Comparison of Lower Limb Joint Reaction Forces in Patients with Cerebral Palsy and Typically Developing Individuals
<p>(<b>a</b>) Muscle force estimation pipeline. MSK: scaled musculoskeletal model; IK: inverse kinematics; RRA: residual reduction algorithm; GRFs: ground reaction forces; SO: static optimization. (<b>b</b>) OpenSim Joint Reaction Analysis tool. acc.: accelerations; NES: Newton–Euler solution; JRFn: joint reaction force of the nth joint; JRFn(<span class="html-italic">t</span>): joint reaction force profile of the nth joint over the gait cycle.</p> "> Figure 1 Cont.
<p>(<b>a</b>) Muscle force estimation pipeline. MSK: scaled musculoskeletal model; IK: inverse kinematics; RRA: residual reduction algorithm; GRFs: ground reaction forces; SO: static optimization. (<b>b</b>) OpenSim Joint Reaction Analysis tool. acc.: accelerations; NES: Newton–Euler solution; JRFn: joint reaction force of the nth joint; JRFn(<span class="html-italic">t</span>): joint reaction force profile of the nth joint over the gait cycle.</p> "> Figure 2
<p>Hip joint reaction forces during walking obtained from CP patients. The gray zones indicate normative hip joint reaction forces from typically developing individuals.</p> "> Figure 3
<p>Knee joint reaction forces during walking obtained from CP patients. The gray zones indicate normative knee joint reaction forces from typically developing individuals.</p> "> Figure 4
<p>Ankle joint reaction forces during walking obtained from CP patients. The gray zones indicate normative ankle joint reaction forces from typically developing individuals.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Musculoskeletal Modeling and Simulation
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Killen, B.A.; Falisse, A.; De Groote, F.; Jonkers, I. In Silico-Enhanced Treatment and Rehabilitation Planning for Patients with Musculoskeletal Disorders: Can Musculoskeletal Modelling and Dynamic Simulations Really Impact Current Clinical Practice? Appl. Sci. 2020, 10, 7255. [Google Scholar] [CrossRef]
- Carriero, A.; Jonkers, I.; Shefelbine, S.J. Mechanobiological Prediction of Proximal Femoral Deformities in Children with Cerebral Palsy. Comput. Methods Biomech. Biomed. Eng. 2010, 14, 253–262. [Google Scholar] [CrossRef]
- Correa, T.A.; Crossley, K.M.; Kim, H.J.; Pandy, M.G. Contributions of Individual Muscles to Hip Joint Contact Force in Normal Walking. J. Biomech. 2010, 43, 1618–1622. [Google Scholar] [CrossRef]
- Yadav, P.; Shefelbine, S.J.; Pontén, E.; Gutierrez-Farewik, E.M. Influence of Muscle Groups’ Activation on Proximal Femoral Growth Tendency. Biomech. Model. Mechanobiol. 2017, 16, 1869–1883. [Google Scholar] [CrossRef]
- Steele, K.M.; DeMers, M.S.; Schwartz, M.H.; Delp, S.L. Compressive Tibiofemoral Force during Crouch Gait. Gait Posture 2012, 35, 556–560. [Google Scholar] [CrossRef]
- Van Rossom, S.; Kainz, H.; Wesseling, M.; Papageorgiou, E.; De Groote, F.; Van Campenhout, A.; Molenaers, G.; Desloovere, K.; Jonkers, I. Single-Event Multilevel Surgery, but Not Botulinum Toxin Injections Normalize Joint Loading in Cerebral Palsy Patients. Clin. Biomech. 2020, 76, 105025. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Fregly, B.J.; Patil, S.; Steklov, N.; Colwell, C.W. Knee Joint Forces: Prediction, Measurement, and Significance. Proc. Inst. Mech. Eng. H 2012, 226, 95–102. [Google Scholar] [CrossRef]
- Lu, Z.; Li, X.; Rong, M.; Baker, J.S.; Gu, Y. Effect of Rearfoot Valgus on Biomechanics during Barbell Squatting: A Study Based on OpenSim Musculoskeletal Modeling. Front. Neurorobot. 2022, 16, 832005. [Google Scholar] [CrossRef]
- Brandon, S.C.E.; Thelen, D.G.; Smith, C.R.; Novacheck, T.F.; Schwartz, M.H.; Lenhart, R.L. The Coupled Effects of Crouch Gait and Patella Alta on Tibiofemoral and Patellofemoral Cartilage Loading in Children. Gait Posture 2018, 60, 181–187. [Google Scholar] [CrossRef]
- Carriero, A.; Zavatsky, A.; Stebbins, J.; Theologis, T.; Lenaerts, G.; Jonkers, I.; Shefelbine, S.J. Influence of Altered Gait Patterns on the Hip Joint Contact Forces. Comput. Methods Biomech. Biomed. Engin 2014, 17, 352–359. [Google Scholar] [CrossRef]
- Bosmans, L.; Wesseling, M.; Desloovere, K.; Molenaers, G.; Scheys, L.; Jonkers, I. Hip Contact Force in Presence of Aberrant Bone Geometry during Normal and Pathological Gait. J. Orthop. Res. 2014, 32, 1406–1415. [Google Scholar] [CrossRef]
- Kainz, H.; Killen, B.A.; Van Campenhout, A.; Desloovere, K.; Garcia Aznar, J.M.; Shefelbine, S.; Jonkers, I. ESB Clinical Biomechanics Award 2020: Pelvis and Hip Movement Strategies Discriminate Typical and Pathological Femoral Growth—Insights Gained from a Multi-Scale Mechanobiological Modelling Framework. Clin. Biomech. 2021, 87, 105405. [Google Scholar] [CrossRef]
- Fregly, B.J. A Conceptual Blueprint for Making Neuromusculoskeletal Models Clinically Useful. Appl. Sci. 2021, 11, 2037. [Google Scholar] [CrossRef]
- Campbell, R.; Tipping, N.; Carty, C.; Walsh, J.; Johnson, L. Orthopaedic Management of Knee Joint Impairment in Cerebral Palsy: A Systematic Review and Meta-Analysis. Gait Posture 2020, 80, 347–360. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Patil, S.; Steklov, N.; Slamin, J.E.; Colwell, C.W. Tibial Forces Measured In Vivo After Total Knee Arthroplasty. J. Arthroplast. 2006, 21, 255–262. [Google Scholar] [CrossRef]
- Damsgaard, M.; Rasmussen, J.; Christensen, S.T.; Surma, E.; de Zee, M. Analysis of Musculoskeletal Systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 2006, 14, 1100–1111. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Cheze, L.; Moissenet, F.; Dumas, R. State of the Art and Current Limits of Musculo-Skeletal Models for Clinical Applications. Mov. Sport Sci. Sci. Mot. 2015, 90, 7–17. [Google Scholar] [CrossRef]
- Steele, K.M.; Seth, A.; Hicks, J.L.; Schwartz, M.S.; Delp, S.L. Muscle Contributions to Support and Progression during Single-Limb Stance in Crouch Gait. J. Biomech. 2010, 43, 2099–2105. [Google Scholar] [CrossRef]
- Lencioni, T.; Carpinella, I.; Rabuffetti, M.; Marzegan, A.; Ferrarin, M. Human Kinematic, Kinetic and EMG Data during Different Walking and Stair Ascending and Descending Tasks. Sci. Data 2019, 6, 309. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Handsfield, G.G.; Meyer, C.H.; Hart, J.M.; Abel, M.F.; Blemker, S.S. Relationships of 35 Lower Limb Muscles to Height and Body Mass Quantified Using MRI. J. Biomech. 2014, 47, 631–638. [Google Scholar] [CrossRef]
- Ward, S.R.; Eng, C.M.; Smallwood, L.H.; Lieber, R.L. Are Current Measurements of Lower Extremity Muscle Architecture Accurate? Clin. Orthop. Relat. Res. 2009, 467, 1074–1082. [Google Scholar] [CrossRef]
- Ozates, M.E.; Karabulut, D.; Salami, F.; Wolf, S.I.; Arslan, Y.Z. Machine Learning-Based Prediction of Joint Moments Based on Kinematics in Patients with Cerebral Palsy. J. Biomech. 2023, 155, 111668. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Davico, G.; Lloyd, D.G.; Carty, C.P.; Diamond, L.E.; Pizzolato, C. Muscle Synergy-Informed Neuromusculoskeletal Modelling to Estimate Knee Contact Forces in Children with Cerebral Palsy. Biomech. Model. Mechanobiol. 2024, 23, 1077–1090. [Google Scholar] [CrossRef]
- Davico, G.; Pizzolato, C.; Lloyd, D.G.; Obst, S.J.; Walsh, H.P.J.; Carty, C.P. Increasing Level of Neuromusculoskeletal Model Personalisation to Investigate Joint Contact Forces in Cerebral Palsy: A Twin Case Study. Clin. Biomech. 2020, 72, 141–149. [Google Scholar] [CrossRef]
- Kainz, H.; Jonkers, I. Imaging-Based Musculoskeletal Models Alter Muscle and Joint Contact Forces but Do Not Improve the Agreement with Experimentally Measured Electromyography Signals in Children with Cerebral Palsy. Gait Posture 2023, 100, 91–95. [Google Scholar] [CrossRef]
- Roelker, S.A.; Caruthers, E.J.; Baker, R.K.; Pelz, N.C.; Chaudhari, A.M.W.; Siston, R.A. Interpreting Musculoskeletal Models and Dynamic Simulations: Causes and Effects of Differences Between Models. Ann. Biomed. Eng. 2017, 45, 2635–2647. [Google Scholar] [CrossRef]
- Sutherland, D.H.; Cooper, L.; Daniel, D. The Role of the Ankle Plantar Flexors in Normal Walking. J. Bone Jt. Surg. 1980, 62, 354–363. [Google Scholar] [CrossRef]
- Wiley, M.E.; Damiano, D.L. Lower-Extremity Strength Profiles in Spastic Cerebral Palsy. Dev. Med. Child Neurol. 1998, 40, 100–107. [Google Scholar] [CrossRef]
- Eek, M.N.; Tranberg, R.; Beckung, E. Muscle Strength and Kinetic Gait Pattern in Children with Bilateral Spastic CP. Gait Posture 2011, 33, 333–337. [Google Scholar] [CrossRef]
- Arslan, Y.Z.; Karabulut, D. Sensitivity of Model-Predicted Muscle Forces of Patients with Cerebral Palsy to Variations in Muscle-Tendon Parameters. J. Mech. Med. Biol. 2021, 21, 2150008. [Google Scholar] [CrossRef]
- Hosseini Nasab, S.H.; Smith, C.R.; Maas, A.; Vollenweider, A.; Dymke, J.; Schütz, P.; Damm, P.; Trepczynski, A.; Taylor, W.R. Uncertainty in Muscle–Tendon Parameters Can Greatly Influence the Accuracy of Knee Contact Force Estimates of Musculoskeletal Models. Front. Bioeng. Biotechnol. 2022, 10, 808027. [Google Scholar] [CrossRef]
- Kainz, H.; Wesseling, M.; Jonkers, I. Generic Scaled versus Subject-Specific Models for the Calculation of Musculoskeletal Loading in Cerebral Palsy Gait: Effect of Personalized Musculoskeletal Geometry Outweighs the Effect of Personalized Neural Control. Clin. Biomech. 2021, 87, 105402. [Google Scholar] [CrossRef]
- Trepczynski, A.; Kutzner, I.; Schwachmeyer, V.; Heller, M.O.; Pfitzner, T.; Duda, G.N. Impact of Antagonistic Muscle Co-Contraction on in Vivo Knee Contact Forces. J. Neuroeng. Rehabil. 2018, 15, 101. [Google Scholar] [CrossRef]
- Unnithan, V.B.; Dowling, J.J.; Frost, G.; Volpe Ayub, B.; Bar-Or, O. Cocontraction and Phasic Activity during GAIT in Children with Cerebral Palsy. Electromyogr. Clin. Neurophysiol. 1996, 36, 487–494. [Google Scholar]
- Hoang, H.X.; Diamond, L.E.; Lloyd, D.G.; Pizzolato, C. A Calibrated EMG-Informed Neuromusculoskeletal Model Can Appropriately Account for Muscle Co-Contraction in the Estimation of Hip Joint Contact Forces in People with Hip Osteoarthritis. J. Biomech. 2019, 83, 134–142. [Google Scholar] [CrossRef]
- Gharehbolagh, S.M.; Dussault-Picard, C.; Arvisais, D.; Dixon, P.C. Muscle Co-contraction and Co-activation in Cerebral Palsy during Gait: A Scoping Review. Gait Posture 2023, 105, 6–16. [Google Scholar] [CrossRef]
Hip Joint | Knee Joint | Ankle Joint | ||
---|---|---|---|---|
JRF component | ||||
Anterior–posterior | Mean | 0.15 | 0.24 | 0.26 |
Max | 0.19 | 0.28 | 0.29 | |
Min | 0.12 | 0.22 | 0.24 | |
Vertical | Mean | 0.39 | 0.28 | 0.32 |
Max | 0.42 | 0.31 | 0.36 | |
Min | 0.37 | 0.24 | 0.30 | |
Mediolateral | Mean | 0.41 | 0.22 | 0.27 |
Max | 0.45 | 0.24 | 0.32 | |
Min | 0.39 | 0.19 | 0.24 | |
p-values | ||||
Anterior–posterior vs. vertical | 0.012 | 0.051 | 0.048 | |
Anterior–posterior vs. mediolateral | 0.012 | 0.055 | 0.046 | |
Vertical vs. mediolateral | 0.052 | 0.049 | 0.048 |
Hip Joint | Knee Joint | Ankle Joint | ||
---|---|---|---|---|
JRF components | ||||
Anterior–posterior | Mean | 0.91 | 0.90 | 0.81 |
Max | 0.92 | 0.92 | 0.82 | |
Min | 0.89 | 0.89 | 0.79 | |
Vertical | Mean | 0.83 | 0.89 | 0.84 |
Max | 0.85 | 0.91 | 0.85 | |
Min | 0.81 | 0.88 | 0.83 | |
Mediolateral | Mean | 0.84 | 0.87 | 0.79 |
Max | 0.85 | 0.88 | 0.81 | |
Min | 0.82 | 0.86 | 0.77 | |
p-values | ||||
Anterior–posterior vs. vertical | 0.013 | 0.023 | 0.014 | |
Anterior–posterior vs. mediolateral | 0.014 | 0.014 | 0.017 | |
Vertical vs. mediolateral | 0.057 | 0.021 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dincel, Y.M.; Kidwai, A.N.; Atmaca, K.; Sozener, N.A.; Arslan, Y.Z. Comparison of Lower Limb Joint Reaction Forces in Patients with Cerebral Palsy and Typically Developing Individuals. Medicina 2025, 61, 246. https://doi.org/10.3390/medicina61020246
Dincel YM, Kidwai AN, Atmaca K, Sozener NA, Arslan YZ. Comparison of Lower Limb Joint Reaction Forces in Patients with Cerebral Palsy and Typically Developing Individuals. Medicina. 2025; 61(2):246. https://doi.org/10.3390/medicina61020246
Chicago/Turabian StyleDincel, Yasar Mahsut, Alina Nawab Kidwai, Kerim Atmaca, Nese Aral Sozener, and Yunus Ziya Arslan. 2025. "Comparison of Lower Limb Joint Reaction Forces in Patients with Cerebral Palsy and Typically Developing Individuals" Medicina 61, no. 2: 246. https://doi.org/10.3390/medicina61020246
APA StyleDincel, Y. M., Kidwai, A. N., Atmaca, K., Sozener, N. A., & Arslan, Y. Z. (2025). Comparison of Lower Limb Joint Reaction Forces in Patients with Cerebral Palsy and Typically Developing Individuals. Medicina, 61(2), 246. https://doi.org/10.3390/medicina61020246