Levamisole Ameliorates Rheumatoid Arthritis by Downregulating the PI3K/Akt Pathway in SD Rats
<p>The chemical structures of (<b>A</b>) MTX and (<b>B</b>) LVM.</p> "> Figure 2
<p>LVM alleviated RA symptoms in AIA rat model in a dose-dependent manner. (<b>A</b>) The body weight, (<b>B</b>) arthritis index, (<b>C</b>) foot pad thickness, and (<b>D</b>) paw volume were statistically analyzed. (<b>E</b>) Direct view of swelling in the right hind foot of rats. (<b>F</b>) Representative three-dimensional reconstruction images of rats’ paws from different treated groups in micro-CT. (<b>G</b>) Histological images depicting the H&E staining of ankle joint tissues (scale bar, 100 μm). (<b>H</b>) Histological images depicting the H&E staining of synovial membrane (scale bar, 100 μm). The red arrows indicate changes in the organizational structure. All data are shown as mean ± SEM. *** <span class="html-italic">p</span> < 0.001 when comparing with the Control group using an unpaired Student’s <span class="html-italic">t</span>-test; <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>##</sup> <span class="html-italic">p</span> < 0.01, and <sup>###</sup> <span class="html-italic">p</span> < 0.001 when comparing with the Model group using one-way ANOVA followed by Dunnett’s post hoc test. Definitions of abbreviations for each dosing group: Control, blank control group; Model, model group; MTX, positive drug group; L-LVM, 5 mg/kg LVM group; M-LVM, 15 mg/kg LVM group; H-LVM, 45 mg/kg LVM group. <span class="html-italic">n</span> = 6 in each group.</p> "> Figure 3
<p>The levels of IL-1β, TNF-α, and TGF-β in the serum were measured by enzyme-linked immunosorbent assay (ELISA). All data are shown as mean ± SEM. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 when comparing with the Control group using an unpaired Student’s <span class="html-italic">t</span>-test; <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>##</sup> <span class="html-italic">p</span> < 0.01 when comparing with the Model group using one-way ANOVA followed by Dunnett’s post hoc test. Definitions of abbreviations for each dosing group: Control, blank control group; Model, model group; MTX, positive drug group; L-LVM, 5 mg/kg LVM group; M-LVM, 15 mg/kg LVM group; H-LVM, 45 mg/kg LVM group. <span class="html-italic">n</span> = 6 in each group.</p> "> Figure 4
<p>The levels of serum biochemical markers were measured by automatic biochemical analyzer. All data are shown as mean ± SEM. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 when comparing with the Control group using an unpaired Student’s <span class="html-italic">t</span>-test; <sup>#</sup> <span class="html-italic">p</span> < 0.05 when comparing with the Model group using one-way ANOVA followed by Dunnett’s post hoc test. Definitions of abbreviations for each dosing group: Control, blank control group; Model, model group; MTX, positive drug group; L-LVM, 5 mg/kg LVM group; M-LVM, 15 mg/kg LVM group; H-LVM, 45 mg/kg LVM group. <span class="html-italic">n</span> = 6 in each group.</p> "> Figure 5
<p>M-LVM inhibited PI3k/Akt pathway in ankle joint tissues of AIA rats. (<b>A</b>) The protein levels of p-PI3K, PI3K, p-Akt, and Akt in ankle joint tissues were detected by Western blotting. (<b>B</b>) The protein levels of PI3K and Akt in ankle joint tissues were analyzed by immunostaining (scale bar, 100 μm). All data are shown as mean ± SEM. ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001 when comparing with the Control group using an unpaired Student’s <span class="html-italic">t</span>-test; <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>##</sup> <span class="html-italic">p</span> < 0.01, and <sup>###</sup> <span class="html-italic">p</span> < 0.001 when comparing with the Model group using one-way ANOVA followed by Dunnett’s post hoc test. Definitions of abbreviations for each dosing group: Control, blank control group; Model, model group; MTX, positive drug group; L-LVM, 5 mg/kg LVM group; M-LVM, 15 mg/kg LVM group; H-LVM, 45 mg/kg LVM group. <span class="html-italic">n</span> = 3 in each group.</p> "> Figure 6
<p>M-LVM inhibited PI3k/Akt pathway in synovial tissues of AIA rats. (<b>A</b>) The protein levels of p-PI3K, PI3K, p-Akt, and Akt in synovial tissues were detected by Western blotting. (<b>B</b>) The protein levels of PI3K and Akt in synovial tissues were analyzed by immunostaining (scale bar, 100 μm). All data are shown as mean ± SEM. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 when comparing with the Control group using an unpaired Student’s <span class="html-italic">t</span>-test; <sup>#</sup> <span class="html-italic">p</span> < 0.05, <sup>##</sup> <span class="html-italic">p</span> < 0.01, and <sup>###</sup> <span class="html-italic">p</span> < 0.001 when comparing with the Model group using one-way ANOVA followed by Dunnett’s post hoc test. Definitions of abbreviations for each dosing group: Control, blank control group; Model, model group; MTX, positive drug group; L-LVM, 5 mg/kg LVM group; M-LVM, 15 mg/kg LVM group; H-LVM, 45 mg/kg LVM group. <span class="html-italic">n</span> = 3 in each group.</p> "> Figure 7
<p>Evaluation of potential adverse effects of LVM in AIA rats. (<b>A</b>) The results of H&E staining (scale bar, 100 μm). (<b>B</b>) Organ coefficient of major organs. All data are shown as mean ± SEM. *** <span class="html-italic">p</span> < 0.001 when comparing with the Control group using an unpaired Student’s <span class="html-italic">t</span>-test; <sup>#</sup> <span class="html-italic">p</span> < 0.05 when comparing with the Model group using one-way ANOVA followed by Dunnett’s post hoc test. Definitions of abbreviations for each dosing group: Control, blank control group; Model, model group; MTX, positive drug group; L-LVM, 5 mg/kg LVM group; M-LVM, 15 mg/kg LVM group; H-LVM, 45 mg/kg LVM group. <span class="html-italic">n</span> = 6 in each group.</p> "> Figure 8
<p>The experimental schematic.</p> ">
Abstract
:1. Introduction
2. Results
2.1. LVM Suppressed RA Progress in AIA Rat Model
2.2. LVM Regulated the Serum Levels of Pro-/Anti-Inflammatory Cytokines in AIA Rat Model
2.3. LVM Normalized the Serum Biochemical Markers in AIA Rat Model
2.4. LVM Inhibited PI3K/Akt Signaling Pathway in Ankle Joint
2.5. LVM Inhibited PI3K/Akt Signaling Pathway in Synovium
2.6. Safety Evaluations
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. AIA Rat Model
4.4. Arthritis Index Scoring
4.5. Foot Pad Thickness and Paw Volume Analysis
4.6. Micro-CT Analysis
4.7. Histopathology
4.8. ELISA
4.9. Serum Biochemical Detection
4.10. Western Blotting
4.11. Immunohistochemistry Assay
4.12. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Rheumatoid Arthritis Collaborators. Global, regional, and national burden of rheumatoid arthritis, 1990-2020, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e594–e610. [Google Scholar] [CrossRef] [PubMed]
- Jahid, M.; Khan, K.U.; Rehan-Ul-Haq; Ahmed, R.S. Overview of Rheumatoid Arthritis and Scientific Understanding of the Disease. Mediterr. J. Rheumatol. 2023, 34, 284–291. [Google Scholar] [CrossRef]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 9–17. [Google Scholar] [CrossRef]
- Otón, T.; Carmona, L. The epidemiology of established rheumatoid arthritis. Best. Pract. Res. Clin. Rheumatol. 2019, 33, 101477. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef] [PubMed]
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med. Princ. Pract. 2018, 27, 501–507. [Google Scholar] [CrossRef]
- Chan, E.S.L.; Cronstein, B.N. Mechanisms of action of methotrexate. Bull. NYU Hosp. Jt. Dis. 2013, 71, S5–S8. [Google Scholar]
- Aletaha, D.; Smolen, J.S. Diagnosis and management of rheumatoid arthritis: A review. JAMA 2018, 320, 1360–1372. [Google Scholar] [CrossRef]
- Fiehn, C.; Holle, J.; Iking-Konert, C.; Leipe, J.; Weseloh, C.; Frerix, M.; Alten, R.; Behrens, F.; Baerwald, C.; Braun, J.; et al. S2e guideline: Treatment of rheumatoid arthritis with disease-modifying drugs. Z. Rheumatol. 2018, 77, 3553. [Google Scholar]
- Romão, V.C.; Lima, A.; Bernardes, M.; Canhão, H.; Fonseca, J.E. Three decades of low-dose methotrexate in rheumatoid arthritis: Can we predict toxicity? Immunol. Res. 2014, 60, 289–310. [Google Scholar] [CrossRef]
- Guo, M.; Yu, X.; Zhu, Y.Z.; Yu, Y. From Bench to Bedside: What Do We Know about Imidazothiazole Derivatives So Far? Molecules 2023, 28, 5052. [Google Scholar] [CrossRef] [PubMed]
- Sadati, N.Y.; Youssefi, M.R.; Hosseinifard, S.M.; Tabari, M.A.; Giorgi, M. Pharmacokinetics and pharmacodynamics of single and multiple-dose levamisole in belugas (Huso huso): Main focus on immunity responses. Fish Shellfish Immunol. 2021, 114, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Amery, W.K.; Bruynseels, J.P. Levamisole, the story and the lessons. Int. J. Immunopharmacol. 1992, 14, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.C.; Ladizinski, B.; Federman, D.G. Complications associated with use of levamisole-contaminated cocaine: An emerging public health challenge. Mayo Clin. Proc. 2012, 87, 581–586. [Google Scholar] [CrossRef]
- López-Sánchez, C.; Rozas-Muñoz, E.; Mir-Bonafé, J.F. Levamisole-Induced Vasculopathy. JAMA Dermatol. 2021, 157, 338. [Google Scholar] [CrossRef]
- Bernardi, S.; Innocenti, S.; Charbit, M.; Boyer, O. Late Onset of ANCA Vasculitis as a Side Effect of Levamisole Treatment in Nephrotic Syndrome. Medicina 2022, 58, 650. [Google Scholar] [CrossRef]
- Solomon, N.; Hayes, J. Levamisole: A High Performance Cutting Agent. Acad. Forensic Pathol. 2017, 7, 469–476. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Chen, L.; Yu, X.; Zhang, S.; Yu, Y. Toxicity and Toxicokinetics of a Four-Week Repeated Gavage of Levamisole in Male Beagle Dogs: A Good Laboratory Practice Study. Pharmaceuticals 2024, 17, 141. [Google Scholar] [CrossRef]
- Kang, Y.; Jin, H.; Zheng, G.; Xie, Q.; Yin, J.; Yu, Y.; Xiao, C.; Zhang, X.; Chen, A.; Wang, B. The adjuvant effect of levamisole on killed viral vaccines. Vaccine 2005, 23, 5543–5550. [Google Scholar] [CrossRef]
- Renoux, G. The general immunopharmacology of levamisole. Drugs 1980, 20, 89–99. [Google Scholar] [CrossRef]
- Ali, S.H.; Abdel-Fattah Yel, S.; Shaimaa, A.M. Biochemical, immunomodulatory and antioxidant properties of levamisole at different storage conditions and administration routes. Pak. J. Biol. Sci. 2012, 15, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Ince, S.; Kozan, E.; Kucukkurt, I.; Bacak, E. The effect of levamisole and levamisole + vitamin C on oxidative damage in rats naturally infected with Syphacia muris. Exp. Parasitol. 2010, 124, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ali, F.M.; Saraf, K.; Mudhol, A. Anti-helminthic drugs in recurrent apthous stomatitis: A short review. J. Pharm. Bioallied. Sci. 2014, 6, 65–68. [Google Scholar]
- Sun, A.; Wang, J.T.; Chia, J.S.; Chiang, C.P. Levamisole can modulate the serum tumor necrosis factor-alpha level in patients with recurrent aphthous ulcerations. J. Oral. Pathol. Med. 2006, 35, 111–116. [Google Scholar] [CrossRef]
- Gupta, M. Levamisole: A multi-faceted drug in dermatology. Indian. J. Dermatol. Venereol. Leprol. 2016, 82, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Friis, T.; Engel, A.M.; Bendiksen, C.D.; Larsen, L.S.; Houen, G. Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro. Cancers 2013, 5, 762–785. [Google Scholar] [CrossRef]
- Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal. Transduct. Target. Ther. 2023, 8, 68. [Google Scholar] [CrossRef]
- Chou, Y.-N.; Lee, M.-M.; Deng, J.-S.; Jiang, W.-P.; Lin, J.-G.; Huang, G.-J. Water Extract from Brown Strain of Flammulina velutipes Alleviates Cisplatin-Induced Acute Kidney Injury by Attenuating Oxidative Stress, Inflammation, and Autophagy via PI3K/AKT Pathway Regulation. Int. J. Mol. Sci. 2023, 24, 9448. [Google Scholar] [CrossRef]
- Wen, S.; An, R.; Li, D.; Cao, J.; Li, Z.; Zhang, W.; Chen, R.; Li, Q.; Lai, X.; Sun, L.; et al. Tea and Citrus maxima complex induces apoptosis of human liver cancer cells via PI3K/AKT/mTOR pathway in vitro. Chin. Herb. Med. 2022, 14, 449–458. [Google Scholar] [CrossRef]
- Shen, Y.; Fan, X.; Qu, Y.; Tang, M.; Huang, Y.; Peng, Y.; Fu, Q. Magnoflorine attenuates inflammatory responses in RA by regulating the PI3K/Akt/NF-κB and Keap1-Nrf2/HO-1 signalling pathways in vivo and in vitro. Phytomedicine 2022, 104, 154339. [Google Scholar] [CrossRef]
- Wang, Q.L.; Yang, D.Z.; Lv, C. Anti-inflammatory effects of gambogic acid in murine collagen-induced arthritis through PI3K/Akt signaling pathway. Mol. Med. Rep. 2018, 17, 4791–4796. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Lin, Z.W.; He, S.M.; Wang, C.Q.; Yang, J.C.; Lu, Y.; Xie, X.B.; Li, Q. Metformin inhibits the proliferation of rheumatoid arthritis fibroblast-like synoviocytes through IGF-IR/PI3K/AKT/m-TOR pathway. Biomed. Pharmacother. 2019, 115, 108875. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Liu, M.; Zhou, B.; Yang, G. Diosmetin exhibits anti-proliferative and anti-inflammatory effects on TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes through regulating the Akt and NF-κB signaling pathways. Phytother. Res. 2020, 34, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Lin, J.; Wei, M.; Teng, Y.; He, Q.; Yang, G.; Yang, X. Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice. Bone. Res. 2019, 7, 23. [Google Scholar] [CrossRef]
- Xuan, W.; Feng, X.; Qian, C.; Peng, L.; Shi, Y.; Xu, L.; Wang, F.; Tan, W. Osteoclast differentiation gene expression profiling reveals chemokine CCL4 mediates RANKL-induced osteoclast migration and invasion via PI3K pathway. Cell Biochem. Funct. 2017, 35, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ba, X.; Huang, Y.; Shen, P.; Huang, Y.; Wang, H.; Han, L.; Lin, W.J.; Yan, H.J.; Xu, L.J.; Qin, K.; et al. WTD Attenuating Rheumatoid Arthritis via Suppressing Angiogenesis and Modulating the PI3K/AKT/mTOR/HIF-1α Pathway. Front. Pharmacol. 2021, 12, 696802. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, G.; Liu, L.; Chen, C.; Cao, X.; Cai, J. Relationship between PI3K pathway and angiogenesis in CIA rat synovium. Am. J. Transl. Res. 2016, 8, 3141–3147. [Google Scholar]
- Cox, E.M.; El-Behi, M.; Ries, S.; Vogt, J.F.; Kohlhaas, V.; Michna, T.; Manfroi, B.; Al-Maarri, M.; Wanke, F.; Tirosh, B.; et al. AKT activity orchestrates marginal zone B cell development in mice and humans. Cell Rep. 2023, 42, 112378. [Google Scholar] [CrossRef]
- Pompura, S.L.; Dominguez-Villar, M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J. Leukoc. Biol. 2018, 103, 1065–1076. [Google Scholar] [CrossRef]
- van Montfort, T.; van der Sluis, R.; Darcis, G.; Beaty, D.; Groen, K.; Pasternak, A.O.; Pollakis, G.; Vink, M.; Westerhout, E.M.; Hamdi, M.; et al. Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway. EBioMedicine 2019, 42, 97–108. [Google Scholar] [CrossRef]
- Babaahmadi, M.; Tayebi, B.; Gholipour, N.M.; Kamardi, M.T.; Heidari, S.; Baharvand, H.; Eslaminejad, M.B.; Hajizadeh-Saffar, E.; Hassani, S.N. Rheumatoid arthritis: The old issue, the new therapeutic approach. Stem. Cell Res. Ther. 2023, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.S.; Jeong, G.H.; Yoo, S.A. The use of animal models in rheumatoid arthritis research. J. Yeungnam Med. Sci. 2023, 40, 23–29. [Google Scholar] [CrossRef]
- Noh, A.S.M.; Chuan, T.D.; Khir, N.A.M.; Zin, A.A.M.; Ghazali, A.K.; Long, I.; Ab Aziz, C.B.; Ismail, C.A.N. Effects of different doses of complete Freund’s adjuvant on nociceptive behaviour and inflammatory parameters in polyarthritic rat model mimicking rheumatoid arthritis. PLoS ONE 2021, 16, e0260423. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Huang, J.; Li, H.; Pang, H.; Niu, D.; Li, G.; Wang, F.; Zhou, Z.; Liu, Z. Advances in experimental models of rheumatoid arthritis. Eur. J. Immunol. 2023, 53, e2249962. [Google Scholar] [CrossRef]
- Huskisson, E.C.; Scott, J.; Balme, H.W.; Dieppe, P.A.; Trapnell, J.; Willoughby, D.A. Immunostimulant therapy with levamisole for rheumatoid arthritis. Lancet 1976, 1, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Multicentre Study, G. Levamisole in Rheumatoid Arthritis: A Randomised Double-blind Study Comparing Two Dosage Regimens of Levamisole with Placebo. Lancet 1978, 312, 1007–1012. [Google Scholar] [CrossRef]
- Williams, G.T.; Johnson, S.A.; Dieppe, P.A.; Huskisson, E.C. Neutropenia during treatment of rheumatoid arthritis with levamisole. Ann. Rheum. Dis. 1978, 37, 366–369. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.; Morsy, M. Dose Conversion Between Animals and Humans: A Practical Solution. Indian. J. Pharm. Educ. Res. 2022, 56, 600–607. [Google Scholar] [CrossRef]
- Janhavi, P.; Divyashree, S.; Sanjailal, K.P.; Muthukumar, S.P. DoseCal: A virtual calculator for dosage conversion between human and different animal species. Arch. Physiol. Biochem. 2022, 128, 426–430. [Google Scholar] [CrossRef]
- Nair, A.; Morsy, M.A.; Jacob, S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev. Res. 2018, 79, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Masuko, K. Glucose as a Potential Key to Fuel Inflammation in Rheumatoid Arthritis. Nutrients 2022, 14, 2349. [Google Scholar] [CrossRef] [PubMed]
- Pi, H.; Zhou, H.; Jin, H.; Ning, Y.; Wang, Y. Abnormal Glucose Metabolism in Rheumatoid Arthritis. Biomed. Res. Int. 2017, 2017, 9670434. [Google Scholar] [CrossRef]
- Ristić, G.G.; Subota, V.; Stanisavljević, D.; Vojvodić, D.; Ristić, A.D.; Glišić, B.; Petronijević, M.; Stefanović, D.Z. Impact of disease activity on impaired glucose metabolism in patients with rheumatoid arthritis. Arthritis Res. Ther. 2021, 23, 95. [Google Scholar] [CrossRef]
- Bose, S.; Robertson, S.F.; Vu, A.A. Garlic extract enhances bioceramic bone scaffolds through upregulating ALP & BGLAP expression in hMSC-monocyte co-culture. Biomater. Adv. 2023, 154, 213622. [Google Scholar]
- Zhang, Z.; Shang, W.; Zhao, X.; Lin, L. Phenytoin regulates osteogenic differentiation of human bone marrow stem cells by PI3K/Akt pathway. Regen. Ther. 2023, 24, 201–210. [Google Scholar] [CrossRef]
- Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015, 18, 433–448. [Google Scholar] [CrossRef]
- Bao, J.; Song, Y.; Hang, M.; Xu, H.; Li, Q.; Wang, P.; Chen, T.; Xia, M.; Shi, Q.; Wang, Y.; et al. Huangqi Guizhi Wuwu Decoction suppresses inflammation and bone destruction in collagen-induced arthritis mice. Chin. Herb. Med. 2024, 16, 274–281. [Google Scholar] [CrossRef]
- Dinesh, P.; Rasool, M. Berberine inhibits IL-21/IL-21R mediated inflammatory proliferation of fibroblast-like synoviocytes through the attenuation of PI3K/Akt signaling pathway and ameliorates IL-21 mediated osteoclastogenesis. Cytokine 2018, 106, 54–66. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y. Cinnamaldehyde Attenuates the Progression of Rheumatoid Arthritis through Down-Regulation of PI3K/AKT Signaling Pathway. Inflammation 2020, 43, 1729–1741. [Google Scholar] [CrossRef]
- Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthr. Cartil. 2020, 28, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jeong, J.-W.; Lee, D.-S.; Yim, M.-J.; Lee, J.M.; Han, M.H.; Kim, S.; Kim, H.-S.; Kim, G.-Y.; Park, E.K. Sargassum serratifolium Extract Attenuates Interleukin-1β-Induced Oxidative Stress and Inflammatory Response in Chondrocytes by Suppressing the Activation of NF-κB, p38 MAPK, and PI3K/Akt. Int. J. Mol. Sci. 2018, 19, 2308. [Google Scholar] [CrossRef] [PubMed]
- Chandy, M.L.; Soman, C.; Kumar, S.P.; Kurup, S.; Jose, R. Understanding molecular mechanisms in multivariant actions of levamisole as an anti-helminthic, anti-inflammatory, antioxidant, anti-neoplastic and immunomodulatory drug. J. Oral. Maxillofac. Surg. Med. Pathol. 2016, 28, 354–357. [Google Scholar] [CrossRef]
- Kuropka, P.; Leśków, A.; Małolepsza-Jarmołowska, K.; Dobrzyński, M.; Tarnowska, M.; Majda, J.; Janeczek, M.; Żybura-Wszoła, K.; Gamian, A. Effect of a Single and Triple Dose of Levamisole on Hematological Parameters in Controlled Inflammation Model. Animals 2022, 12, 2110. [Google Scholar] [CrossRef] [PubMed]
- Burguera, E.F.; Meijide-Failde, R.; Blanco, F.J. Hydrogen Sulfide and Inflammatory Joint Diseases. Curr. Drug Targets 2017, 18, 1641–1652. [Google Scholar] [CrossRef]
- Sunzini, F.; De Stefano, S.; Chimenti, M.S.; Melino, S. Hydrogen Sulfide as Potential Regulatory Gasotransmitter in Arthritic Diseases. Int. J. Mol. Sci. 2020, 21, 1180. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Q.; Wang, Z.; Ding, Q.; Li, M.; Fang, Y.; He, Q.; Zhu, Y.Z. The anti-inflammation and anti-nociception effect of ketoprofen in rats could be strengthened through co-delivery of a H2S donor, S-propargyl-cysteine. J. Inflamm. Res. 2021, 14, 5863–5875. [Google Scholar] [CrossRef]
- Chuang, C.H.; Cheng, Y.C.; Lin, S.C.; Lehman, C.W.; Wang, S.-P.; Chen, D.-Y.; Tsai, S.-W.; Lin, C.-C. Atractylodin Suppresses Dendritic Cell Maturation and Ameliorates Collagen-Induced Arthritis in a Mouse Model. J. Agric. Food Chem. 2019, 67, 6773–6784. [Google Scholar] [CrossRef]
- Jain, S.; Tripathi, S.; Tripathi, P.K. Antioxidant and antiarthritic potential of berberine: In vitro and in vivo studies. Chin. Herb. Med. 2023, 15, 549–555. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Z.; Yang, Q.; Ding, Q.; Wang, R.; Li, Z.; Fang, Y.; Liao, J.; Qi, W.; Chen, K. A novel dendritic mesoporous silica based sustained hydrogen sulfide donor for the alleviation of adjuvant-induced inflammation in rats. Drug Deliv. 2021, 28, 1031–1042. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Y.; Chen, M.; Li, N.; Sun, Y.; Ren, S.; Xiao, J.; Wang, D.; Liu, X.; Pan, Y. Hypoglycemic activities of flowers of Xanthoceras sorbifolia and identification of anti-oxidant components by off-line UPLC-QTOF-MS/MS-free radical scavenging detection. Chin. Herb. Med. 2023, 16, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wang, Y.; Li, X.; Zhong, T.; Cheng, C.; Zhang, Y. Scutellarin alleviates liver injury in type 2 diabetic mellitus by suppressing hepatocyte apoptosis in vitro and in vivo. Chin. Herb. Med. 2023, 15, 542–548. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Yu, X.; Yang, Z.; Zheng, H.; Zhang, J.; Wang, J.; Liao, Y.; Huang, W.; Lin, Z.; Yan, Y.; et al. Levamisole Ameliorates Rheumatoid Arthritis by Downregulating the PI3K/Akt Pathway in SD Rats. Pharmaceuticals 2024, 17, 1504. https://doi.org/10.3390/ph17111504
Guo M, Yu X, Yang Z, Zheng H, Zhang J, Wang J, Liao Y, Huang W, Lin Z, Yan Y, et al. Levamisole Ameliorates Rheumatoid Arthritis by Downregulating the PI3K/Akt Pathway in SD Rats. Pharmaceuticals. 2024; 17(11):1504. https://doi.org/10.3390/ph17111504
Chicago/Turabian StyleGuo, Mu, Xiangbin Yu, Zesheng Yang, Hanlu Zheng, Jiahui Zhang, Junxiang Wang, Yiqi Liao, Weirui Huang, Zhaolong Lin, Yingxue Yan, and et al. 2024. "Levamisole Ameliorates Rheumatoid Arthritis by Downregulating the PI3K/Akt Pathway in SD Rats" Pharmaceuticals 17, no. 11: 1504. https://doi.org/10.3390/ph17111504
APA StyleGuo, M., Yu, X., Yang, Z., Zheng, H., Zhang, J., Wang, J., Liao, Y., Huang, W., Lin, Z., Yan, Y., Qiu, N., Chen, J., & Yu, Y. (2024). Levamisole Ameliorates Rheumatoid Arthritis by Downregulating the PI3K/Akt Pathway in SD Rats. Pharmaceuticals, 17(11), 1504. https://doi.org/10.3390/ph17111504