Genetic Polymorphisms of Immunity Regulatory Genes and Alopecia Areata Susceptibility in Jordanian Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participants
2.2. SNP Selection and DNA Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kos, L.; Conlon, J. An update on alopecia areata. Curr. Opin. Pediatr. 2009, 21, 475–480. [Google Scholar] [CrossRef]
- Alzolibani, A.A.; Zari, S.; Ahmed, A.A. Epidemiologic and genetic characteristics of alopecia areata (part 2). Acta Dermatovenerol. Alp. Pannonica Adriat. 2012, 21, 15–19. [Google Scholar]
- Żeberkiewicz, M.; Rudnicka, L.; Malejczyk, J. Immunology of alopecia areata. Cent. Eur. J. Immunol. 2020, 45, 325–333. [Google Scholar] [CrossRef]
- Birlea, S.A.; Serota, M.; Norris, D.A. Nonbullous skin diseases: Alopecia areata, vitiligo, psoriasis, and urticaria. In The Autoimmune Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1211–1234. [Google Scholar]
- Norris, D.A. Genes and immune response in alopecia areata: Review of the alopecia areata research summit first day proceedings. J. Investig. Dermatol. Symp. Proc. 2013, 16, S10–S12. [Google Scholar] [CrossRef]
- Bruserud, Ø.; Oftedal, B.E.; Wolff, A.B.; Husebye, E.S. AIRE-mutations and autoimmune disease. Curr. Opin. Immunol. 2016, 43, 8–15. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Wang, O.; Nie, M.; Jiang, Y.; Li, M.; Xia, W.-B.; Xing, X.-P. Characterization of the clinical and genetic spectrum of autoimmune polyendocrine syndrome type 1 in Chinese case series. Orphanet J. Rare Dis. 2021, 16, 296. [Google Scholar] [CrossRef]
- Kalkan, G.; Ateş, O.; Karakuş, N.; Sezer, S. Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of alopecia areata. Arch. Dermatol. Res. 2013, 305, 909–915. [Google Scholar] [CrossRef]
- Fan, X.; Shangguan, L.; Li, M.; Li, C.Y.; Liu, B. Functional polymorphisms of the FAS/FASLG genes are associated with risk of alopecia areata in a Chinese population: A case-control analysis. Br. J. Dermatol. 2010, 163, 340–344. [Google Scholar] [CrossRef]
- Kwan, W.H.; van der Touw, W.; Heeger, P.S. Complement regulation of T cell immunity. Immunol. Res. 2012, 54, 247–253. [Google Scholar] [CrossRef]
- Cards, G. C-Type Lectin Domain Family 4 Member D. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CLEC4D (accessed on 5 August 2021).
- Carrington, M.; Norman, P. The KIR Gene Cluster; National Center for Biotechnology Information (US): Bethesda, MA, USA, 2003. [Google Scholar]
- Nguyen, T.; Liu, X.K.; Zhang, Y.; Dong, C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J. Immunol. 2006, 176, 7354–7360. [Google Scholar] [CrossRef]
- Murphy, M.J. Molecular Diagnostics in Dermatology and Dermatopathology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Olsen, E.A.; Hordinsky, M.K.; Price, V.H.; Roberts, J.L.; Shapiro, J.; Canfield, D.; Duvic, M.; King, L.E., Jr.; McMichael, A.J.; Randall, V.A.; et al. Alopecia areata investigational assessment guidelines--Part II. National Alopecia Areata Foundation. J. Am. Acad. Dermatol. 2004, 51, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.N.; Al Momani, R.O.; Al Momani, K.K.; Al Warawrah, A.M.; Aljamal, H.A.; Alghamdi, M.A.; Muhanna, A.M.; Al-Qarqaz, F.A. Candidate Gene Analysis of Alopecia Areata in Jordanian Population of Arab Descent: A Case-Control Study. Appl. Clin. Genet. 2019, 12, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.N.; Alghamdi, M.A.; Al Momani, R.O.; Aljamal, H.A.; Abdalla, A.M.; Mohammed, H.M. Genetic predisposition of alopecia areata in jordanians: A case-control study. Heliyon 2022, 8, e09184. [Google Scholar] [CrossRef]
- Eitan, L.N.A.; Alghamdi, M.A.; Al Momani, R.O.; Aljamal, H.A.; Elsy, B.; Mohammed, H.M.; Abdalla, A.M. Genetic Association between Interleukin Genes and Alopecia Areata in Jordanian Patients. Oman Med. J. 2022, 37, e421. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Al-Eitan, L.N.; Aljamal, H.A.; Shati, A.A.; Alshehri, M.A. Genetic association of IL2RA, IL17RA, IL23R, and IL31RA single nucleotide polymorphisms with alopecia areata. Saudi J. Biol. Sci. 2022, 29, 103460. [Google Scholar] [CrossRef]
- Uzuncakmak, T.K.; Engin, B.; Serdaroglu, S.; Tuzun, Y. Demographic and Clinical Features of 1641 Patients with Alopecia Areata, Alopecia Totalis, and Alopecia Universalis: A Single-Center Retrospective Study. Skin. Appendage Disord. 2021, 7, 8–12. [Google Scholar] [CrossRef]
- Petukhova, L.; Duvic, M.; Hordinsky, M.; Norris, D.; Price, V.; Shimomura, Y.; Kim, H.; Singh, P.; Lee, A.; Chen, W.V. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 2010, 466, 113–117. [Google Scholar] [CrossRef]
- Lee, S.; Paik, S.H.; Kim, H.J.; Ryu, H.H.; Cha, S.; Jo, S.J.; Eun, H.C.; Seo, J.S.; Kim, J.I.; Kwon, O.S. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis. PLoS ONE 2013, 8, e53613. [Google Scholar] [CrossRef]
- Goyal, S.; Klassert, T.E.; Slevogt, H. C-type lectin receptors in tuberculosis: What we know. Med. Microbiol. Immunol. 2016, 205, 513–535. [Google Scholar] [CrossRef]
- Wilson, G.J.; Marakalala, M.J.; Hoving, J.C.; van Laarhoven, A.; Drummond, R.A.; Kerscher, B.; Keeton, R.; van de Vosse, E.; Ottenhoff, T.H.; Plantinga, T.S.; et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 2015, 17, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Willment, J.A.; Whitehead, L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018, 18, 374–389. [Google Scholar] [CrossRef]
- Sharma, K.; Wang, R.X.; Zhang, L.Y.; Yin, D.L.; Luo, X.Y.; Solomon, J.C.; Jiang, R.F.; Markos, K.; Davidson, W.; Scott, D.W.; et al. Death the Fas way: Regulation and pathophysiology of CD95 and its ligand. Pharmacol. Ther. 2000, 88, 333–347. [Google Scholar] [CrossRef] [PubMed]
- McElwee, K.J.; Hoffmann, R. Alopecia areata—Animal models. Clin. Exp. Dermatol. 2002, 27, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Hong, Y.; Cai, Y. Association between FAS gene —670 A/G and —1377 G/A polymorphisms and the risk of autoimmune diseases: A meta-analysis. Biosci. Rep. 2020, 40, BSR20191197. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Nagata, S. Why do defects in the Fas-Fas ligand system cause autoimmunity? J. Allergy Clin. Immunol. 1997, 100, S97–S101. [Google Scholar] [CrossRef]
- Suvannavejh, G.C.; Dal Canto, M.C.; Matis, L.A.; Miller, S.D. Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. J. Clin. Investig. 2000, 105, 223–231. [Google Scholar] [CrossRef]
- Guzman, E.; Langowski, J.L.; Owen-Schaub, L. Mad dogs, Englishmen and apoptosis: The role of cell death in UV-induced skin cancer. Apoptosis 2003, 8, 315–325. [Google Scholar] [CrossRef]
- Seleit, I.; Bakry, O.A.; Gayed, E.A.E.; Gawad, A.E.D. Polymorphism of FAS and FAS Ligand Genes in Alopecia Areata: A Case-control Study in Egyptian Population. Indian. J. Dermatol. 2018, 63, 220–226. [Google Scholar] [CrossRef]
- Tabatabaei-Panah, P.-S.; Moravvej, H.; Arian, S.; Fereidonpour, I.; Behravesh, N.; Atoon, A.; Ludwig, R.J.; Akbarzadeh, R. Overlapping and distinct FAS/FASLG gene polymorphisms in alopecia areata in an Iranian population. Immunol. Investig. 2020, 49, 204–214. [Google Scholar]
- McDonagh, A.; Tazi-Ahnini, R. Epidemiology and genetics of alopecia areata. Clin. Exp. Dermatol. 2002, 27, 405–409. [Google Scholar] [CrossRef]
- Arousse, A.; Boussofara, L.; H’Mida-Ben Brahim, D.; Migaud, M.; Aounallah, A.; Ghariani, N.; Casanova, J.L.; Nouira, R.; Puel, A.; Denguezli, M. A novel AIRE gene mutation in a patient with autoimmune polyendocrinopathy candidiasis and ectodermal dystrophy revealed by alopecia areata. JAAD Case Rep. 2018, 4, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Tazi-Ahnini, R.; Cork, M.J.; Gawkrodger, D.J.; Birch, M.P.; Wengraf, D.; McDonagh, A.J.; Messenger, A.G. Role of the autoimmune regulator (AIRE) gene in alopecia areata: Strong association of a potentially functional AIRE polymorphism with alopecia universalis. Tissue Antigens 2002, 60, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Wengraf, D.A.; McDonagh, A.J.; Lovewell, T.R.; Vasilopoulos, Y.; Macdonald-Hull, S.P.; Cork, M.J.; Messenger, A.G.; Tazi-Ahnini, R. Genetic analysis of autoimmune regulator haplotypes in alopecia areata. Tissue Antigens 2008, 71, 206–212. [Google Scholar] [CrossRef]
- Colobran, R.; Giménez-Barcons, M.; Marín-Sánchez, A.; Porta-Pardo, E.; Pujol-Borrell, R. AIRE genetic variants and predisposition to polygenic autoimmune disease: The case of Graves’ disease and a systematic literature review. Human. Immunol. 2016, 77, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Pforr, J.; Blaumeiser, B.; Becker, T.; Freudenberg-Hua, Y.; Hanneken, S.; Eigelshoven, S.; Cuyt, I.; De Weert, J.; Lambert, J.; Kruse, R.; et al. Investigation of the p.Ser278Arg polymorphism of the autoimmune regulator (AIRE) gene in alopecia areata. Tissue Antigens 2006, 68, 58–61. [Google Scholar] [CrossRef]
- Redler, S.; Brockschmidt, F.F.; Forstbauer, L.; Giehl, K.A.; Herold, C.; Eigelshoven, S.; Hanneken, S.; De Weert, J.; Lutz, G.; Wolff, H.; et al. The TRAF1/C5 locus confers risk for familial and severe alopecia areata. Br. J. Dermatol. 2010, 162, 866–869. [Google Scholar] [CrossRef]
- Elpidio, L.N.S.; de Alencar, J.B.; Tsuneto, P.Y.; Alves, H.V.; Toretta, M.T.; Taura, S.K.I.; Visentainer, J.E.L.; Sell, A.M. Killer-cell immunoglobulin-like receptors associated with polycystic ovary syndrome. J. Reprod. Immunol. 2018, 130, 1–6. [Google Scholar] [CrossRef]
- Middleton, D.; Gonzelez, F. The extensive polymorphism of KIR genes. Immunology 2010, 129, 8–19. [Google Scholar] [CrossRef]
- Li, X.; Xia, Q.; Fan, D.; Cai, G.; Yang, X.; Wang, L.; Xin, L.; Ding, N.; Hu, Y.; Liu, L.; et al. Association between KIR gene polymorphisms and rheumatoid arthritis susceptibility: A meta-analysis. Hum. Immunol. 2015, 76, 565–570. [Google Scholar] [CrossRef]
- Aghaei, H.; Mostafaei, S.; Aslani, S.; Jamshidi, A.; Mahmoudi, M. Association study between KIR polymorphisms and rheumatoid arthritis disease: An updated meta-analysis. BMC Med. Genet. 2019, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Enciso-Vargas, M.; Alvarado-Ruíz, L.; Suárez-Villanueva, A.S.; Macías-Barragán, J.; Montoya-Buelna, M.; Oceguera-Contreras, E.; Alvarado-Navarro, A.; Graciano-Machuca, O. Association Study between Psoriatic Arthritis and Killer Immunoglobulin-Like Receptor (KIR) Genes: A Meta-Analysis. Immunol. Investig. 2021, 50, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Chasov, V.; Zaripov, M.; Mirgayazova, R.; Khadiullina, R.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Rizvanov, A.; Bulatov, E. Promising New Tools for Targeting p53 Mutant Cancers: Humoral and Cell-Based Immunotherapies. Front. Immunol. 2021, 12, 707734. [Google Scholar] [CrossRef] [PubMed]
Gene | SNP | Allele/Genotype | Control (n = 150) (n, %) a | AA Patients b (n = 152) (n, %) a | p-Value c |
---|---|---|---|---|---|
BTNL2 | rs28362679 | G | 296, 100 | 301, 99 | 0.08 |
A | 0, 0 | 3, 1 | |||
GG | 148, 100 | 149, 98 | 0.08 | ||
GA | 0, 0 | 3, 2 | |||
CLEC4D | rs4304840 | A | 191, 65 | 171, 57 | 0.04 |
G | 103, 35 | 129, 43 | |||
AA | 60, 41 | 55, 37 | 0.02 | ||
AG | 71, 48 | 61, 41 | |||
GG | 16, 11 | 34, 23 | |||
KIR3DP | rs34531670 | T | 254, 86 | 255, 85 | 0.77 |
C | 42, 14 | 45, 15 | |||
CC | 4, 3 | 2, 1 | 0.5 | ||
TC | 34, 23 | 41, 27 | |||
TT | 110, 74 | 107, 71 | |||
rs597068 | G | 251, 85 | 254, 84 | 0.81 | |
C | 45, 15 | 48, 16 | |||
CC | 4, 3 | 1, 1 | 0.24 | ||
CG | 37, 25 | 46, 3 | |||
GG | 107, 72 | 104, 69 | |||
AIRE | rs56393821 | T | 296, 100 | 304, 100 | Monomorphic |
rs1800520 | C | 260, 89 | 267, 88 | 0.64 | |
G | 32, 11 | 37, 12 | |||
CC | 115, 79 | 117, 77 | 0.82 | ||
CG | 30, 21 | 33, 22 | |||
GG | 1, 1 | 2, 1 | |||
C5 | rs2230212 | C | 296, 100 | 304, 100 | Monomorphic |
rs17611 | C | 175, 60 | 169, 56 | 0.37 | |
T | 119, 40 | 133, 44 | |||
CC | 51, 35 | 51, 34 | 0.36 | ||
CT | 73, 50 | 67, 44 | |||
TT | 23, 16 | 33, 22 | |||
FAS | rs1800682 | A | 162, 55 | 162, 54 | 0.72 |
G | 132, 45 | 140, 46 | |||
AA | 46, 31 | 45, 30 | 0.93 | ||
AG | 70, 48 | 72, 48 | |||
GG | 31, 21 | 34, 23 | |||
rs2234767 | G | 264, 89 | 268, 88 | 0.69 | |
A | 32, 11 | 36, 12 | |||
AA | 4, 3 | 2, 1 | 0.41 | ||
GA | 24, 16 | 32, 21 | |||
GG | 120, 81 | 118, 78 | |||
FASLG | rs763110 | T | 151, 51 | 169, 56 | 0.29 |
C | 143, 49 | 135, 44 | |||
CC | 37, 25 | 26, 17 | 0.2 | ||
TC | 69, 47 | 83, 55 | |||
TT | 41, 28 | 43, 28 |
Model | Genotype | Controls (n, %) a | AA Patients (n, %) | OR (95% CI) b | p-Value c |
---|---|---|---|---|---|
Codominant | A/A | 60 (40.8%) | 55 (36.7%) | 1.00 | 0.023 |
G/A | 71 (48.3%) | 61 (40.7%) | 1.07 (0.65–1.76) | ||
G/G | 16 (10.9%) | 34 (22.7%) | 0.43 (0.21–0.87) | ||
Dominant | A/A | 60 (40.8%) | 55 (36.7%) | 1.00 | 0.46 |
G/A-G/G | 87 (59.2%) | 95 (63.3%) | 0.84 (0.53–1.34) | ||
Recessive | A/A-G/A | 131 (89.1%) | 116 (77.3%) | 1.00 | 0.0061 |
G/G | 16 (10.9%) | 34 (22.7%) | 0.42 (0.22–0.79) |
Gene | Haplotype | Total | Controls | AA Patients | OR (95% CI) | p-Value |
---|---|---|---|---|---|---|
FAS | AG | 0.5431 | 0.5494 | 0.5369 | 1.00 | --- |
GG | 0.3436 | 0.3425 | 0.3447 | 0.97 (0.69–1.37) | 0.87 | |
GA | 0.1133 | 0.1081 | 0.1184 | 0.90 (0.54–1.49) | 0.68 | |
KIR3DP | TG | 0.8377 | 0.8445 | 0.8309 | 1 | --- |
CC | 0.1402 | 0.1385 | 0.1418 | 0.96 (0.60–1.55) | 0.87 | |
TC | 0.0153 | 0.0136 | 0.0171 | 0.81 (0.24–2.74) | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, M.; AL-Eitan, L.; Aljamal, H.; Abu Kharmah, H. Genetic Polymorphisms of Immunity Regulatory Genes and Alopecia Areata Susceptibility in Jordanian Patients. Medicina 2024, 60, 1611. https://doi.org/10.3390/medicina60101611
Alghamdi M, AL-Eitan L, Aljamal H, Abu Kharmah H. Genetic Polymorphisms of Immunity Regulatory Genes and Alopecia Areata Susceptibility in Jordanian Patients. Medicina. 2024; 60(10):1611. https://doi.org/10.3390/medicina60101611
Chicago/Turabian StyleAlghamdi, Mansour, Laith AL-Eitan, Hanan Aljamal, and Hana Abu Kharmah. 2024. "Genetic Polymorphisms of Immunity Regulatory Genes and Alopecia Areata Susceptibility in Jordanian Patients" Medicina 60, no. 10: 1611. https://doi.org/10.3390/medicina60101611
APA StyleAlghamdi, M., AL-Eitan, L., Aljamal, H., & Abu Kharmah, H. (2024). Genetic Polymorphisms of Immunity Regulatory Genes and Alopecia Areata Susceptibility in Jordanian Patients. Medicina, 60(10), 1611. https://doi.org/10.3390/medicina60101611