Effects of a 12-Week Pilates Program on Functional Physical Fitness and Basal Metabolic Rate in Community-Dwelling Middle-Aged Women: A Quasi-Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Primary Outcome—Body Composition
2.3. Primary Outcome—Basal Metabolic Rate
2.4. Primary Outcome—Functional Fitness
2.4.1. Cardiovascular Capacity
2.4.2. Core Strength
2.4.3. Muscular Strength of Upper/Lower Limbs
2.4.4. Flexibility
2.4.5. Agility and Static/Dynamic Balance
2.5. Pilates Program Course Design
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
3.1. Participant Demographic Data
3.2. Effects of the Pilates Intervention on Functional Fitness
3.3. Effects of the Pilates Intervention on Body Composition
3.4. Effects of the Pilates Intervention on Basal Metabolic Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Lorenzo, C.E. Pilates: What is it? Should it be used in rehabilitation? Sports Health 2011, 3, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Bullo, V.; Bergamin, M.; Gobbo, S.; Sieverdes, J.C.; Zaccaria, M.; Neunhaeuserer, D.; Ermolao, A. The effects of Pilates exercise training on physical fitness and wellbeing in the elderly: A systematic review for future exercise prescription. Prev. Med. 2015, 75, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.; Zangla, D.; Sahin, F.N.; Cataldi, S.; Lavanco, G.; Palma, A.; Fischietti, F. Physical exercise and prevention of falls. Effects of a Pilates training method compared with a general physical activity program: A randomized controlled trial. Medicine 2021, 100, e25289. [Google Scholar] [CrossRef]
- Franco, M.R.; Grande, G.H.D.; Padulla, S.A.T. Effect of pilates exercise for improving balance in older adults (PEDro synthesis). Br. J. Sports Med. 2018, 52, 199–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancini, R.L.; Rayes, A.; Lira, C.; Sarro, K.J.; Andrade, M.S. Pilates and aerobic training improve levels of depression, anxiety and quality of life in overweight and obese individuals. Arq. Neuropsiquiatr. 2017, 75, 850–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chen, Z.; Wu, Z.; Ye, X.; Xu, X. Pilates for Overweight or Obesity: A Meta-Analysis. Front. Physiol. 2021, 12, 643455. [Google Scholar] [CrossRef]
- Eliks, M.; Zgorzalewicz-Stachowiak, M.; Zeńczak-Praga, K. Application of Pilates-based exercises in the treatment of chronic non-specific low back pain: State of the art. Postgrad. Med. J. 2019, 95, 41–45. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, N.T.B.; Ricci, N.A.; Dos Santos Franco, Y.R.; Salvador, E.M.E.S.; Almeida, I.C.B.; Cabral, C.M.N. Effectiveness of the Pilates method versus aerobic exercises in the treatment of older adults with chronic low back pain: A randomized controlled trial protocol. BMC Musculoskelet. Disord. 2019, 20, 250. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, L.; Ruiz-Frutos, C.; Vázquez-Lara, J.M.; Ramírez-Rodrigo, J.; Villaverde-Gutiérrez, C.; Torres-Luque, G. Effectiveness of a physical activity programme based on the Pilates method in pregnancy and labour. Enferm. Clin. 2017, 27, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Ghandali, N.Y.; Iravani, M.; Habibi, A.; Cheraghian, B. The effectiveness of a Pilates exercise program during pregnancy on childbirth outcomes: A randomised controlled clinical trial. BMC Pregnancy Childbirth 2021, 21, 480. [Google Scholar] [CrossRef]
- World Health Organization. Ageing and Health. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 6 March 2022).
- Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018, 5, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.R.; Tu, T.H.; Jeong, D.Y.; Yang, S.; Kim, J.G. Obesity induced by estrogen deficiency is associated with hypothalamic inflammation. Biochem. Biophys. Rep. 2020, 23, 100794. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and Menopause: The Role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.X.; Yu, Q. Primary osteoporosis in postmenopausal women. Chronic Dis. Transl. Med. 2015, 1, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anupama, D.S.; Norohna, J.A.; Acharya, K.K. Ravishankar George A. Effect of exercise on bone mineral density and quality of life among postmenopausal women with osteoporosis without fracture: A systematic review. Int. J. Orthop. Trauma Nurs. 2020, 39, 100796. [Google Scholar] [CrossRef]
- Kao, Y.H.; Liou, T.H.; Huang, Y.C.; Tsai, Y.W.; Wang, K.M. Effect of a 12-week Pilates course on lower limb muscle strength and trunk flexibility in women living in the community. Health Care Women Int. 2015, 36, 303–319. [Google Scholar] [CrossRef]
- Roh, S.Y. The effect of 12-week Pilates exercises on wellness in the elderly. J. Exerc. Rehabil. 2016, 12, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Seghatoleslami, A.; Hemmati Afif, A.; Irandoust, K.; Taheri, M. Effect of Pilates Exercises on Motor Performance and Low Back Pain in Elderly Women with Abdominal Obesity. Iran. J. Ageing 2018, 13, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Irez, G.B.; Ozdemir, R.A.; Evin, R.; Irez, S.G.; Korkusuz, F. Integrating pilates exercise into an exercise program for 65+ year-old women to reduce falls. J. Sports Sci. Med. 2011, 10, 105–111. [Google Scholar]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Ferri-Morales, A.; Torres-Costoso, A.; Pozuelo-Carrascosa, D.P.; Martínez-Vizcaíno, V. Pilates improves physical performance and decreases risk of falls in older adults: A systematic review and meta-analysis. Physiotherapy 2021, 112, 163–177. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Alvarez-Bueno, C.; Reina-Gutiérrez, S.; Torres-Costoso, A.; Nuñez de Arenas-Arroyo, S.; Martínez-Vizcaíno, V. Effectiveness of Pilates and Yoga to improve bone density in adult women: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251391. [Google Scholar] [CrossRef] [PubMed]
- Miyatani, M.; Kanehisa, H.; Masuo, Y.; Ito, M.; Fukunaga, T. Validity of estimating limb muscle volume by bioelectrical impedance. J. Appl. Physiol. 2001, 91, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W.; Bubela, D.J.; Wang, Y.C.; Magasi, S.S.; Gershon, R.C. Six-Minute Walk Test vs. Three-Minute Step Test for Measuring Functional Endurance. J. Strength Cond. Res. 2015, 29, 3240–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Murakami, H.; Inaki, A.; Mochizuki, T.; Demura, S.; Nakase, J.; Yoshioka, K.; Yokogawa, N.; Igarashi, T.; Takahashi, N.; et al. Innovative exercise device for the abdominal trunk muscles: An early validation study. PLoS ONE 2017, 12, e0172934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2001. [Google Scholar]
- Ghahramani, M.; Rojas, R.F.; Stirling, D. Chest and pelvis coordination during functional reach test: A possible indication of balance deficiency in older adults. J. Biomech. 2022, 141, 111177. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.S.; Hsu, N.W.; Lee, M.J.; Lin, Y.Y.; Tsai, C.C.; Pan, P.J. Correlation analysis of physical fitness and its impact on falls in 2130 community- dwelling older adults: A retrospective cross-sectional study. BMC Geriatr. 2022, 22, 447. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, R.; Álvarez-Bueno, C.; Ferri-Morales, A.; Torres-Costoso, A.I.; Cavero-Redondo, I.; Martínez-Vizcaíno, V. Pilates Method Improves Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. J. Clin. Med. 2019, 8, 1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayes, A.; de Lira, C.; Viana, R.B.; Benedito-Silva, A.A.; Vancini, R.L.; Mascarin, N.; Andrade, M.S. The effects of Pilates vs. aerobic training on cardiorespiratory fitness, isokinetic muscular strength, body composition, and functional tasks outcomes for individuals who are overweight/obese: A clinical trial. PeerJ 2019, 7, e6022. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, W.J.; Ribbers, G.M.; Slaman, J.; Heijenbrok-Kal, M.H.; Khajeh, L.; van Kooten, F.; Neggers, S.J.; van den Berg-Emons, R.J. The six-minute walk test predicts cardiorespiratory fitness in individuals with aneurysmal subarachnoid hemorrhage. Top. Stroke Rehabil. 2017, 24, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, G.M.; Charkovski, S.A.; Santos, L.; Silva, M.; Tomaz, G.O.; Gamba, H.R. The influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women: A randomized controlled trial. Clinics 2018, 73, e356. [Google Scholar] [CrossRef]
- Valenza, M.C.; Rodríguez-Torres, J.; Cabrera-Martos, I.; Díaz-Pelegrina, A.; Aguilar-Ferrándiz, M.E.; Castellote-Caballero, Y. Results of a Pilates exercise program in patients with chronic non-specific low back pain: A randomized controlled trial. Clin. Rehabil. 2017, 31, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.; Redkva, P.E.; Fernando de Borba, E.; Barbosa, S.C.; Krause, M.P.; Gregorio da Silva, S. Effect of mat vs. apparatus pilates training on the functional capacity of elderly women. J. Bodyw. Mov. Ther. 2021, 25, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kibar, S.; Yardimci, F.Ö.; Evcik, D.; Ay, S.; Alhan, A.; Manço, M.; Ergin, E.S. Can a pilates exercise program be effective on balance, flexibility and muscle endurance? A randomized controlled trial. J. Sports Med. Phys. Fit. 2016, 56, 1139–1146. [Google Scholar]
- Cuevas-Trisan, R. Balance Problems and Fall Risks in the Elderly. Clin. Geriatr. Med. 2019, 35, 173–183. [Google Scholar] [CrossRef]
- Thillainadesan, J.; Scott, I.A.; Le Couteur, D.G. Frailty, a multisystem ageing syndrome. Age Ageing 2020, 49, 758–763. [Google Scholar] [CrossRef]
- Rohrmann, S. Epidemiology of Frailty in Older People. Adv. Exp. Med. Biol. 2020, 1216, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Batista, F.S.; Gomes, G.A.; Neri, A.L.; Guariento, M.E.; Cintra, F.A.; Sousa Mda, L.; D’Elboux, M.J. Relationship between lower-limb muscle strength and frailty among elderly people. Sao Paulo Med. J. 2012, 130, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, X.; Bo, L.; Zhu, H.; Chen, B.; Wu, Z.; Du, H.; Huo, X. Effects of lower limb resistance exercise on muscle strength, physical fitness, and metabolism in pre-frail elderly patients: A randomized controlled trial. BMC Geriatr. 2021, 21, 447. [Google Scholar] [CrossRef]
- Penn, I.W.; Sung, W.H.; Lin, C.H.; Chuang, E.; Chuang, T.Y.; Lin, P.H. Effects of individualized Tai-Chi on balance and lower-limb strength in older adults. BMC Geriatr. 2019, 19, 235. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.A.; Zunzunegui, M.V.; Vafaei, A.; da Câmara, S.M.; Oliveira, T.S.; Maciel, Á.C. Sarcopenic obesity and physical performance in middle aged women: A cross-sectional study in Northeast Brazil. BMC Public Health 2016, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.J.; Park, H.S.; Chang, H.K. Effects of Pilates Mat Exercise on Middle-aged Womens’ Body Composition, Blood Lipid Level, and Lumbar Muscle Strength. Asian J. Kinesiol. 2011, 13, 77–88. [Google Scholar]
- Cakmakçi, O. The effect of 8 week pilates exercise on body composition in obese women. Coll. Antropol. 2011, 35, 1045–1050. [Google Scholar] [PubMed]
- Fourie, M.; Gildenhuys, G.M.; Shaw, I.; Shaw, B.S.; Toriola, A.L.; Goon, D.T. Effects of a mat Pilates programme on body composition in elderly women. West Indian Med. J. 2013, 62, 524–528. [Google Scholar] [CrossRef]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryadinata, R.V.; Wirjatmadi, B.; Adriani, M.; Lorensia, A. Effect of age and weight on physical activity. J. Public Health Res. 2020, 9, 1840. [Google Scholar] [CrossRef] [PubMed]
Total (n = 45) | Experimental Group (n = 22) | Control Group (n = 23) | p | ||||
---|---|---|---|---|---|---|---|
Age (years) | 55.13 ± 5.49 | 54.64 ± 5.23 | 55.61 ± 5.80 | 0.488 | |||
Height (cm) | 155.18 ± 4.74 | 155.61 ± 4.97 | 154.76 ± 4.59 | 0.453 | |||
Weight (kg) | 57.16 ± 10.01 | 58.44 ± 9.27 | 55.93 ± 10.75 | 0.216 | |||
n | (%) | n | (%) | n | (%) | ||
Education | 0.823 | ||||||
Elementary | 4 | 8.9 | 1 | 4.5 | 3 | 13.0 | |
Junior | 7 | 15.6 | 3 | 13.6 | 4 | 17.4 | |
Senior | 16 | 35.6 | 8 | 36.4 | 8 | 34.8 | |
College | 15 | 33.3 | 8 | 36.4 | 7 | 30.4 | |
Graduate | 3 | 6.7 | 2 | 9.1 | 1 | 4.3 | |
Marital status | 0.230 | ||||||
Single | 3 | 6.7 | 2 | 9.1 | 1 | 4.3 | |
Married | 38 | 84.4 | 19 | 86.4 | 19 | 82.6 | |
Divorced | 1 | 2.2 | 1 | 4.5 | 0 | 0.0 | |
Widowed | 3 | 6.7 | 0 | 0 | 3 | 13.0 | |
Menopause | 0.776 | ||||||
No | 9 | 20.0 | 4 | 18.2 | 5 | 21.7 | |
Yes | 36 | 80.0 | 18 | 81.8 | 18 | 78.3 |
Test | Pretest | Posttest | Within p | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
3 min step | Exp. | 55.42 ± 5.76 | 55.37 ± 5.32 | 0.651 |
Con. | 55.40 ± 5.35 | 55.61 ± 5.54 | 0.407 | |
Between | p = 0.992 | p = 0.440 | ||
Sit-and-reach (cm) | Exp. | 27.00 ± 9.04 | 27.95 ± 8.83 # | 0.001 |
Con. | 25.65 ± 9.58 | 25.39 ± 9.44 | 0.527 | |
Between | p = 0.630 | p = 0.353 | ||
Bent-knee sit-up (rep.) | Exp. | 6.91 ± 8.47 | 9.09 ± 8.40 # | 0.0001 |
Con. | 6.78 ± 7.16 | 6.87 ± 6.99 | 0.527 | |
Between | p = 1.00 | p = 0.316 | ||
Grip strength (kg) | Exp. | 20.05 ± 3.07 | 20.17 ± 3.12 | 0.337 |
Con. | 21.21 ± 3.55 | 20.98 ± 3.31 | 0.781 | |
Between | p = 0.261 | p = 0.399 | ||
30 s chair–stand (rep.) | Exp. | 16.05 ± 4.33 | 18.22 ± 4.42 # | 0.0001 |
Con. | 16.09 ± 3.08 | 16.26 ± 3.49 | 0.508 | |
Between | p = 0.971 | p = 0.182 | ||
8-foot timed up-and-go (s) | Exp. | 5.56 ± 0.62 | 5.15 ± 0.72 *,# | 0.028 |
Con. | 5.66 ± 0.85 | 5.83 ± 1.02 * | 0.258 | |
Between | p = 0.644 | p = 0.015 | ||
Single-leg stance with eyes closed (s) | Exp. | 8.12 ± 13.13 | 8.72 ± 12.4 * | 0.086 |
Con. | 4.00 ± 3.65 | 3.94 ± 3.08 | 0.867 | |
Between | p = 0.251 | p = 0.047 | ||
Functional reach (cm) | Exp. | 30.9 ± 4.38 | 32.2 ± 4.55 # | 0.004 |
Con. | 31.9 ± 3.05 | 31.6 ± 3.23 | 0.375 | |
Between | p = 0.369 | p = 0.627 |
Test | Change within Experimental Group | Change within Control Group | p | Clinical Significance (Experimental vs. Control Groups) (%) |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
3 min step | −0.04 ± 2.26 | 0.20 ± 3.94 | 0.351 | - |
Sit-and-reach (cm) | 0.95 ± 1.78 * | −0.26 ± 1.17 | 0.012 | - |
Bent-knee sit-up (rep.) | 2.18 ± 1.40 * | 0.09 ± 0.66 | 0.0001 | - |
Grip strength (kg) | 0.12 ± 0.68 | −0.22 ± 1.21 | 0.413 | 9.1 vs. 0 |
30 s chair–stand (rep.) | 2.18 ± 1.5 * | 0.17 ± 1.55 | 0.000 | 68.2 vs. 30.4 |
8-foot timed up-and-go (s) | −0.40 ± 0.81 * | 0.16 ± 0.70 | 0.025 | 4.5 vs. 0 |
Single-leg stance with eyes closed (s) | 0.59 ± 1.55 | −0.05 ± 0.95 | 0.069 | 9.1 vs. 0 |
Functional reach (cm) | 1.31 ± 1.89 * | −0.28 ± 1.51 | 0.001 | - |
Pretest | Posttest | p | ||
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Weight (kg) | Exp. | 58.44 ± 9.27 | 58.35 ± 9.17 | 0.906 |
Con. | 55.93 ± 10.7 | 56.23 ± 10.6 | 0.079 | |
BMI (kg/m2) | Exp. | 24.48 ± 2.80 | 24.09 ± 2.60 # | 0.020 |
Con. | 23.26 ± 3.89 | 23.33 ± 3.78 | 0.278 | |
Body fat percentage (%) | Exp. | 27.72 ± 3.97 * | 26.87 ± 4.74 *,# | 0.0001 |
Con. | 24.70 ± 4.83 | 24.80 ± 4.74 | 0.109 | |
Lean body mass percentage (Upper limbs) (%) | Exp. | 2.98 ± 0.42 | 3.16 ± 0.44 | 0.224 |
Con. | 3.19 ± 0.72 | 3.16 ± 0.71 | 0.927 | |
Lean body mass percentage (Lower limbs) (%) | Exp. | 16.34 ± 2.38 | 19.82 ± 4.32 | 0.073 |
Con. | 17.82 ± 2.51 | 18.25 ± 3.15 | 0.820 |
Pretest | Posttest | p | ||
Mean ± SD | Mean ± SD | |||
BMR (kcal/day) | Exp. | 1104.1 ± 159 | 1221.9 ± 193 *,# | 0.015 |
Con. | 1072.6 ± 165 | 1069.2 ± 184 | 0.726 | |
(kcal/h/kg) | Exp. | 19.21 ± 3.19 | 21.26 ± 3.57 | 0.007 |
Con. | 23.26 ± 3.89 | 23.33 ± 3.78 | 0.879 | |
Change within Group | ||||
Mean ± SD | ||||
BMR (kcal/day) (kcal/h/kg) | Exp. | 117.9 ± 207 * | 0.018 0.021 | |
(2.05 ± 3.58) * | ||||
Con. | –3.39 ± 112 | |||
(–0.13 ± 2.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.-H.; Peng, H.-Y.; Tien, C.-W.; Huang, W.-C. Effects of a 12-Week Pilates Program on Functional Physical Fitness and Basal Metabolic Rate in Community-Dwelling Middle-Aged Women: A Quasi-Experimental Study. Int. J. Environ. Res. Public Health 2022, 19, 16157. https://doi.org/10.3390/ijerph192316157
Su C-H, Peng H-Y, Tien C-W, Huang W-C. Effects of a 12-Week Pilates Program on Functional Physical Fitness and Basal Metabolic Rate in Community-Dwelling Middle-Aged Women: A Quasi-Experimental Study. International Journal of Environmental Research and Public Health. 2022; 19(23):16157. https://doi.org/10.3390/ijerph192316157
Chicago/Turabian StyleSu, Chien-Hsiao, Hsuen-Ying Peng, Cheng-Wen Tien, and Wen-Ching Huang. 2022. "Effects of a 12-Week Pilates Program on Functional Physical Fitness and Basal Metabolic Rate in Community-Dwelling Middle-Aged Women: A Quasi-Experimental Study" International Journal of Environmental Research and Public Health 19, no. 23: 16157. https://doi.org/10.3390/ijerph192316157
APA StyleSu, C. -H., Peng, H. -Y., Tien, C. -W., & Huang, W. -C. (2022). Effects of a 12-Week Pilates Program on Functional Physical Fitness and Basal Metabolic Rate in Community-Dwelling Middle-Aged Women: A Quasi-Experimental Study. International Journal of Environmental Research and Public Health, 19(23), 16157. https://doi.org/10.3390/ijerph192316157