Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27KIP1 Regulation
<p>SKP2 is a FASN target in human HCC cell lines. (<b>A</b>) The HLF, MHCC97-H, Hep3B, HuH7, and SNU449 cell lines were subjected to <span class="html-italic">FASN</span> knockdown using a specific small interfering siRNA against <span class="html-italic">FASN</span> (si-FASN). Data were collected 48 h after the silencing. The effects of <span class="html-italic">FASN</span> silencing on FASN, SKP2, and p27<sup>KIP1</sup> protein levels were detected by Western blot analysis. β-Actin was used as a loading control. (<b>B</b>) The effects of <span class="html-italic">FASN</span> silencing in the same cell lines on <span class="html-italic">FASN</span>, <span class="html-italic">SKP2</span>, and <span class="html-italic">CDKN1B</span> (encoding p27<sup>KIP1</sup>) mRNA levels were detected by quantitative real-time PCR. Student’s <span class="html-italic">t</span>-test: <span class="html-italic">p</span> < 0.0001 *** vs. scramble siRNA (Scr). Experiments were conducted three times in triplicate.</p> "> Figure 2
<p>Forced overexpression of SKP2 confers resistance to HCC cells against growth restraint by the C75 FASN inhibitor. The Huh7 cell line was subjected to <span class="html-italic">SKP2</span> overexpression by stable transfection using an HA-tagged SKP2 plasmid (SKP2). Huh7 cells were also transfected with the empty vector (vector) as the control. Cells transfected with either <span class="html-italic">SKP2</span> or vector were grown untreated or treated with the FASN inhibitor C75 (25 µM) for 48 h. (<b>A</b>) Increased levels of SKP2 protein following transfection of the <span class="html-italic">SKP2</span> plasmid in Huh7 cells, as detected by Western blot analysis. β-Actin was used as a loading control. Transfection of <span class="html-italic">SKP2</span> increases proliferation (<b>B</b>) and diminishes apoptosis (<b>C</b>) in the same cells. C75 administration significantly reduces proliferation and augments apoptosis in vector-transfected but not SKP2-transfected cells. (<b>D</b>–<b>F</b>) Equivalent results were obtained in the SNU449 cell line. Tukey–Kramer’s test: <span class="html-italic">p</span> < 0.0001; <span class="html-italic">a</span>, versus empty vector (vector); <span class="html-italic">b</span>, versus vector-transfected and C75-treated cells (Vector + C75); <span class="html-italic">c,</span> versus SKP2 overexpression. Experiments were conducted three times in triplicate.</p> "> Figure 3
<p>Dot spot graph representative of cell cycle distribution of HCC cells treated with C75 25 μM for 48 h. For the analysis, cells were recovered, washed with PBS and the pellet solubilized in ethanol 70% and stored at −20 °C overnight. The samples were stained with 7AAD (BD Biosciences, CA, USA) and incubated for 15 min at room temperature before acquisition using the flow cytometer FACS CANTOII (BD Biosciences, CA, USA). A total of 30.000 events for each sample were acquired and data were analyzed with ModFIT LT 6.0 (Verity Software House, Topsham, ME, USA).</p> "> Figure 4
<p>Dot spot graph representative of cell cycle distribution of HCC cells treated with si-FASN and si-SKP2 30 nM for 48 h. For the analysis, cells were recovered, washed with PBS and the pellet solubilized in ethanol 70% and stored at −20 °C overnight. The samples were stained with 7AAD (BD Biosciences, CA, USA) and incubated for 15 min at room temperature before acquisition using the flow cytometer FACS CANTOII (BD Biosciences, CA, USA). A total of 30.000 events for each sample were acquired and data were analyzed with ModFIT LT 6.0 (Verity Software House).</p> "> Figure 5
<p>Representative immunohistochemistry patterns of FASN and SKP2 proteins in human hepatocellular carcinoma (HCC; n = 210). (<b>A</b>) Example of a liver non-tumorous surrounding tissue exhibiting moderate membranous and cytoplasmic for FASN and weak/absent immunolabeling for SKP2. (<b>B</b>) A human HCC (denominated HCC1) displaying robust and diffuse immunoreactivity for FASN and SKP2 proteins. Note that FASN staining is localized in the cytoplasm of HCC cells, whereas SKP2 immunoreactivity is localized in the cytoplasmic and nuclear compartments. (<b>C</b>) A second hepatocellular tumor (HCC2) is characterized by intense, homogeneous FASN immunoreactivity and low/absent SKP2 immunolabeling. (<b>D</b>) Finally, a third tumor (HCC3) shows faint FASN positivity and absent SKP2 immunoreactivity. Abbreviation: H&E, hematoxylin and eosin staining. Original magnifications: 200× in all panels. Scale bar: 100 µm in all panels.</p> "> Figure 6
<p>FASN and SKP2 are upregulated in human hepatocellular carcinoma (HCC). (<b>A</b>) Quantitative real-time RT-PCR values of <span class="html-italic">FASN</span> (first panel) and <span class="html-italic">SKP2</span> (second panel) are significantly higher in the tumors (HCC) (n = 46) than in corresponding non-tumorous counterparts (ST). (<b>B</b>) Quantitative real-time RT-PCR values of <span class="html-italic">FASN</span> (first panel) and <span class="html-italic">SKP2</span> (second panel) are significantly higher in HCC with poorer prognosis/shorter survival (HCCP; n = 25) than in tumors with better prognosis/longer survival (HCCB; n = 21). HCCP and HCCB are characterized by <3 and ≥3 years’ survival following partial liver resection. Student’s <span class="html-italic">t</span>-test: ***, <span class="html-italic">p</span> < 0.0001; **, <span class="html-italic">p</span> < 0.005. (<b>C</b>) Evaluation of the relation between <span class="html-italic">FASN</span> and <span class="html-italic">SKP2</span> mRNA in HCC samples. <span class="html-italic">p</span> values and correlation r values were calculated using Pearson correlation analysis. (<b>D</b>,<b>E</b>) Kaplan–Meyer curves in HCC patients show that <span class="html-italic">FASN</span> (<b>D</b>) and <span class="html-italic">SKP2</span> (<b>E</b>) mRNA levels inversely correlate with patients’ survival in this disease.</p> "> Figure 7
<p>SKP2 is induced in the liver lesions from AKT mice. (<b>A</b>,<b>B</b>) Hydrodynamic gene delivery approach. In brief, <span class="html-italic">FASN<sup>fl/fl</sup></span> mice were either injected with the myr-AKT1 construct (AKT mice) (<b>A</b>) or co-injected with Myr-AKT1 and Cre recombinase plasmids (AKT/Cre mice) (<b>B</b>). Five mice per group were injected and sacrificed 32 weeks post-injection (w.p.i.). (<b>C</b>) Immunohistochemical analysis shows that hepatocellular tumor lesions (T) developed in AKT mice display robust immunoreactivity for FASN, HA-AKT, and SKP2 proteins. Note that in the tumor cells, the immunoreactivity for SKP2 is localized in the cytoplasmic and nuclear compartments, as appreciable at the 200× magnification. In contrast, the surrounding non-tumorous liver tissues (ST) show weak/absent staining for the same proteins. Abbreviation: H&E, hematoxylin and eosin staining. Original magnifications: 100× and 200×, as indicated. Scale bar: 100 µm in 100× magnification pictures, 50 µm in the 200× magnification picture. (<b>D</b>) Representative Western blot analysis showing the levels of FASN, SKP2, and <sup>p27KIP1</sup> in livers from <span class="html-italic">FASN<sup>fl/fl</sup></span> mice injected with the empty vector only (Control), Myr-AKT1 (AKT mice), and myr-AKT1/Cre (AKT/Cre mice). Note that AKT mice display upregulation of SKP2 and marked downregulation of p27<sup>KIP1</sup>. Suppression of FASN in AKT/Cre mice, which triggers the inhibition of hepatocarcinogenesis, is accompanied by downregulation of SKP2 and an increase of p27<sup>KIP1</sup> protein levels. β-Actin was used as a loading control. (<b>E</b>) Quantitative real-time RT-PCR showing the mRNA levels of <span class="html-italic">Fasn</span>, <span class="html-italic">Skp2</span>, and <span class="html-italic">Cdkn1b</span> in livers from <span class="html-italic">FASN<sup>fl/fl</sup></span> mice injected with the empty vector only (vector), Myr-AKT1 (AKT mice) and myr-AKT1/Cre (AKT/Cre mice). N target = 2<sup>−ΔCt</sup>, wherein the ΔCt value of each sample was calculated by subtracting the average Ct value of the target gene from the average Ct value of the β-<span class="html-italic">actin</span> gene. Five mice per group were analyzed. Tukey–Kramer’s test: <span class="html-italic">p</span> < 0.0001; <span class="html-italic">a</span>, versus control livers (vector); <span class="html-italic">b</span>, versus AKT livers.</p> "> Figure 8
<p>SKP2 inactivation or non-degradable p27<sup>KIP1</sup> suppresses AKT-dependent hepatocarcinogenesis in mice. In the upper panels, the hydrodynamic gene delivery approach is depicted. In brief, C57BL/6J mice were either co-injected with the HA-tagged myr-AKT1 and empty vector (AKT mice), with Myr-AKT1 and SKP2 dominant negative (AKT/SKP2dn mice), or with Myr-AKT1 and a non-degradable form of V5-tagged p27<sup>KIP1</sup> (p27<sup>KIP1-T187A</sup>; AKT/p27<sup>KIP1</sup> mice). Five mice per group were injected and sacrificed 32 weeks post-injection (w.p.i.). At this time point, as revealed by hematoxylin and eosin staining (H&E), the livers of AKT mice are occupied by several tumor nodules (T). In contrast, the livers of AKT/SKP2dn and AKT/p27<sup>KIP1</sup> mice appear completely normal (better appreciable in the pictures taken at higher magnification). Original magnifications: 40× and 100×. Scale bar: 500 µm in 40× magnification pictures, 200 µm in 100× magnification pictures.</p> "> Figure 9
<p>Inactivation of SKP2 or non-degradable p27<sup>KIP1</sup> is detrimental to the growth of HCC cells in vitro. (<b>A</b>) Transfection of <span class="html-italic">SKP2dn</span> triggers the upregulation of p27<sup>KIP1</sup> levels in SNU449 cells, as detected by Western blot analysis. As expected, transient transfection of <span class="html-italic">SKP2dn</span> resulted in the expression of a truncated form of SKP2 (transfected) with a lower molecular weight than the endogenous protein. β-Actin was used as a loading control. Transfection of SKP2dn reduces proliferation (<b>B</b>) and increases apoptosis (<b>C</b>) in the same cells. (<b>D</b>) Transfection of <span class="html-italic">p27<sup>KIP1−187A</sup></span> results in the appearance of a second band (transfected) with a higher molecular weight than the endogenous p27<sup>KIP1</sup> protein in the SNU449 cell line. β-Actin was used as a loading control. Similar to that described for SKP2dn, transfection of <span class="html-italic">p27<sup>KIP1−187A</sup></span> decreases proliferation (<b>E</b>) and augments apoptosis (<b>F</b>) in the same cell line. Student’s <span class="html-italic">t</span>-test: <span class="html-italic">p</span> < 0.0001 *** vs. empty vector (control). Experiments were conducted three times in triplicate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Constructs and Reagents
2.2. Cell Lines and In Vitro Studies
2.3. Human Tissue Samples
2.4. Mouse Experiments
2.5. Gene Knockdown and Transient Transfection
2.6. Quantitative Reverse Transcription Real-Time Polymerase Chain Reaction (qRT-PCR)
2.7. Protein Extraction and Western Blot Analysis
2.8. Histology and Immunohistochemistry
2.9. Statistical Analysis
2.10. Graphical Work
3. Results
3.1. SKP2 Is a Downstream Effector of FASN in Hepatocellular Carcinoma Cell Lines
3.2. Correlation of FASN and SKP2 Levels in Human Hepatocellular Carcinoma
3.3. Depletion of FASN Inhibits AKT-Driven Hepatocarcinogenesis and Downregulates SKP2 in Mice
3.4. Inhibition of SKP2 Activity or Induction of p27KIP1 Abolishes AKT-Dependent Hepatocarcinogenesis
3.5. Induction of p27KIP1 by SKP2dn or p27KIP1 Overexpression Reduces Proliferation and Increases Apoptosis in HCC Cells In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef]
- Konyn, P.; Ahmed, A.; Kim, D. Current epidemiology in hepatocellular carcinoma. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1295–1307. [Google Scholar] [CrossRef]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Brown, Z.J.; Tsilimigras, D.I.; Ruff, S.M.; Mohseni, A.; Kamel, I.R.; Cloyd, J.M.; Pawlik, T.M. Management of Hepatocellular Carcinoma: A Review. JAMA Surg. 2023, 158, 410–420. [Google Scholar] [CrossRef]
- Bouattour, M.; Mehta, N.; He, A.R.; Cohen, E.I.; Nault, J.-C. Systemic Treatment for Advanced Hepatocellular Carcinoma. Liver Cancer 2019, 8, 341–358. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.; Tai, M.H.; Huang, W.Y.; Al-Feel, W.; Hsu, M.; Abu-Elheiga, L.; Chirala, S.S.; Wakil, S.J. Human fatty acid synthase: Properties and molecular cloning. Proc. Natl. Acad. Sci. USA 1995, 92, 8695–8699. [Google Scholar] [CrossRef]
- Semenkovich, C.F.; Coleman, T.; Fiedorek, F.T., Jr. Human fatty acid synthase mRNA: Tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J. Lipid Res. 1995, 36, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.F.; Infante, J.R. Molecular Pathways: Fatty Acid Synthase. Clin. Cancer Res. 2015, 21, 5434–5438. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Honda, M.; Takatori, H.; Nishino, R.; Minato, H.; Takamura, H.; Ohta, T.; Kaneko, S. Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J. Hepatol. 2009, 50, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Calvisi, D.F.; Wang, C.; Ho, C.; Ladu, S.; Lee, S.A.; Mattu, S.; Destefanis, G.; Delogu, S.; Zimmermann, A.; Ericsson, J.; et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 Signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 2011, 140, 1071–1083.e5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tao, J.; Calvisi, D.F.; Chen, X. Role of Lipogenesis Rewiring in Hepatocellular Carcinoma. Semin. Liver Dis. 2022, 42, 77–86. [Google Scholar] [CrossRef]
- Zhu, X.; Qin, X.; Fei, M.; Hou, W.; Greshock, J.; Bachman, K.E.; Wooster, R.; Kang, J.; Qin, C.Y. Combined phosphatase and tensin homolog (PTEN) loss and fatty acid synthase (FAS) overexpression worsens the prognosis of chinese patients with hepatocellular carcinoma. Int. J. Mol. Sci. 2012, 13, 9980–9991. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Dai, J.; Huang, X.; Chen, Y.; Qu, P.; Li, J.; Yi, C.; Yang, Y.; Zhang, K.; Huang, Q. Genetic variants in de novo lipogenic pathway genes predict the prognosis of surgically-treated hepatocellular carcinoma. Sci. Rep. 2015, 5, srep09536. [Google Scholar] [CrossRef]
- Che, L.; Paliogiannis, P.; Cigliano, A.; Pilo, M.G.; Chen, X.; Calvisi, D.F. Pathogenetic, Prognostic, and Therapeutic Role of Fatty Acid Synthase in Human Hepatocellular Carcinoma. Front. Oncol. 2019, 9, 1412. [Google Scholar] [CrossRef]
- Hu, J.; Che, L.; Li, L.; Pilo, M.G.; Cigliano, A.; Ribback, S.; Li, X.; Latte, G.; Mela, M.; Evert, M.; et al. Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci. Rep. 2016, 6, 20484. [Google Scholar] [CrossRef]
- Li, L.; Pilo, G.M.; Li, X.; Cigliano, A.; Latte, G.; Che, L.; Joseph, C.; Mela, M.; Wang, C.; Jiang, L.; et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. J. Hepatol. 2016, 64, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Guri, Y.; Colombi, M.; Dazert, E.; Hindupur, S.K.; Roszik, J.; Moes, S.; Jenoe, P.; Heim, M.H.; Riezman, I.; Riezman, H.; et al. mTORC2 Promotes Tumorigenesis via Lipid Synthesis. Cancer Cell 2017, 32, 807–823.e12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, J.; Tang, Y.; Yang, Y.; Hu, H. Inhibition of fatty acid synthase (FASN) affects the proliferation and apoptosis of HepG2 hepatoma carcinoma cells via the β-catenin/C-myc signaling pathway. Ann. Hepatol. 2020, 19, 411–416. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, L.P.; Zhu, C.H.; Chen, Y.; Hou, Y.T.; Ding, J. Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma. Cancer Biol. Ther. 2006, 5, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, B.; Nanaji, N.M.; Bhalla, K.; Bhandary, B.; Lapidus, R.; Beheshti, A.; Evens, A.M.; Gartenhaus, R.B. Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat. Commun. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, Y.; Xu, H.; Wang, X.; Zhang, Y.; Shang, R.; O’Farrell, M.; Roessler, S.; Sticht, C.; Stahl, A.; et al. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology 2022, 76, 951–966. [Google Scholar] [CrossRef] [PubMed]
- Knowles, L.M.; Axelrod, F.; Browne, C.D.; Smith, J.W. A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J. Biol. Chem. 2004, 279, 30540–30545. [Google Scholar] [CrossRef] [PubMed]
- Deepa, P.R.; Vandhana, S.; Krishnakumar, S. Fatty acid synthase inhibition induces differential expression of genes involved in apoptosis and cell proliferation in ocular cancer cells. Nutr. Cancer 2013, 65, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, M.; Deepa, P.R.; Rishi, P.; Khetan, V.; Krishnakumar, S. Global gene deregulations in FASN silenced retinoblastoma cancer cells: Molecular and clinico-pathological correlations. J. Cell. Biochem. 2015, 116, 2676–2694. [Google Scholar] [CrossRef]
- Carrano, A.C.; Eytan, E.; Hershko, A.; Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat. Cell. Biol. 1999, 1, 193–199. [Google Scholar] [CrossRef]
- Ganoth, D.; Bornstein, G.; Ko, T.K.; Larsen, B.; Tyers, M.; Pagano, M.; Hershko, A. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature 2001, 3, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, L.M.; Yeh, K.-H.; Lee, S.-J.; Sun, H.; Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 1999, 9, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Moten, A.; Peng, D.; Hsu, C.-C.; Pan, B.-S.; Manne, R.; Li, H.-Y.; Lin, H.-K. The Skp2 Pathway: A Critical Target for Cancer Therapy. Semin. Cancer Biol. 2020, 67 Pt 2, 16–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Gu, X.; Cui, H. Emerging Roles of SKP2 in Cancer Drug Resistance. Cells 2021, 10, 1147. [Google Scholar] [CrossRef] [PubMed]
- Kossatz, U.; Dietrich, N.; Zender, L.; Buer, J.; Manns, M.P.; Malek, N.P. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 2004, 18, 2602–2607. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Roberts, J.M. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Latres, E.; Chiarle, R.; Schulman, B.A.; Pavletich, N.P.; Pellicer, A.; Inghirami, G.; Pagano, M. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl. Acad. Sci. USA 2001, 98, 2515–2520. [Google Scholar] [CrossRef] [PubMed]
- Calvisi, D.F.; Ladu, S.; Pinna, F.; Frau, M.; Tomasi, M.L.; Sini, M.; Simile, M.M.; Bonelli, P.; Muroni, M.R.; Seddaiu, M.A.; et al. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis. Gastroenterology 2009, 137, 1816–1826.e10. [Google Scholar] [CrossRef] [PubMed]
- Delogu, S.; Wang, C.; Cigliano, A.; Utpatel, K.; Sini, M.; Longerich, T.; Waldburger, N.; Breuhahn, K.; Jiang, L.; Ribback, S.; et al. SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice. Oncotarget 2015, 6, 2222–2234. [Google Scholar] [CrossRef]
- Chakravarthy, M.V.; Pan, Z.; Zhu, Y.; Tordjman, K.; Schneider, J.G.; Coleman, T.; Turk, J.; Semenkovich, C.F. “New” hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 2005, 1, 309–322. [Google Scholar] [CrossRef]
- Malek, N.P.; Sundberg, H.; McGrew, S.; Nakayama, K.; Kyriakidis, T.R.; Roberts, J.M. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 2001, 413, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Timmerbeul, I.; Garrett-Engele, C.M.; Kossatz, U.; Chen, X.; Firpo, E.; Grünwald, V.; Kamino, K.; Wilkens, L.; Lehmann, U.; Buer, J.; et al. Testing the importance of p27 degradation by the SCF skp2 pathway in murine models of lung and colon cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 14009–14014. [Google Scholar] [CrossRef] [PubMed]
- Frith, C.H.; Ward, J.M.; Turusov, V.S. Tumours of the Liver; IARC Scientific Publications: Lyon, France, 1994; pp. 223–269. [Google Scholar]
- Kuhajda, F.P.; Pizer, E.S.; Li, J.N.; Mani, N.S.; Frehywot, G.L.; Townsend, C.A. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl. Acad. Sci. USA 2000, 97, 3450–3454. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Li, L.; Uttamchandani, M.; Yao, S.Q. In situ proteome profiling of C75, a covalent bioactive compound with potential anticancer activities. Org. Lett. 2014, 16, 1414–1417. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Kim, S.; Jeong, H.; Jang, J.; Lee, K. Nuclear expression of S-phase kinase–associated protein 2 predicts poor prognosis of hepatocellular carcinoma. Apmis 2011, 120, 349–357. [Google Scholar] [CrossRef]
- Fhu, C.W.; Ali, A. Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 2020, 25, 3935. [Google Scholar] [CrossRef] [PubMed]
- Buckley, D.; Duke, G.; Heuer, T.S.; O’Farrell, M.; Wagman, A.S.; McCulloch, W.; Kemble, G. Fatty acid synthase—Modern tumor cell biology insights into a classical oncology target. Pharmacol. Ther. 2017, 177, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Syed-Abdul, M.M.; Parks, E.J.; Gaballah, A.H.; Bingham, K.; Hammoud, G.M.; Kemble, G.; Buckley, D.; McCulloch, W.; Manrique-Acevedo, C. Fatty Acid Synthase Inhibitor TVB-2640 Reduces Hepatic de Novo Lipogenesis in Males With Metabolic Abnormalities. Hepatology 2020, 72, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Chianese, U.; Papulino, C.; Ali, A.; Ciardiello, F.; Cappabianca, S.; Altucci, L.; Carafa, V.; Benedetti, R. FASN multi-omic characterization reveals metabolic heterogeneity in pancreatic and prostate adenocarcinoma. J. Transl. Med. 2023, 21, 32. [Google Scholar] [CrossRef]
- Li, L.; Che, L.; Tharp, K.M.; Park, H.; Pilo, M.G.; Cao, D.; Cigliano, A.; Latte, G.; Xu, Z.; Ribback, S.; et al. Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology 2016, 63, 1900–1913. [Google Scholar] [CrossRef]
- Kuhajda, F.P. Fatty Acid Synthase and Cancer: New Application of an Old Pathway. Cancer Res. 2006, 66, 5977–5980. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013, 52, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw, M.D.; Liu, Y.; Zheng, Y.; Shi, X.; Liu, H. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med. Res. Rev. 2020, 40, 1920–1949. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cappello, T.; Wang, L. Emerging role of microRNAs in lipid metabolism. Acta Pharm. Sin. B 2015, 5, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Hernando Boigues, J.F.; Mach, N. The effect of polyunsaturated fatty acids on obesity through epigenetic modifications. Endocrinol. Nutr. 2015, 62, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Peng, Y.; Zhang, J.; Long, J.; Liu, J.; Wei, W. Targeting SCF E3 Ligases for Cancer Therapies. Adv. Exp. Med. Biol. 2020, 1217, 123–146. [Google Scholar] [CrossRef]
- Jilishitz, I.; Quiñones, J.L.; Patel, P.; Chen, G.; Pasetsky, J.; VanInwegen, A.; Schoninger, S.; Jogalekar, M.P.; Tsiperson, V.; Yan, L.; et al. NP-ALT, a Liposomal: Peptide Drug, Blocks p27Kip1 Phosphorylation to Induce Oxidative Stress, Necroptosis, and Regression in Therapy-Resistant Breast Cancer Cells. Mol. Cancer Res. 2021, 19, 1929–1945. [Google Scholar] [CrossRef]
Variables | Features | |
---|---|---|
HCCB | HCCP | |
Number of patients | ||
Male | 15 | 17 |
Female | 6 | 8 |
Age (Mean ± SD) | 66.7 ± 7.46 | 67.2 ± 10.5 |
Etiology | ||
HBV | 8 | 10 |
HCV | 7 | 8 |
Ethanol | 2 | 3 |
N/A | 4 | 4 |
Cirrhosis | ||
+ | 14 | 18 |
− | 7 | 7 |
Tumor size | ||
>5 cm | 12 | 19 |
<5 cm | 9 | 6 |
Edmondson and Steiner grade | ||
II | 8 | 6 |
III | 10 | 10 |
IV | 3 | 9 |
Serum alpha-fetoprotein level (ng/mL) | ||
>300 | 14 | 19 |
<300 | 7 | 6 |
Survival after partial liver resection months | ||
(Mean ± SD) | 61.5 ± 19.8 | 15.2 ± 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigliano, A.; Simile, M.M.; Vidili, G.; Pes, G.M.; Dore, M.P.; Urigo, F.; Cossu, E.; Che, L.; Feo, C.; Steinmann, S.M.; et al. Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27KIP1 Regulation. Medicina 2024, 60, 1160. https://doi.org/10.3390/medicina60071160
Cigliano A, Simile MM, Vidili G, Pes GM, Dore MP, Urigo F, Cossu E, Che L, Feo C, Steinmann SM, et al. Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27KIP1 Regulation. Medicina. 2024; 60(7):1160. https://doi.org/10.3390/medicina60071160
Chicago/Turabian StyleCigliano, Antonio, Maria M. Simile, Gianpaolo Vidili, Giovanni M. Pes, Maria P. Dore, Francesco Urigo, Eleonora Cossu, Li Che, Claudio Feo, Sara M. Steinmann, and et al. 2024. "Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27KIP1 Regulation" Medicina 60, no. 7: 1160. https://doi.org/10.3390/medicina60071160
APA StyleCigliano, A., Simile, M. M., Vidili, G., Pes, G. M., Dore, M. P., Urigo, F., Cossu, E., Che, L., Feo, C., Steinmann, S. M., Ribback, S., Pascale, R. M., Evert, M., Chen, X., & Calvisi, D. F. (2024). Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27KIP1 Regulation. Medicina, 60(7), 1160. https://doi.org/10.3390/medicina60071160