The Effect of Intravenous Tranexamic Acid on Perioperative Blood Loss, Transfusion Requirements, Verticalization, and Ambulation in Total Knee Arthroplasty: A Randomized Double-Blind Study
<p>Graphic representation of the study design.</p> "> Figure 2
<p>The box and whisker plot for intraoperative bleeding (mL). The box and whisker plot shows the median, minimum and maximum, interquartile range (IQR), and outliers (black circles), for intraoperative blood loss in both groups. There was a significantly higher intraoperative blood loss in the control group compared to the TXA group (Z = −6.931; <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>The box and whisker plot showing postoperative blood loss after 6 h, 12 h, and 24 h and total postoperative blood loss. The box and whisker plot shows the median, IQR interquartile range, minimum and maximum, outliers (black circles), and extreme values (asterisk) of postoperative blood loss after 6 h, 12 h, and 24 h and total postoperative blood loss. There was a statistically significant difference between groups after 6 h (Z = −4.511, <span class="html-italic">p</span> < 0.001) and in total postoperative blood loss (Z = −4.319, <span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
1.1. Hypothesis
1.2. Objectives
2. Materials and Methods
2.1. Patients
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.1.3. Sample Size Calculation
2.2. Anesthesia and Surgery
2.3. Method of Drug Administration
2.4. Blood Loss Measurement
2.5. Transfusion Rate
2.6. Crystalloid Fluid Administration
2.7. Verticalization and Ambulation
2.8. Post-Discharge Follow-Up
2.9. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Intraoperative Blood Loss
3.3. Postoperative Blood Loss
3.3.1. Longitudinal Analysis within the Groups
3.3.2. Comparison of Postoperative Blood Loss between the Groups
3.4. Perioperative Blood Loss
3.5. Transfusion Rate
3.6. Intraoperative Crystalloid Solutions
3.7. Postoperative Recovery
4. Discussion
4.1. Primary Outcomes
4.1.1. Intraoperative Blood Loss
4.1.2. TXA Method of Administration
4.1.3. Postoperative and Perioperative Blood Loss
4.2. Secondary Outcomes
4.2.1. Transfusion Rate
4.2.2. Postoperative Recovery
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wong, J.; George, R.B.; Hanley, C.M.; Saliba, C.; Yee, D.A.; Jerath, A. Tranexamic acid: Current use in obstetrics, major orthopedic, and trauma surgery. Can. J. Anaesth. 2021, 68, 894–917. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.A.; Key, N.S.; Levy, J.H. Blood coagulation: Hemostasis and thrombin regulation. AnesthAnalg. 2009, 108, 1433–1446. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, H.A.; Liu, S.L.; Meng, T.; Zhou, X.; Wang, P. Is tranexamic acid clinically effective and safe to prevent blood loss in total knee arthroplasty? A meta-analysis of 34 randomized controlled trials. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Chen, C.; Guo, L.; Yang, L. Use of intravenous tranexamic acid in total knee arthroplasty: A meta-analysis of randomized controlled trials. Chin. J. Traumatol—Engl. Ed. 2013, 16, 67–76. [Google Scholar]
- Hiippala, S.; Strid, L.; Wennerstrand, M.; Arvela, V.; Mantyla, S.; Ylinen, J.; Niemelä, H. Tranexamic acid (cyklokapron) reduces perioperative blood loss associated with total knee arthroplasty. Br. J. Anaesth. 1995, 74, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Hiippala, S.T.; Strid, L.J.; Wennerstrand, M.I.; Arvela, J.V.V.; Niemelä, H.M.; Mäntylä, S.K.; Kuisma, R.P.; Ylinen, J.E. Tranexamic acid radically decreases blood loss and transfusions associated with total knee arthroplasty. Anesth. Analg. 1997, 84, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Maniar, R.N.; Kumar, G.; Singhi, T.; Nayak, R.M.; Maniar, P.R. Most effective regimen of tranexamic acid in knee arthroplasty: A prospective randomized controlled study in 240 patients. Clin. Orthop. Relat. Res. 2012, 470, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Sun, X.; Wang, W.; Zhang, Q.; Guo, W. What is the ideal route of administration of tranexamic acid in total knee arthroplasty? A meta-analysis based on randomized controlled trials. Ann. Palliat. Med. 2021, 10, 1880–1894. [Google Scholar] [CrossRef]
- Houston, B.L.; Uminski, K.; Mutter, T.; Rimmer, E.; Houston, D.S.; Merard, C.E.; Garland, A.; Ariano, R.; Tinmouth, A.; Abou –Setta, A.M.; et al. Efficacy and safety of tranexamic acid in major non-cardiac surgeries at high risk for transfusion: A systematic review and meta-analysis. Transfus. Med. Rev. 2020, 34, 51. [Google Scholar] [CrossRef]
- Pecold, J.; Al-Jeabory, M.; Pruc, M.; Doan, S.; Navolokin, I.; Znamerovskyi, S.; Szarpak, L. Effectiveness and safety of tranexamic acid in total knee arthroplasty: A systematic review and meta-analysis. Disaster Emerg. Med. J. 2022, 7, 114–123. [Google Scholar] [CrossRef]
- Fillingham, Y.A.; Ramkumar, D.B.; Jevsevar, D.S.; Yates, A.J.; Bini, S.A.; Clarke, H.D.; Schemitsch, E.; Johnson, R.L.; Memtsoudis, S.G.; Sayeed, S.A.; et al. Tranexamic acid in total joint arthroplasty: The endorsed clinical practice guides of the American Association of Hip and Knee Surgeons, American Society of Regional Anesthesia and Pain Medicine, American Academy of Orthopaedic Surgeons, Hip Society, and Knee Society. Reg. Anesth. Pain Med. 2019, 44, 7–11. [Google Scholar] [PubMed]
- Guo, P.; He, Z.; Wang, Y.; Gao, F.; Sun, W.; Guo, W.; Li, Z.; Cheng, L. Efficacy and safety of oral tranexamic acid in total knee arthroplasty: A systematic review and meta-analysis. Medicine 2018, 97, e0587. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Zhang, L.; Huang, L. The efficacy and safety of combined administration of intravenous and intra-articular tranexamic acid in total knee arthroplasty: An update meta-analysis. J. Clin. Pharm. Ther. 2022, 47, 1312–1321. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, T.W.; Gill, M.; McDonald, D.A.; Middleton, R.G.; Reed, M.; Sahota, O.; Yates, P.; Ljungqvist, O. Consensus statement for perioperative care in total hip replacement and total knee replacement surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Acta Orthop. 2020, 91, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.K.; Hwang, Y.Y.; Cheung, A.; Yan, C.H.; Fu, H.; Chan, T.; Fung, W.C.; Cheung, M.H.; Chan, V.W.K.; Chiu, K.Y. Blood transfusions in total knee arthroplasty: A retrospective analysis of a multimodal patient blood management programme. Hong Kong Med. J. 2020, 26, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Muler, S.; Oberle, D.; Drechsel-Buerle, U.; Pavel, J.; Keller –Stanislavski, B.; Funk, B.M. Mortality, Morbidity and Related Outcomes Following Perioperative Blood Transfusion in Patients with Major Orthopaedic Surgery: A Systematic Review. Transfus. Med. Hemother. 2018, 45, 355–367. [Google Scholar] [CrossRef]
- Abad-Motos, A.; Ripolles-Melchor, J.; Jerico, C.; Basoara, M.; Aldecoa, C.; Cabellos-Olivares, M.; Navaro-Perez, R.; Bisbe, E.; Garcia–Erce, J.A. Patient blood management for primary hip and knee replacement. A survey among POWER.2 study researchers. Rev. Española Anestesiol. Y Reanim. (Engl. Ed.) 2020, 67, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fillingham, Y.A.; Ramkumar, D.B.; Jevsevar, D.S.; Yates, A.J.; Shores, P.; Mullen, K.; Bini, S.A.; Clarke, H.D.; Schemitsch, E.; Johnson, R.L.; et al. The Efficacy of Tranexamic Acid in Total Knee Arthroplasty: A Network Meta-Analysis. J. Arthroplast. 2018, 33, 3090–3098. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, R.; Rai, S.; Ze, R.; Tang, X.; Hong, P. Intra-articular vs. intravenous administration: A meta-analysis of tranexamic acid in primary total knee arthroplasty. J. Orthop. Surg. Res. 2020, 15, 581. [Google Scholar] [CrossRef]
- Deloughry, J.L.; Griffiths, R. Arterial tourniquets. Contin. Educ. Anaesth. Crit Care Pain (Indian Ed.) 2009, 2, 64–68. [Google Scholar] [CrossRef]
- Blanié, A.; Bellamy, L.; Rhayem, Y.; Flaujac, C.; Samama, C.M.; Fontenay, M.; Rosencher, N. Duration of postoperative fibrinolysis after total hip or knee replacement: A laboratory follow-up study. Thromb. Res. 2013, 131, e6–e11. [Google Scholar] [CrossRef]
- Migliorini, F.; Mafulli, N.; Aretini, P.; Trivellas, A.; Tingart, M.; Eschweiler, J. Impact of tourniquet during knee arthroplasty: A Bayesian network meta-analysis of peri-operative outcomes. Arch. Orthop. Trauma. Surg. 2021, 141, 007–023. [Google Scholar]
- Sun, Q.; Li, J.; Chen, J.; Zheng, C.; Liu, C.; Jia, Y. Comparison of intravenous, topical or combined routes of tranexamic acid administration in patients undergoing total knee and hip arthroplasty: A meta-analysis of randomised controlled trials. BMJ Open 2019, 9, e024350. [Google Scholar] [CrossRef] [PubMed]
- Konarski, W.; Poboży, T.; Hordowicz, M. Tranexamic acid in total knee replacement and total hip replacement—A single-center retrospective, observational study. Orthop. Rev. 2022, 14, 33875. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Ma, J.; Liu, X.; Zhang, L. Peri-articular administration of tranexamic acid is an alternative route in total knee arthroplasty: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2022, 17, 211. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.D.; Lim, K.S.; Kieser, D.C.; Woodfield, T.B.F.; Hooper, G.J. Is tranexamic acid toxic to articular cartilage when administered topically? What is the safedose? Bone Jt. J. 2018, 100-B, 404–412. [Google Scholar]
- Meier, J.; Gombotz, H. Pillar III–optimisation of anaemia tolerance. Best Pract. Res. Clin. Anaesthesiol. 2013, 27, 111–119. [Google Scholar] [CrossRef]
- Nilsson, I.M. Clinical pharmacology of aminocaproic and tranexamic acids. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 1980, 14, 41–47. [Google Scholar] [CrossRef]
- Jacobs, J.W.; Diaz, M.; Arevalo Salazar, D.E.; Tang, A.; Stephens, L.D.; Booth, G.S.; Lehmann, C.U.; Adkins, B.D. United States blood pricing: A cross-sectional analysis of charges and reimbursement at 200 US hospitals. Am. J. Hematol. 2023, 98, E179–E182. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.; Oikonomou, L.; Panagopoulos, A.; Kotsarinis, G.; Vlachou, M.; Anastopoulos, G.; Kateros, K. Transfusion rate, hospital stay and cost-effectiveness of intravenous or local administration of tranexamic acid in total hip and knee arthroplasty: A single-center randomized controlled clinical study. Orthop. Rev. 2019, 11, 7866. [Google Scholar] [CrossRef]
- Blankstein, A.R.; Houston, B.L.; Fergusson, D.A.; Houston, D.S.; Rimmer, E.; Bohm, E.; Aziz, M.; Garland, A.; Doucette, S.; Balshaw, R.; et al. Transfusion in orthopaedic surgery: A retrospective multicentre cohort study. Bone Jt. Open. 2021, 2, 850–857. [Google Scholar] [CrossRef]
- Pavão, D.M.; Heringer, E.M.; Almeida, G.J.; de Faria, J.L.R.; Pires E Albuquerque, R.S.; de Sousa, E.B.; Labronici, P.J. Predictive and protective factors for allogenic blood transfusion in total knee arthroplasty. A retrospective cohort study. J. Orthop. 2023, 40, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Kietaibl, S.; Ahmed, A.; Afshari, A.; Albaladejo, P.; Aldecoa, C.; Barauskas, G.; De Robertis, E.; Faraoni, D.; Filipescu, D.C.; Fries, D.; et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur. J. Anaesthesiol. 2023, 40, 226–304. [Google Scholar] [PubMed]
- Pietris, J. The effect of perioperative blood transfusion thresholds on patient outcomes in orthopaedic surgery: A literature review. ANZ J. Surg. 2022, 92, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Sattler, L.N.; Hing, W.A.; Rathbone, E.N.; Vertullo, C.J. Which patient factors best predict discharge destination after primary total knee arthroplasty? The ARISE trial. J. Arthroplast. 2020, 35, 2852–2857. [Google Scholar] [CrossRef]
- Rodríguez-Merchán, E.C. Outpatient total knee arthroplasty: Is it worth considering? EFORT Open Rev. 2020, 5, 172–179. [Google Scholar] [CrossRef]
Items | TXA Group (n = 48) | Control Group (n = 48) | p | ||
---|---|---|---|---|---|
N | % or SD | N | % or SD | ||
Age (years) | 66.10 | 6.442 | 65.90 | 8.296 | † ns |
Gender (Male/female) | 9/39 | 18.8/81.3 | 11/37 | 22.9/77.1 | ‡ ns |
BMI (kg/m2) | 30.37 | 5.320 | 31.49 | 6.917 | † ns |
ASA status | |||||
2 group | 32 | 66.7 | 24 | 50.0 | ‡ ns |
3 group | 16 | 33.3 | 24 | 50.0 | |
Hemoglobin (g/L) | 137.25 | 13.209 | 135.02 | 12.248 | † ns |
Operation duration (minutes) | 67.92 | 9.556 | 75.08 | 19.418 | † * |
Tourniquet duration (minutes) | 43.79 | 6.575 | 41.25 | 16.341 | † ns |
Pressure in PT (mmHg) | 246.04 | 23.856 | 260.42 | 33.196 | † * |
Allogeneic Blood (Units) | TXA Group | Control Group | Total | |||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
0 | 43 | 89.6 | 26 | 54.2 | 69 | 71.9 |
1 | 5 | 10.4 | 18 | 37.5 | 24 | 24.0 |
2 | 0 | 0.0 | 3 | 6.3 | 3 | 3.1 |
3 | 0 | 0.0 | 1 | 2.1 | 1 | 1.0 |
Variable | β | OR | 95% CI | p |
---|---|---|---|---|
Age | −0.556 | 0.574 | 0.13–2.47 | 0.455 |
Gender | 0.094 | 1.099 | 0.14–8.74 | 0.929 |
BMI (kg/m2) | 0.671 | 1.957 | 0.41–9.30 | 0.399 |
Control group | −2.113 | 0.121 | 0.02–0.65 | 0.014 |
Preoperative hemoglobin (g/L) | 0.008 | 1.008 | 1.00–1.01 | 0.005 |
Intraoperative blood loss (mL) | −0.088 | 0.915 | 0.85–0.98 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanovic, G.; Lukic-Sarkanovic, M.; Lazetic, F.; Tubic, T.; Lendak, D.; Uvelin, A. The Effect of Intravenous Tranexamic Acid on Perioperative Blood Loss, Transfusion Requirements, Verticalization, and Ambulation in Total Knee Arthroplasty: A Randomized Double-Blind Study. Medicina 2024, 60, 1183. https://doi.org/10.3390/medicina60071183
Jovanovic G, Lukic-Sarkanovic M, Lazetic F, Tubic T, Lendak D, Uvelin A. The Effect of Intravenous Tranexamic Acid on Perioperative Blood Loss, Transfusion Requirements, Verticalization, and Ambulation in Total Knee Arthroplasty: A Randomized Double-Blind Study. Medicina. 2024; 60(7):1183. https://doi.org/10.3390/medicina60071183
Chicago/Turabian StyleJovanovic, Gordana, Mirka Lukic-Sarkanovic, Filip Lazetic, Teodora Tubic, Dajana Lendak, and Arsen Uvelin. 2024. "The Effect of Intravenous Tranexamic Acid on Perioperative Blood Loss, Transfusion Requirements, Verticalization, and Ambulation in Total Knee Arthroplasty: A Randomized Double-Blind Study" Medicina 60, no. 7: 1183. https://doi.org/10.3390/medicina60071183
APA StyleJovanovic, G., Lukic-Sarkanovic, M., Lazetic, F., Tubic, T., Lendak, D., & Uvelin, A. (2024). The Effect of Intravenous Tranexamic Acid on Perioperative Blood Loss, Transfusion Requirements, Verticalization, and Ambulation in Total Knee Arthroplasty: A Randomized Double-Blind Study. Medicina, 60(7), 1183. https://doi.org/10.3390/medicina60071183