Sakagami, Y.; Haas, R.; Petry, A.P.; Passos, J.C.; Miqueletti, M.; Dias, E. Influence of atmospheric stability on wind farm performance in complex terrain. Appl. Energy 2021, 282, 116149. [Google Scholar] [CrossRef]
- Gryning, S.E.; Batchvarova, E.; Brümmer, B.; Jørgensen, H.; Larsen, S. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound. Layer Meteorol. 2007, 124, 251–268. [Google Scholar] [CrossRef]
- Beiter, P.; Rand, J.T.; Seel, J.; Lantz, E.; Gilman, P.; Wiser, R. Expert perspectives on the wind plant of the future. Wind Energy 2022, 25, 1363–1378. [Google Scholar] [CrossRef]
- Utida, G.; Cruz, F.W.; Etourneau, J.; Bouloubassi, I.; Schefuß, E.; Vuille, M.; Novello, V.F.; Prado, L.F.; Sifeddine, A.; Klein, V.; et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Sci. Rep. 2019, 9, 1698. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Lau, K.M. Does a monsoon climate exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Gan, M.; Rodrigues, L.R.; Rao, V.B. Monção na América do Sul. In Tempo e Clima no Brasil; Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J., Dias, M.A.F.S., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; Chapter 19; pp. 297–316. [Google Scholar]
EOSOLAR Equipment | Auxiliary Instruments | Variables | Measurement’s Heights (AGL) | Sampling Frequency/ Time Resolution |
---|---|---|---|---|
SODAR Model: MFAS/Scintec. | – | Wind profiler: speed, direction and turbulent intensity. | 39 levels: 20 to 400 m every 10 m. | 4 s/10 min |
LIDAR Model: Windcube V2/Leosphere. | Surface Comet PTH T3311-L station (pressure, temperature and humidity). | Wind profiler: speed, direction and turbulent intensity. | 20 levels: 40 to 200 m every 10 m. 220 to 260 m every 20 m | 5 s/10 min |
Micrometeorological tower 1 | Gill WindSonic 75 1405-PK-100 2D anemometer, RM Young 81,000 3D anemometer, Thermohygrometer HygroVUE10, Barometer Setra 278, Pluviometer TE525-L. | Wind speed and direction, atmospheric pressure, precipitation, temperature and relative humidity. | 3.5 m (sonic 3D) 5, 7.5, 10 m (sonic 2D) | 20 Hz/10 min |
Micrometeorological tower 2 | Gill WindSonic 75 1405-PK-100 2D anemometer, RM Young 81,000 3D anemometer, Thermohygrometer HygroVUE10, Barometer Setra 278, Pluviometer TE525-L. | Wind speed and direction, atmospheric pressure, precipitation, temperature and relative humidity. | 3.5 m (sonic 3D) 5, 7.5, 10 m (sonic 2D) | 20 Hz/10 min |
Field Campaign | Begin | End | Days | Equipment Location | Precipitation |
---|---|---|---|---|---|
FC1 | 14 September 2021 | 8 November 2021 | 55 | SODAR-microtower P0 LIDAR-microtower P1 | 47.7 mm |
FC2 | 9 November 2021 | 13 December 2021 | 34 | SODAR-microtower P1 LIDAR-microtower P0 | 160.6 mm |
FC3 | 15 December 2021 | 27 January 2022 | 43 | SODAR-microtower P1 LIDAR-microtower P2 | 170.4 mm |
FC4 | 28 January 2022 (6 March 2022 ★) | 18 April 2022 | 80 (43 ★) | SODAR-microtower P1 LIDAR-microtower P3 | 728.6 mm |
FC5 | 20 April 2022 | 13 June 2022 | 54 | SODAR-microtower P1 LIDAR-microtower P4 | 573.5 mm |
FC6 | 15 June 2022 | 27 July 2022 | 42 | SODAR-microtower P1 LIDAR-microtower P5 | 74.9 mm |
Time Resolution | R | RMSE | BIAS |
---|---|---|---|
1 h | 0.68 | 1.85 | −0.09 |
6 h | 0.77 | 1.46 | −0.09 |
12 h | 0.81 | 1.26 | −0.09 |
24 h | 0.88 | 0.94 | −0.09 |
FC1 | FC4 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LIDAR P1 | SODAR P0 | LIDAR P3 | SODAR P1 | ||||||||||||||
height | mean | std | CF | Perc | mean | std | CF | Perc | height | mean | std | CF | Perc | mean | std | CF | Perc |
100 m | 9.28 | 1.67 | 0.64 | 95.3 | 9.76 | 1.84 | 0.70 | 81.2 | 100 m | 5.21 | 2.06 | 0.16 | 96.4 | 5.41 | 2.17 | 0.18 | 61.2 |
130 m | 9.51 | 1.70 | 0.67 | 95.3 | 9.51 | 1.73 | 0.67 | 62.0 | 130 m | 5.46 | 2.07 | 0.18 | 96.1 | 5.74 | 2.21 | 0.21 | 57.7 |
150 m | 9.64 | 1.72 | 0.69 | 95.3 | - | - | - | 49.1 | 150 m | 5.61 | 2.07 | 0.19 | 95.8 | 5.92 | 2.24 | 0.23 | 55.2 |
200 m | 9.88 | 1.76 | 0.72 | 95.3 | - | - | - | 24.6 | 200 m | 5.92 | 2.06 | 0.22 | 94.6 | - | - | - | 48.5 |
260 m | 10.10 | 1.81 | 0.74 | 95.3 | - | - | - | 9.9 | 260 m | 6.22 | 2.06 | 0.25 | 91.7 | - | - | - | 39.4 |
FC2 | FC5 | ||||||||||||||||
LIDAR P0 | SODAR P1 | LIDAR P4 | SODAR P1 | ||||||||||||||
height | mean | std | CF | Perc | mean | std | CF | Perc | height | mean | std | CF | Perc | mean | std | CF | Perc |
100 m | 9.63 | 2.01 | 0.69 | 98.2 | 9.07 | 1.78 | 0.62 | 94.8 | 100 m | 4.77 | 1.89 | 0.12 | 82.3 | 5.47 | 2.10 | 0.18 | 92.9 |
130 m | 9.73 | 1.95 | 0.70 | 98.2 | 9.39 | 1.76 | 0.66 | 94.7 | 130 m | 5.22 | 1.93 | 0.16 | 79.2 | 5.87 | 2.17 | 0.22 | 91.4 |
150 m | 9.79 | 1.91 | 0.71 | 98.2 | 9.55 | 1.74 | 0.68 | 94.3 | 150 m | 5.49 | 1.95 | 0.18 | 77.2 | 6.12 | 2.20 | 0.25 | 89.8 |
200 m | 9.94 | 1.83 | 0.73 | 98.2 | 9.81 | 1.68 | 0.72 | 89.4 | 200 m | 6.10 | 2.00 | 0.23 | 71.8 | 6.64 | 2.37 | 0.31 | 82.4 |
260 m | 10.10 | 1.78 | 0.75 | 98.2 | 9.89 | 1.50 | 0.73 | 71.2 | 260 m | 6.64 | 2.05 | 0.29 | 65.9 | 6.98 | 2.45 | 0.35 | 69.2 |
FC3 | FC6 | ||||||||||||||||
LIDAR P2 | SODAR P1 | LIDAR P5 | SODAR P1 | ||||||||||||||
height | mean | std | CF | Perc | mean | std | CF | Perc | height | mean | std | CF | Perc | mean | std | CF | Perc |
100 m | 7.61 | 2.60 | 0.43 | 99.3 | 7.75 | 2.49 | 0.45 | 98.3 | 100 m | 4.68 | 1.58 | 0.10 | 80.2 | 5.91 | 1.74 | 0.21 | 88.5 |
130 m | 7.84 | 2.59 | 0.45 | 99.3 | 8.08 | 2.49 | 0.49 | 97.9 | 130 m | 5.12 | 1.61 | 0.13 | 79.8 | 6.38 | 1.76 | 0.25 | 87.1 |
150 m | 7.97 | 2.57 | 0.47 | 99.3 | 8.23 | 2.47 | 0.50 | 96.9 | 150 m | 5.36 | 1.65 | 0.15 | 79.6 | 6.68 | 1.81 | 0.29 | 83.9 |
200 m | 8.26 | 2.54 | 0.50 | 99.2 | 8.50 | 2.41 | 0.54 | 88.6 | 200 m | 5.79 | 1.78 | 0.20 | 79.0 | 7.36 | 2.07 | 0.38 | 68.6 |
260 m | 8.54 | 2.51 | 0.53 | 98.6 | 8.56 | 2.29 | 0.55 | 71.2 | 260 m | 6.13 | 1.96 | 0.23 | 75.7 | - | - | - | 45.6 |
Field Campaign | c | k | Skew | U < 3 | U ≥ 10 | U ≥ 13 | U > 25 |
---|---|---|---|---|---|---|---|
FC1 | 9.97 | 6.21 | −0.19 | 0.03% | 33.55% | 1.06% | 0.00% |
FC2 | 9.77 | 5.92 | −0.59 | 0.58% | 31.06% | 0.43% | 0.00% |
FC3 | 8.61 | 3.51 | −0.23 | 3.76% | 19.30% | 0.91% | 0.00% |
FC4 | 7.27 | 2.97 | 0.04 | 7.81% | 5.17% | 0.07% | 0.02% |
FC5 | 6.14 | 2.46 | 1.27 | 13.59% | 0.96% | 0.12% | 0.11% |
FC6 | 6.54 | 3.75 | −0.03 | 5.30% | 1.22% | 0.00% | 0.00% |
all | 8.12 | 3.09 | −0.02 | 5.56% | 14.50% | 0.44% | 0.02% |
Neutral (mm) | Stab (mm) | |||
---|---|---|---|---|
Station | mode | median | mode | median |
P0 | 0.95 | 1.38 | 0.95 | 1.19 |
P1 | 15.33 | 13.76 | 15.33 | 13.56 |
P2 | 11.26 | 11.07 | 15.33 | 12.83 |
P3 | 15.33 | 14.33 | 15.33 | 15.15 |
P4 | 52.68 | 53.28 | 52.68 | 43.65 |
P5 | 335.56 | 145.26 | 246.46 | 255.25 |
References | Neutral | Convective | Strongly Convective | Strongly Stable | Stable | Neutral |
---|---|---|---|---|---|---|
Van Wijik et al. (1990) [69,70,71,72,73] | −1000 | −1000 −200 | −200 0 | 0 200 | 200 1000 | 1000 |
Gryning et al. (2007) [35,75] | −200 | −200 −100 | −100 −50 | 10 50 | 50 200 | 200 |
Warthon and Lundquist (2012) [36,74] | −600 | −600 −50 | −50 0 | 0 100 | 100 600 | 600 |
Archer et al. (2016) [37] | −500 | −500 −100 | −100 −5 | 5 100 | 100 500 | 500 |
Sakagami et al. (2015) [29] | −200 | −200 −50 | −50 0 | 0 50 | 50 200 | 200 |
this study | −200 | −200 −40 | −40 0 | 0 40 | 40 200 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, F.M.; Saavedra, O.R.; Oliveira, D.Q.; Assireu, A.T.; Torres Júnior, A.R.; de Freitas, R.M.; Neto, F.L.A.; Lopes, D.C.P.; Oliveira, C.B.M.; de Lima, S.L.; et al. Characterization of Wind Resources of the East Coast of Maranhão, Brazil. Energies 2023, 16, 5555. https://doi.org/10.3390/en16145555
Pimenta FM, Saavedra OR, Oliveira DQ, Assireu AT, Torres Júnior AR, de Freitas RM, Neto FLA, Lopes DCP, Oliveira CBM, de Lima SL, et al. Characterization of Wind Resources of the East Coast of Maranhão, Brazil. Energies. 2023; 16(14):5555. https://doi.org/10.3390/en16145555
Chicago/Turabian StylePimenta, Felipe M., Osvaldo R. Saavedra, Denisson Q. Oliveira, Arcilan T. Assireu, Audálio R. Torres Júnior, Ramon M. de Freitas, Francisco L. Albuquerque Neto, Denivaldo C. P. Lopes, Clóvis B. M. Oliveira, Shigeaki L. de Lima, and et al. 2023. "Characterization of Wind Resources of the East Coast of Maranhão, Brazil" Energies 16, no. 14: 5555. https://doi.org/10.3390/en16145555
APA StylePimenta, F. M., Saavedra, O. R., Oliveira, D. Q., Assireu, A. T., Torres Júnior, A. R., de Freitas, R. M., Neto, F. L. A., Lopes, D. C. P., Oliveira, C. B. M., de Lima, S. L., Neto, J. C. d. O., & Veras, R. B. S. (2023). Characterization of Wind Resources of the East Coast of Maranhão, Brazil. Energies, 16(14), 5555. https://doi.org/10.3390/en16145555