Metric Potential of a 3D Measurement System Based on Digital Compact Cameras
<p>Interior orientation [<a href="#b19-sensors-09-04178" class="html-bibr">19</a>].</p> ">
<p>(a) Radial distortion curve in camera A, (b) differences in symmetric radial distortion curves of cameras B,C and D respect camera A, (c) differences in total radial distortion curves of cameras B,C and D respect camera A and (d) tangential component of decentering distortion curve of cameras A,B,C and D.</p> ">
<p>(a) Radial distortion curve in camera A, (b) differences in symmetric radial distortion curves of cameras B,C and D respect camera A, (c) differences in total radial distortion curves of cameras B,C and D respect camera A and (d) tangential component of decentering distortion curve of cameras A,B,C and D.</p> ">
<p>(a) Oblique view and (b) plane view of the cameras with respect to the field test.</p> ">
<p>Network configuration of the photogrammetric survey to obtain “true” coordinates (third test for accuracy).</p> ">
<p>Spatial distribution of standard deviation (mm) obtained in the field test in the directions of X (a), Y (b) and Z (c). In (d), (e) and (f) standard deviation in the direction of X, Y and Z, respectively, is represented in relative units.</p> ">
<p>Spatial distribution of standard deviation (mm) obtained in the field test in the direction of X (a), Y (b) and Z (c) using old sets of modelling parameters for the cameras. In (d), (e) and (f) standard deviation in the direction of X, Y and Z, respectively, is represented in relative units.</p> ">
<p>Spatial distribution of standard deviation (mm) obtained for the X (a), Y (b) and Z (c) components of the 113 calculated coordinates. In (d), (e) and (f) standard deviation of X, Y and Z components, respectively, is represented in relative units.</p> ">
<p>Spatial distribution of differences (mm) between the measurements and the “true” coordinates according to X (a), Y (b), Z (c) and the total vector length (d).</p> ">
<p>View of the 3D measurement system.</p> ">
Abstract
:1. Introduction
2. Modelling and Calibration of Cameras
3. Description of the Measurement System
3.1. Components
3.2. Tests for Accuracy Assessment
4. Results and Discussion
4.1. First Test: Photogrammetric Precision
4.2. Second Test: Repeatability
4.3. Third test: Accuracy
5. Summary and Conclusions
Acknowledgments
References and Notes
- Peipe, J.; Stephani, M. Performance evaluation of a megapixel digital metric camera for use in architectural photogrammetry. Proceedings of the XX International Congress for Photogrammetry and Remote Sensing, Ancona, Italy, July 2003; pp. 259–262.
- Rieke-Zapp, D.H.; Peipe, J. Performance evaluation of a 33 megapixel Alpa 12 medium format camera for digital close range photogrammetry. Proceedings of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology, Dresden, Germany, September 2006.
- Karras, G.E.; Mavrommati, D. Simple calibration techniques for non-metric cameras. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the International Committee for Documentation of Cultural Heritage (CIPA) International Symposium, Postdam, Germany, September 2001.
- Mikhail, E.M.; Bethel, J.S.; McGlone, J.C. Introduction to Modern Photogrammetry; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Fryer, J.; Mitchell, H.; Chandler, J. Applications of 3D Measurement from Images; Whittles Publishing: Scotland, UK, 2007. [Google Scholar]
- Arias, P.; Ordóñez, C.; Lorenzo, H.; Herraez, J.; Armesto, J. Low-cost documentation of traditional agro-industrial buildings by close-range photogrammetry. Build. Environ. 2007, 42, 1817–1827. [Google Scholar]
- Bosch, R.; Kulur, S.; Gulch, E. Non-metric camera calibration and documentation of historical buildings. Proceedings of the XX International Symposium of the International Committee for Documentation of Cultural Heritage (CIPA), Torino, Italy, September 2005; pp. 142–147.
- Tsakiri, M.; Ioannidis, C.; Papanikos, P. Load testing measurements for structural assessment using geodetic and photogrammetric techniques. Proceedings of the 1st International Symposium on Engineering Surveys for Construction Works and Structural Engineering, Nottingham, UK; 2004. [Google Scholar]
- Pappa, R.S.; Black, J.T.; Blandino, J.R. Photogrammetric measurement of gossamer spacecraft membrane wrinkling. Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Charlotte, NC, USA; 2003. [Google Scholar]
- Pappa, R.S.; Giersch, L.R.; Quagliaroli, J.M. Photogrammetry of a 5m inflatable space antenna with consumer-grade digital cameras. Exp. Techniques 2001, 25, 21–29. [Google Scholar]
- Wackrow, R.; Chandler, J.; Bryan, P. Geometric consistency and stability of consumer-grade digital cameras for accurate spatial measurement. Photogramm. Rec. 2007, 22, 121–134. [Google Scholar]
- Labe, T.; Forstner, W. Geometric stability of low-cost digital consumer camera. ISPRS International Archives of Photogrammetry and Remote Sensing, Proceedings of the XXth ISPRS Congress, Commission 1, Istanbul, Turkey; 2004; pp. 528–535. [Google Scholar]
- Chandler, J.H.; Fryer, J.G.; Jack, A. Metric capabilities of low-cost digital cameras for close range surface measurement. Photogramm. Rec. 2005, 20, 12–26. [Google Scholar]
- Yilmazturk, F.; Kulur, S.; Terzib, N. Determination of displacements in load tests with digital multimedia photogrammetry. Proceedings of the XXI International Congress for Photogrammetry and Remote Sensing, Beijing, China, July 2008; pp. 719–721.
- Fraser, C.S.; Riedel, B. Monitoring the thermal deformation of steel beams via vision metrology. ISPRS J. Photogramm. 2000, 55, 268–276. [Google Scholar]
- Whiteman, T.; Lichti, D. Measurement of deflections in concrete beams by close-range digital photogrammetry. Proceedings of the Symposium on Geospatial Theory, Processing and Applications, ISPRS Commission IV, Ottawa, Canada, July 2002.
- Jones, T.W.; Downey, J.M.; Lunsford, C.B.; Desabrais, K.J.; Noetscher, G. Experimental methods using photogrammetric techniques for parachute canopy shape measurements. Collection of Technical Papers, Proceedings of the 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Williamsburg, VA, May 2007; pp. 485–494.
- Heikkila, J.; Silven, O. Four-step camera calibration procedure with implicit image correction. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, June 1997; pp. 1106–1112.
- Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. Close Range Photogrammetry - Principles, Methods and Aplications; Whittles Publishing: Scotland, UK, 2006. [Google Scholar]
- Brown, D.C. Decentering distortion of lenses. Photogramm. Eng. 1966, 32, 444–462. [Google Scholar]
Feature | Pentax Optio A40 |
---|---|
Effective pixels | 4,000 × 3,000 |
Image ratio w:h | 4:3 |
Sensor size | 1/1.7 inch, 7.60 × 5.70 mm, 0.43 cm2 |
Pixel density | 28 MP/cm2 |
Pixel size | 1.9 μm × 1.9 μm |
Sensor type | CCD |
Lens | 7 elements in 5 groups (2 dual-sided aspherical elements, 1 single-sided aspherical element) |
Focal Length | 7.90 mm - 23.7 mm |
Sensitivity | ISO 50-1600 |
Aperture | F2.8-F5.4 |
Shutter speed | 4 s-1/2,000 s |
File Formats | JPEG (EXIF 2.2) |
Camera A | Camera B | Camera C | Camera D | |
---|---|---|---|---|
C (mm) | 8.0547±2.1E-4 | 8.1895±3.2E-4 | 8.0913±3.4E-4 | 8.1239±3.7E-4 |
x′0 (mm) | -0.0588±1.8E-4 | -0.1669±3.0E-4 | -0.0622±2.5E-4 | -0.1188±3.5E-4 |
y′0 (mm) | -0.0534±1.8E-4 | -0.1797±2.9E-4 | -0.0519±2.5E-4 | -0.0785±3.4E-4 |
k1 | 3.15E-3±4.1E-6 | 2.89E-3±5.4E-6 | 3.10E-3±7.5E-6 | 2.97E-3±6.7E-6 |
k2 | -3.00E-5±2.3E-7 | -2.04E-5±3.1E-7 | -2.81E-5±4.6E-7 | -2.25E-5±3.7E-7 |
B1 | 7.18E-05±7.3E-7 | 3.50E-04±1.2E-6 | -1.31E-04±9.5E-7 | 2.77E-04±1.3E-6 |
B2 | -3.62E-04±6.7E-7 | -3.27E-04±1.10E-6 | -1.99E-05±9.3E-7 | -5.31E-04±1.3E-6 |
C1 | 0.000035±3.4E-5 | 0.000139±5.3E-5 | -0.000035±4.6E-5 | 0.000130±6.6E-5 |
Image coverage (%) | 79 | 81 | 74 | 82 |
Overall RMS (pixels) | 0.088 | 0.123 | 0.114 | 0.157 |
Overall RMS vector length (mm) | 0.026 | 0.039 | 0.035 | 0.047 |
Camera | X (mm) | Y (mm) | Z (mm) | ω (°) | φ (°) | κ (°) | FOVh (°) | FOVv (°) |
---|---|---|---|---|---|---|---|---|
A | 970.92 | 1,459.85 | 1,177.79 | -19.95 | -0.48 | 0.71 | 49.8 | 38.4 |
B | 516.09 | 957.27 | 1,192.54 | 0.57 | -19.49 | 90.71 | 49.1 | 37.8 |
C | 965.24 | 530.37 | 1,199.19 | 20.39 | -3.10 | 179.08 | 49.7 | 38.3 |
D | 1,436.67 | 978.59 | 1,201.20 | 2.19 | 18.46 | -89.91 | 49.4 | 38.0 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sanz-Ablanedo, E.; Rodríguez-Pérez, J.R.; Arias-Sánchez, P.; Armesto, J. Metric Potential of a 3D Measurement System Based on Digital Compact Cameras. Sensors 2009, 9, 4178-4194. https://doi.org/10.3390/s90604178
Sanz-Ablanedo E, Rodríguez-Pérez JR, Arias-Sánchez P, Armesto J. Metric Potential of a 3D Measurement System Based on Digital Compact Cameras. Sensors. 2009; 9(6):4178-4194. https://doi.org/10.3390/s90604178
Chicago/Turabian StyleSanz-Ablanedo, Enoc, José Ramón Rodríguez-Pérez, Pedro Arias-Sánchez, and Julia Armesto. 2009. "Metric Potential of a 3D Measurement System Based on Digital Compact Cameras" Sensors 9, no. 6: 4178-4194. https://doi.org/10.3390/s90604178
APA StyleSanz-Ablanedo, E., Rodríguez-Pérez, J. R., Arias-Sánchez, P., & Armesto, J. (2009). Metric Potential of a 3D Measurement System Based on Digital Compact Cameras. Sensors, 9(6), 4178-4194. https://doi.org/10.3390/s90604178