An Elastic Foot Orthosis for Limiting the Increase of Shear Modulus of Lower Leg Muscles after a Running Task: A Randomized Crossover Trial
<p>CONSORT diagram. EFO; elastic foot orthosis, SFO; sham foot orthosis.</p> "> Figure 2
<p>The measurement positions of the lower leg muscles (<bold>a</bold>). Elastographic ultrasound images (<bold>b</bold>). FDL: flexor digitorum longus; SOL: soleus; GM: gastrocnemius medialis; GL: gastrocnemius lateralis; PL: peroneus longus; PB: peroneus brevis. CL: cleavage line of the knee joint; FH: head of fibula; LM: lateral malleolus; MM: medial malleolus; PC: popliteal crease.</p> "> Figure 3
<p>The pictures of the EFO and SFO. The EFO is composed of a deep part (D), superior part (S), and two types of thin hard films (F1 and F2) (<bold>a</bold>). The SFO was manufactured similarly to the EFO, but without F1 (<bold>b</bold>). The medial and the anterior views of the EFO (<bold>c</bold>,<bold>d</bold>). The orthoses are fastened using Velcro.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Muscle Hardness Measurement
2.4. Elastic Foot Orthosis
2.5. Running Task and Measurement
2.6. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Reliability of Ultrasound Measurements
3.3. Comparison between EFO and SFO
3.4. Comparison between Pre and Post Running Task
3.5. Sex Differences in the Effect of the EFO
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moen, M.H.; Tol, J.L.; Weir, A.; Steunebrink, M.; Theodorus, C.; De Winter, T.C. Medial tibial stress syndrome: A critical review. Sports Med. 2009, 39, 523–546. [Google Scholar] [CrossRef] [PubMed]
- Willems, T.M.; Witvrouw, E.; De Cock, A.; De Clercq, D. Gait-related risk factors for exercise-related lower-leg pain during shod running. Med. Sci. Sports Exerc. 2007, 39, 330–339. [Google Scholar] [CrossRef]
- Beck, B.R.; Osternig, L.R. Medial tibial stress syndrome: The location of muscles in the leg in relation to symptoms. J. Bone Jt. Surg. Am. 1994, 76, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Yates, B.; White, S. The incidence and risk factors in the development of medial tibial stress syndrome among naval recruits. Am. J. Sports Med. 2004, 32, 772–780. [Google Scholar] [CrossRef]
- van Mechelen, W. Sports injury surveillance systems. ‘One size fits all’? Sports Med. 1997, 24, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Nakajima, M.; Wu, W.F.W. Factors contributing to medial tibial stress syndrome in runners. Med. Sci. Sport Exerc. 2018, 50, 2092–2100. [Google Scholar] [CrossRef]
- Naderi, A.; Moen, M.H.; Degens, H. Is high soleus muscle activity during the stance phase of the running cycle a potential risk factor for the development of medial tibial stress syndrome? A prospective study. J. Sports Sci. 2020, 38, 2350–2358. [Google Scholar] [CrossRef]
- Okunuki, T.; Koshino, Y.; Yamanaka, M.; Tsutsumi, K.; Igarashi, M.; Samukawa, M. Forefoot and hindfoot kinematics in subjects with medial tibial stress syndrome during walking and running. J. Orthop. Res. 2019, 37, 927–932. [Google Scholar] [CrossRef]
- Hamstra-Wright, K.L.; Bliven, K.C.H.; Bay, C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, C.; Batalla, L.; Prieto, A.; Rodríguez, M.Á.; Crespo, I.; Olmedillas, H. Medial tibial stress syndrome in novice and recreational runners: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 7457. [Google Scholar] [CrossRef]
- Ohya, S.; Nakamura, M.; Aoki, T.; Suzuki, D.; Kikumoto, T.; Nakamura, E.; Ito, W.; Hirabayashi, R.; Takabayashi, T.; Edama, M. The effect of a running task on muscle shear elastic modulus of posterior lower leg. J. Foot Ankle Res. 2017, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeki, J.; Nakamura, M.; Nakao, S.; Fujita, K.; Yanase, K.; Ichihashi, N. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome. Scand. J. Med. Sci. Sports 2018, 28, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Park, J.C. Short-term effects of sports taping on navicular height, navicular drop and peak plantar pressure in healthy elite athletes A within-subject comparison. Medicine 2017, 96, e8714. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Arnold, J.B.; May, T. Effects of Taping and Orthoses on Foot Biomechanics in Adults with Flat-Arched Feet. Med. Sci. Sports Exerc. 2016, 48, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Kosonen, J.; Kulmala, J.P.; Müller, E.; Avela, J. Effects of medially posted insoles on foot and lower limb mechanics across walking and running in overpronating men. J. Biomech. 2017, 21, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Murley, G.S.; Landorf, K.B.; Menz, H.B. Do foot orthoses change lower limb muscle activity in flat-arched feet towards a pattern observed in normal-arched feet? Clin. Biomech. 2010, 25, 728–736. [Google Scholar] [CrossRef]
- Kudo, S.; Sakamoto, K. Influence of a novel elastic foot orthosis in foot motion during locomotion in adults with mild flatfoot. Gait Posture 2022, 93, 59–63. [Google Scholar] [CrossRef]
- Chino, K.; Akagi, R.; Dohi, M.; Fukashiro, S.; Takahashi, H. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PLoS ONE 2012, 7, e45764. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, W.; Qin, C.; Miao, Y.; Zhou, F.; Ma, Y. Lower Leg Muscle Stiffness on Two-Dimensional Shear Wave Elastography in Subjects with Medial Tibial Stress Syndrome. J. Ultrasound Med. 2022, 41, 1633–1642. [Google Scholar] [CrossRef]
- Naderi, A.; Degens, H.; Sakinepoor, A. Arch-support foot-orthoses normalize dynamic in-shoe foot pressure distribution in medial tibial stress syndrome. Eur. J. Sport Sci. 2019, 19, 247–257. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Wong, D.W.; Chen, T.L.; Zhang, G.; Tan, Q.; Zhang, M. Extrinsic foot muscle forces and joint contact forces in flexible flatfoot adult with foot orthosis: A parametric study of tibialis posterior muscle weakness. Gait Posture 2021, 88, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, M.; Kudo, S.; Nimura, A.; Akita, K. Signifcance of the anatomical relationship between the flexor digitorum longus and sustentaculum tali for reconsideration of the talocalcaneonavicular joint stability mechanism. Sci. Rep. 2022, 12, 15218. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, T.; Edama, M.; Inai, T.; Nakamura, E.; Kubo, M. Effect of Gender and Load Conditions on Foot Arch Height Index and Flexibility in Japanese Youths. J. Foot Ankle Surg. 2020, 59, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Fukano, M.; Fukubayashi, T. Gender-based differences in the functional deformation of the foot longitudinal arch. Foot 2012, 22, 6–9. [Google Scholar] [CrossRef]
- Edama, M.; Onishi, H.; Kubo, M.; Takabayashi, T.; Yokoyama, E.; Inai, T.; Watanabe, H.; Nashimoto, S.; Koga, Y.; Kageyama, I. Gender differences of muscle and crural fascia origins in relation to the occurrence of medial tibial stress syndrome. Scand. J. Med. Sci. Sports 2017, 27, 203–208. [Google Scholar] [CrossRef]
- Bouche, R.T.; Johnson, C.H. Medial tibial stress syndrome (tibial fasciitis): A proposed pathomechanical model involving fascial traction. J. Am. Podiatr. Med. Assoc. 2007, 97, 31–36. [Google Scholar] [CrossRef]
n, Mean ± S.D. | ||
---|---|---|
Pilot Study | Randomized Cross Over Trial | |
Numbers (men/women) | 9 (5/4) | 20 (8/12) |
height (cm) | 164.1 ± 9.8 | 170.0 ± 10.0 |
weight (kg) | 64.7 ± 16.0 | 61.0 ± 10.4 |
age (years) | 20.1 ± 0.3 | 20.3 ± 1.3 |
foot length (cm) | 25.5 ± 1.2 | 24.7 ± 1.6 |
ICC (1, 1) | ICC 95% CI | SEM | MDC | |
---|---|---|---|---|
FDL | 0.98 | 0.93–1.00 | 0.93 | 2.57 |
SOL | 0.77 | 0.31–0.94 | 0.80 | 2.21 |
GM | 0.97 | 0.87–0.99 | 1.96 | 5.43 |
GL | 0.92 | 0.71–0.98 | 1.15 | 3.20 |
PL | 0.82 | 0.43–0.96 | 2.98 | 8.27 |
PB | 0.80 | 0.38–0.95 | 1.72 | 4.77 |
EFO | SFO | EFO vs. SFO Comparison | Pre vs. Post Change | |||||
---|---|---|---|---|---|---|---|---|
Pre-Running Median (IQR) | Post-Running Median (IQR) | Pre-Running Median (IQR) | Post-Running Median (IQR) | Pre-Running p-Value | Post-Running p-Value | EFO p-Value | SFO p-Value | |
FDL | 17.2 (14.1 to 20.6) | 18.3 (15.7 to 22.6) | 16.5 (13.9 to 21.5) | 24.5 (19.9 to 29.8) | 0.65 | 0.02 | 0.17 | <0.01 |
SOL | 13.1 (10.9 to 15.9) | 14.4 (13.1 to 16.9) | 13.8 (11.7 to 15.2) | 15.3 (11.9 to 17.2) | 0.97 | 0.88 | 0.10 | 0.24 |
GM | 22.0 (17.1 to 25.6) | 26.7 (22.1 to 29.3) | 23.9 (21.6 to 28.0) | 26.3 (22.8 to 34.4) | 0.25 | 0.50 | 0.25 | 0.06 |
GL | 19.9 (16.8 to 22.1) | 25.9 (23.7 to 29.8) | 21.8 (20.2 to 27.5) | 22.8 (20.8 to 30.1) | 0.07 | 0.55 | 0.01 | 0.32 |
PL | 13.4 (11.3 to 16.1) | 17.4 (12.7 to 23.9) | 14.9 (11.2 to 18.9) | 15.2 (12.9 to 19.2) | 0.35 | 0.22 | 0.01 | 0.42 |
PB | 12.5 (11.0 to 14.3) | 15.8 (11.9 to 20.6) | 11.8 (10.0 to 14.2) | 15.0 (11.9 to 16.8) | 0.63 | 0.29 | 0.01 | 0.05 |
Male, Median (IQR) | Female, Median (IQR) | p-Value | |
---|---|---|---|
FDL | −9.5 (−14.5 to −7.2) | 10.9 (2.8 to 31.9) | <0.01 |
SOL | 5.7 (−9.7 to 27.4) | 9.4 (−1.3 to 34.1) | 0.54 |
GM | 16.3 (−34.5 to 55.0) | 27.4 (1.8 to 58.8) | 0.59 |
GL | 48.1 (5.7 to 55.1) | 8.0 (−5.2 to 48.8) | 0.59 |
PL | 21.5 (−2.0 to 73.7) | 32.2 (1.8 to 47.8) | 0.94 |
PB | 24.3 (−17.2 to 81.2) | 21.2 (−0.3 to 73.5) | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamoto, K.; Sasaki, M.; Tsujioka, C.; Kudo, S. An Elastic Foot Orthosis for Limiting the Increase of Shear Modulus of Lower Leg Muscles after a Running Task: A Randomized Crossover Trial. Int. J. Environ. Res. Public Health 2022, 19, 15212. https://doi.org/10.3390/ijerph192215212
Sakamoto K, Sasaki M, Tsujioka C, Kudo S. An Elastic Foot Orthosis for Limiting the Increase of Shear Modulus of Lower Leg Muscles after a Running Task: A Randomized Crossover Trial. International Journal of Environmental Research and Public Health. 2022; 19(22):15212. https://doi.org/10.3390/ijerph192215212
Chicago/Turabian StyleSakamoto, Kodai, Megumi Sasaki, Chie Tsujioka, and Shintarou Kudo. 2022. "An Elastic Foot Orthosis for Limiting the Increase of Shear Modulus of Lower Leg Muscles after a Running Task: A Randomized Crossover Trial" International Journal of Environmental Research and Public Health 19, no. 22: 15212. https://doi.org/10.3390/ijerph192215212
APA StyleSakamoto, K., Sasaki, M., Tsujioka, C., & Kudo, S. (2022). An Elastic Foot Orthosis for Limiting the Increase of Shear Modulus of Lower Leg Muscles after a Running Task: A Randomized Crossover Trial. International Journal of Environmental Research and Public Health, 19(22), 15212. https://doi.org/10.3390/ijerph192215212