Exploring Pediococcus sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens
"> Figure 1
<p>ML phylogenetic tree based on 16S rRNA gene sequences, showing the relationships between strain M21F004 (highlighted in bold) and closely related taxa with validly published names. GenBank accession numbers are provided in parentheses. Bootstrap values (>70%) are shown at nodes as percentages based on 1000 replicates. Closed and open circles represent nodes supported via all three treeing methods (ML, MP, and NJ) or through two treeing methods, respectively. <span class="html-italic">Lentilactobacillus senioris</span> YIT 12364<sup>T</sup> was used as the outgroup. Scale bar represents 0.01 changes per nucleotide position. ML, maximum likelihood; MP, maximum parsimony; NJ, neighbor-joining.</p> "> Figure 2
<p>GUS expression in PR1::GUS <span class="html-italic">Arabidopsis</span> seedlings activated by treatment with M21F004 CB. GUS, histochemical β-glucuronidase; CB, culture broth of strain M21F004; CFS, cell-free supernatant of strain M21F004; MRS, de Man, Rogosa, and Sharpe as a negative control.</p> "> Figure 3
<p>Efficacy of <span class="html-italic">Pediococcus</span> sp. M21F004 CB in controlling cucumber <span class="html-italic">Fusarium</span> wilt. The control group (100%) represents disease severity in untreated cucumber plants, with efficacy expressed as the percentage reduction in disease severity relative to this control. Values are presented as mean ± standard error from three independent trials, each with nine replicates. Bars sharing the same letters indicate non-significant differences among treatments (<span class="html-italic">p</span> < 0.05, Fisher’s LSD test). CB, culture broth of <span class="html-italic">Pediococcus</span> sp. M21F004; OA, oleic acid; LSD, least significant difference.</p> "> Figure 4
<p>Efficacy of <span class="html-italic">Pediococcus</span> sp. M21F004 CB in controlling creeping bentgrass dollar spot. The control group (100%) represents disease severity in untreated creeping bentgrass, with efficacy expressed as the percentage reduction in disease severity relative to this control. Values are presented as mean ± standard error from three independent trials, each with nine replicates. Bars sharing the same letters indicate non-significant differences among treatments (<span class="html-italic">p</span> < 0.05, Fisher’s LSD test). CB, culture broth of <span class="html-italic">Pediococcus</span> sp. M21F004; OA, oleic acid; LSD, least significant difference.</p> "> Figure 5
<p>Efficacy of <span class="html-italic">Pediococcus</span> sp. M21F004 CB in controlling tomato bacterial wilt. The control group (100%) represents disease severity in untreated tomato plants, with efficacy expressed as the percentage reduction in disease severity relative to this control. Values are presented as mean ± standard error from three independent trials, each with nine replicates. Bars sharing the same letters indicate non-significant differences among treatments (<span class="html-italic">p</span> < 0.05, Fisher’s LSD test). CB, culture broth of <span class="html-italic">Pediococcus</span> sp. M21F004; OA, oleic acid; SD, soil drench; FS, foliar spray; Sungbo, Sungbocycline (×1000); LSD, least significant difference.</p> "> Figure 6
<p>Efficacy of <span class="html-italic">Pediococcus</span> sp. M21F004 CB in controlling kimchi cabbage soft rot. The control group (100%) represents disease severity in untreated kimchi cabbage, with efficacy expressed as the percentage reduction in disease severity relative to this control. Values are presented as mean ± standard error from three independent trials, each with nine replicates. Bars sharing the same letters indicate non-significant differences among treatments (<span class="html-italic">p</span> < 0.05, Fisher’s LSD test). CB, culture broth of <span class="html-italic">Pediococcus</span> sp. M21F004; OA, oleic acid; Sungbo, Sungbocycline (×1000); LSD, least significant difference.</p> ">
Abstract
:1. Introduction
2. Results
2.1. In Vitro Screening of 50 Marine Bacteria for Antimicrobial Activity
2.2. Identification of Strain M21F004
2.3. Histochemical β-Glucuronidase Protein Expression by Induced Resistance of Strain M21F004
2.4. Identification of Antimicrobial Metabolites
2.5. Efficacy of Pediococcus sp. M21F004 Culture Broth and OA in Controlling Cucumber Fusarium Wilt
2.6. Efficacy of Pediococcus sp. M21F004 Culture Broth and OA in Controlling Creeping Bentgrass Dollar Spot
2.7. Efficacy of Pediococcus sp. M21F004 Culture Broth and OA in Controlling Tomato Bacterial Wilt
2.8. Efficacy of Pediococcus sp. M21F004 Culture Broth and OA in Controlling Kimchi Cabbage Soft Rot
3. Discussion
4. Materials and Methods
4.1. Marine Bacterial Isolation and Culture Conditions
4.2. Preparation of CFS from Marine Bacterial Strains
4.3. Phytopathogenic Microorganisms and Culture Conditions
4.4. In Vitro Screening of Antimicrobial Activities
4.5. Phylogenetic Analysis Based on 16S rRNA Sequences
4.6. Histochemical β-Glucuronidase Staining Assay
4.7. Extraction and Structural Determination of the Active Metabolite from Strain M21F004
4.8. In Vivo Antimicrobial Activities
4.8.1. Fusarium Wilt of Cucumber
4.8.2. Dollar Spot of Creeping Bentgrass
4.8.3. Bacterial Wilt of Tomato
4.8.4. Soft Rot of Kimchi Cabbage
4.9. Calculation of the Control Value
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, A.P.J.; Murugan, S.; Renitta, R.E. Microbial disease management in agriculture: Current status and future prospects. Biocatal. Agric. Biotechnol. 2020, 23, 101468. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S. Ecotoxicological implications of residual pesticides to beneficial soil bacteria: A review. Pestic. Biochem. Physiol. 2022, 188, 105272. [Google Scholar] [CrossRef] [PubMed]
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. Soil biological activity as an indicator of soil pollution with pesticides–a review. Appl. Soil. Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Yu, N.H.; Lee, Y.; Hwang, I.M.; Bui, H.X.; Kim, J.-C. Nematicidal activity of cyclopiazonic acid derived from Penicillium commune against root-knot nematodes and optimization of the culture fermentation process. Front. Microbiol. 2021, 12, 726504. [Google Scholar] [CrossRef] [PubMed]
- Le, K.D.; Kim, J.; Nguyen, H.T.; Yu, N.H.; Park, A.R.; Lee, C.W.; Kim, J.-C. Streptomyces sp. JCK-6131 protects plants against bacterial and fungal diseases via two mechanisms. Front. Plant Sci. 2021, 12, 726266. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Zhang, J.; Wang, W.; Wu, X.; Luo, X.; Zou, Y.; Chen, K.; He, P. Screening native Bacillus strains as potential biological control agents against ginger bacterial wilt and for promoting plant growth. Biol. Control 2024, 192, 105510. [Google Scholar] [CrossRef]
- Benaissa, A. Rhizosphere: Role of bacteria to manage plant diseases and sustainable agriculture—A review. J. Basic Microbiol. 2024, 64, 2300361. [Google Scholar] [CrossRef] [PubMed]
- Hirozawa, M.T.; Ono, M.A.; Suguiura, I.M.S.; Bordini, J.G.; Ono, E.Y.S. Lactic acid bacteria and Bacillus spp. as fungal biological control agents. J. Appl. Microbiol. 2023, 134, lxac083. [Google Scholar] [CrossRef] [PubMed]
- Yeon, J.; Park, A.R.; Kang, M.; Nguyen, V.T.; Lee, Y.; Kim, H.M.; Park, H.W.; Ha, P.; Koo, Y.; Kim, J.-C. Control of root-knot nematodes on tomato by eliciting resistance through Aspergillus niger-derived oxalic acid. J. Pest. Sci. 2023, 96, 1287–1299. [Google Scholar] [CrossRef]
- Nion, Y.A.; Toyota, K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 2015, 30, 1–11. [Google Scholar] [CrossRef]
- Poli, A.; Finore, I.; Romano, I.; Gioiello, A.; Lama, L.; Nicolaus, B. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 2017, 5, 25. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, Y.S.; Wu, H.C.; Pan, S.F.; Yu, B.; Chiang, C.M.; Chiu, C.M.; Yanagida, F. Screening and characterization of LAB-produced bacteriocin-like substances from the intestine of grey mullet (Mugil cephalus L.) as potential biocontrol agents in aquaculture. J. Appl. Microbiol. 2013, 114, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.; Adams, M.; Bolch, C.J.; Burke, C.M. In vitro screening of lactic acid bacteria isolated from gastrointestinal tract of Atlantic Salmon (Salmo salar) as probiont candidates. Aquacul. Int. 2017, 25, 485–498. [Google Scholar] [CrossRef]
- Mokoena, M.P. Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Alegría, Á.; Bron, P.A.; De Angelis, M.; Gobbetti, M.; Kleerebezem, M.; Lemos, J.A.; Linares, D.M.; Ross, P.; Stanton, C. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 837–890. [Google Scholar] [CrossRef]
- Dalie, D.K.D.; Deschamps, A.; Atanasova-Penichon, V.; Richard-Forget, F. Potential of Pediococcus pentosaceus (L006) isolated from maize leaf to suppress fumonisin-producing fungal growth. J. Food Prot. 2010, 73, 1129–1137. [Google Scholar] [CrossRef]
- Sellamani, M.; Kalagatur, N.K.; Siddaiah, C.; Mudili, V.; Krishna, K.; Natarajan, G.; Rao Putcha, V.L. Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front. Microbiol. 2016, 7, 890. [Google Scholar] [CrossRef] [PubMed]
- Riolo, M.; Luz, C.; Santilli, E.; Meca, G.; Cacciola, S.O. Antifungal activity of selected lactic acid bacteria from olive drupes. Food Biosci. 2023, 52, 102422. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Vazquez Bucheli, J.E.; Park, Y.J.; Suh, D.H.; Jung, E.S.; Franco, B.; Ivanova, I.V.; Holzapfel, W.H.; Todorov, S.D. Antimicrobial properties of Pediococcus acidilactici and Pediococcus pentosaceus isolated from silage. J. Appl. Microbiol. 2022, 132, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Huynh, U.; Zastrow, M.L. Metallobiology of Lactobacillaceae in the gut microbiome. J. Inorg. Biochem. 2023, 238, 112023. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Amadoro, C.; Gasperi, M.; Colavita, G. Lactobacilli infection case reports in the last three years and safety implications. Nutrients 2022, 14, 1178. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J. 2021, 19, e06506. [Google Scholar] [CrossRef]
- Rouse, S.; Harnett, D.; Vaughan, A.; van Sinderen, D. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J. Appl. Microbiol. 2008, 104, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Sathe, S.J.; Nawani, N.N.; Dhakephalkar, P.K.; Kapadnis, B.P. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol. 2007, 103, 2622–2628. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lin, G.; Deng, X.; Zou, J.; Liu, Y.; Chen, X.; Liu, S. Development of tetramycin-loaded core–shell beads with hot-/wet-responsive release properties for control of bacterial wilt disease. Agronomy 2024, 14, 1199. [Google Scholar] [CrossRef]
- Ghavam, M.; Afzali, A.; Manca, M.L. Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci. Rep. 2021, 11, 8027. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.; Wang, J.; Pan, J.; Li, H.; Wang, J.; Zhang, F.; Gao, Y. Effects of sesame seed cake allelochemicals on the growth cucumber (Cucumis sativus L. cv. Jinchun 4). Allelopath. J. 2005, 16, 217–225. [Google Scholar]
- Dilika, F.; Bremner, P.; Meyer, J. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000, 71, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 775–780. [Google Scholar] [PubMed]
- Carballeira, N. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 2008, 47, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Zhou, L.; Song, Y.; Cai, L.; Ji, M.; Wang, J.; Ruan, G.; Chen, J. Encapsulating insoluble antifungal drugs into oleic acid-modified silica mesocomposites with enhanced fungicidal activity. J. Mater. Chem. B 2020, 8, 4899–4907. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.M.A.A.; Zidan, S.A.H.; Shehata, R.M.; El-Sheikh, H.H.; Ameen, F.; Stephenson, S.L.; Al-Bedak, O.A.-H.M. Antioxidant, antibacterial, and molecular docking of methyl ferulate and oleic acid produced by Aspergillus pseudodeflectus AUMC 15761 utilizing wheat bran. Sci. Rep. 2024, 14, 3183. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.; Raynor, L.; Mitchell, A.; Walker, R.; Walker, K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 2004, 157, 87–90. [Google Scholar] [CrossRef]
- Elshahawy, I.E.; Marrez, D.A. Antagonistic activity of Trichoderma asperellum against Fusarium species, chemical profile and their efficacy for management of Fusarium-root rot disease in dry bean. Pest Manag. Sci. 2024, 80, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ruan, W.; Li, J.; Xu, H.; Wang, J.; Gao, Y.; Wang, J. Biological control of phytopathogenic fungi by fatty acids. Mycopathologia 2008, 166, 93–102. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Lee, I.; Ouk Kim, Y.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Fitch, W.M. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Biol. 1971, 20, 406–416. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, E.P.; Eddy, S.R. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput. Biol. 2007, 3, e56. [Google Scholar] [CrossRef]
- Jeong, Y.Y.; Lee, H.-Y.; Kim, S.W.; Noh, Y.-S.; Seo, P.J. Optimization of protoplast regeneration in the model plant Arabidopsis thaliana. Plant Methods 2021, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yeo, Y.J.; Park, A.R.; Vuong, B.S.; Kim, J.-C. Biocontrol of Fusarium head blight in rice using Bacillus velezensis JCK-7158. Front. Microbiol. 2024, 15, 1358689. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.-C.; Jang, K.S.; Choi, Y.H.; Choi, G.J. Efficient screening method for resistance of cucumber cultivars to Fusarium oxysporum f. sp. cucumerinum. Res. Plant Dis. 2014, 20, 245–252. [Google Scholar] [CrossRef]
- Abro, M.A.; Sun, X.; Li, X.; Jatoi, G.H.; Guo, L.-D. Biocontrol potential of fungal endophytes against Fusarium oxysporum f. sp. cucumerinum causing wilt in cucumber. Plant Pathol. J. 2019, 35, 598. [Google Scholar] [CrossRef] [PubMed]
- Le, K.D.; Kim, J.; Yu, N.H.; Kim, B.; Lee, C.W.; Kim, J.-C. Biological control of tomato bacterial wilt, kimchi cabbage soft rot, and red pepper bacterial leaf spot using Paenibacillus elgii JCK-5075. Front. Plant Sci. 2020, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Champoiseau, P.; Daugrois, J.H.; Girard, J.C.; Royer, M.; Rott, P. Variation in albicidin biosynthesis genes and in pathogenicity of Xanthomonas albilineans, the sugarcane leaf scald pathogen. Phytopathology 2006, 96, 33–45. [Google Scholar] [CrossRef] [PubMed]
No. | Strain | Identity | Similarity (%) | Sampling Site | Coordinates | Isolation Source |
---|---|---|---|---|---|---|
1 | M19A1R17 | Rhodococcus kroppenstedtii | 98.47 | Bieung, Gunsan-si, Jeollabuk-do | 35°56′17.61″ N 126°31′52.49″ E | Ulva sp. |
2 | M19A1S3 | Rhodococcus trifolii | 98.31 | |||
3 | M19A1S10 | Rhodococcus trifolii | 98.31 | |||
4 | M19B1S5 | Algibacter lectus | 98.32 | Gujwa-eup, Jeju-si, Jeju-do | 33°31′30.66 N 126°51′41.43″ E | Seawater |
5 | M19B1Z5 | Pseudoalteromonas carrageenovora | 98.59 | |||
6 | M19B2R8 | Hydrogenophaga taeniospiralis | 98.55 | Undaria pinnatifida | ||
7 | M19B2S3 | Colwellia agarivorans | 98.57 | |||
8 | M19B3S6 | Paraglaciecola aquimarina | 95.53 | Codium fragile | ||
9 | M19C2D2 | Alteromonas marina | 97.08 | Seongsan-eup, Seogwipo-si, Jeju-do | 33°27′3.7″ N 126°55′27.06″ E | Ulva sp. |
10 | M19C2S11 | Alteromonas oceani | 98.07 | |||
11 | M19C2S14 | Octadecabacter algicola | 98.05 | |||
12 | M19C2Z2 | Psychrosphaera ytuae | 98.62 | |||
13 | M19C1D14 | Winogradskyella endarachnes | 99.59 | |||
14 | M19E1R33 | Wocania ichthyoenteri | 97.71 | Yonghyeon-myeon, Sacheon-si, Gyeongsangnam-do | 35°2′28.7″ N 128°2′23.2″ E | Seawater |
15 | M19E2S8 | Altererythrobacter rubellus | 99.49 | Daebang-dong, Sacheon-si, Gyeongsangnam-do | 34°55′43.5″ N 128°3′24.8″ E | |
16 | M19E3S8 | Marivita litorea | 97.92 | Yonghyeon-myeon, Sacheon-si, Gyeongsangnam-do | 35°0′34.2″ N 128°2′48.7″ E | |
17 | M20A1S7 | Gemmobacter fulvus | 97.62 | Sinpyeong-myeon, Dangjin-si, Chungcheongnam-do | 36°52′51″ N 126°49′39″ E | Seawater |
18 | M20A1S8 | Qipengyuania spongiae | 97.44 | |||
19 | M20A2S1 | Shewanella septentrionalis | 99.21 | Seongmun-myeon, Dangjin-si, Chungcheongnam-do | 37°0′13.1″ N 126°37′33.1″ E | Seawater |
20 | M20A5R6 | Janthinobacterium lividum | 99.66 | Ulva sp. | ||
21 | M20A5R12 | Hydrogenophaga laconesensis | 98.48 | |||
22 | M20A5S7 | Nocardioides furvisabuli | 99.36 | |||
23 | M20A5S9 | Simplicispira limi | 99.66 | |||
24 | M20A3D2 | Aquimarina macrocephali | 97.30 | Daesan-eup, Seosan-si, Chungcheongnam-do | 36°58′3″ N 126°20′11.2″ E | Seawater |
25 | M20A3S3 | Dokdonia sinensis | 95.30 | |||
26 | M20A3S9 | Roseobacter insulae | 98.34 | |||
27 | M20A3S10 | Parerythrobacter lutipelagi | 97.20 | |||
28 | M20A3S11 | Cognatiyoonia koreensis | 97.11 | |||
29 | M20A3Z3 | Maribacter aestuarii | 97.03 | |||
30 | M20A8D8 | Motilimonas cestriensis | 99.79 | Sediment | ||
31 | M20A8S13 | Hoppeia youngheungensis | 97.43 | |||
32 | M20A4R8 | Pseudomonas bohemica | 98.63 | Sinpyeong-myeon, Dangjin-si, Chungcheongnam-do | 36°52′47.8″ N 126°49′37.9″ E | Rumex crispus |
33 | M20A4R15 | Herminiimonas aquatilis | 100.00 | |||
34 | M20A4S4 | Neorhizobium tomejilense | 97.36 | |||
35 | M20B1D1 | Psychroflexus montanilacus | 98.32 | Munnae-myeon, Haenam-gun, Jeollanam-do | 34°35′45.2″ N 126°16′58.6″ E | Sediment |
36 | M20B1R5 | Halomonas johnsoniae | 98.28 | |||
37 | M20B1Z1 | Halomonas azerica | 98.63 | |||
38 | M20B1Z2 | Halomonas arcis | 98.79 | |||
39 | M20B5D3 | Halomonas azerica | 98.90 | |||
40 | M20B5D4 | Halomonas azerica | 98.49 | |||
41 | M20B5D5 | Halomonas azerica | 98.90 | |||
42 | M20B5D10 | Salegentibacter lacus | 99.72 | |||
43 | M20B5D12 | Salinimicrobium xinjiangense | 97.86 | |||
44 | M20C1R1 | Tenacibaculum mesophilum | 98.06 | Byeonsan-myeon, Buan-gun, Jeollabuk-do | 35°40′47.3″ N 126°31′48.4″ E | Ulva sp. |
45 | M20C3D11 | Microbulbifer rhizosphaerae | 97.97 | Jinseo-myeon, Buan-gun, Jeollabuk-do | 35°35′44.6″ N 126°37′2.4″ E | Sediment |
46 | M20D1D7 | Muricauda abyssi | 99.10 | Iwon-myeon, Taean-gun, Chungcheongnam-do | 36°57′47.5″ N 126°17′24.2″ E | Seawater |
47 | M21F001 | Latilactobacillus sakei subsp. sakei | 100.00 | Chukbok-dong, Mokpo-si, Jeollanam-do | 34°47′16.6″ N 126°23′23.6″ E | Platichthys stellatus |
48 | M21F003 | Kocuria salsicia | 99.86 | |||
49 | M21F004 | Pediococcus inopinatus | 100.00 | |||
50 | M21F006 | Rhodococcus qingshengii | 100.00 |
Retention Time (min) | Area | Total Area (%) | Similarity (%) | Possible Compounds |
---|---|---|---|---|
8.52 | 24,560,882 | 16.2 | 85 | 3-Isobutylhexahydropyrrolo [1,2-a] pyrazine-1,4-dione |
9.228 | 16,710,129 | 11.0 | 90 | 3-Isobutylhexahydropyrrolo [1,2-a] pyrazine-1,4-dione |
9.345 | 24,933,274 | 16.5 | 93 | 3-Isobutylhexahydropyrrolo [1,2-a] pyrazine-1,4-dione |
9.45 | 14,513,256 | 9.6 | 89 | Palmitic acid |
10.69 | 60,369,540 | 39.9 | 95 | Oleic acid |
12.35 | 10,369,682 | 6.9 | 92 | 3-Benzyl-hexahydro-pyrrolo [1,2-a] pyrazine-1,4-dione |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.T.; Kwon, Y.M.; Park, A.R.; Yu, N.H.; Choi, G.; Kim, J.-C. Exploring Pediococcus sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens. Mar. Drugs 2024, 22, 534. https://doi.org/10.3390/md22120534
Nguyen VT, Kwon YM, Park AR, Yu NH, Choi G, Kim J-C. Exploring Pediococcus sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens. Marine Drugs. 2024; 22(12):534. https://doi.org/10.3390/md22120534
Chicago/Turabian StyleNguyen, Van Thi, Yong Min Kwon, Ae Ran Park, Nan Hee Yu, Grace Choi, and Jin-Cheol Kim. 2024. "Exploring Pediococcus sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens" Marine Drugs 22, no. 12: 534. https://doi.org/10.3390/md22120534
APA StyleNguyen, V. T., Kwon, Y. M., Park, A. R., Yu, N. H., Choi, G., & Kim, J. -C. (2024). Exploring Pediococcus sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens. Marine Drugs, 22(12), 534. https://doi.org/10.3390/md22120534