Towards Home-Based Diabetic Foot Ulcer Monitoring: A Systematic Review
<p>PRISMA flow diagram for article selection.</p> "> Figure 2
<p>Distribution of search results by year and objective.</p> "> Figure 3
<p>Usage counts of performance metrics.</p> "> Figure 4
<p>Preprocessing technique usage.</p> "> Figure 5
<p>The image augmentation techniques used.</p> "> Figure 6
<p>Number of augmentation techniques used.</p> "> Figure 7
<p>Backbone architecture usage.</p> "> Figure 8
<p>Correlation of the backbone performance with training dataset size.</p> "> Figure 9
<p>Backbone performance evaluation.</p> ">
Abstract
:1. Introduction
- Research in this field can benefit from publicly available datasets.
- The current research has not fully facilitated data preprocessing and augmentation.
- Publicly available wound datasets are accounted for.
- The preprocessing techniques used in the latest research are reviewed.
- The usage and techniques of data augmentation are analyzed.
- Further research avenues are discussed.
2. Methods
2.1. Eligibility Criteria
2.2. Article Search Process
- Web of Science
- Scopus.
- Terms for wound origin (diabetic foot, pressure, varicose, burn);
- Terms for wounds (ulcer, wound, lesion);
- Terms for objectives (classification, detection, segmentation, monitoring, measuring);
- Terms for neural networks (artificial, convolutional, deep).
2.3. Selection Process
2.4. Data Extraction
- Training sample count—the initial sample count was considered for the evaluation of the training dataset size, and the training sample count is not listed here.
- Preprocessing technique usage—it was considered that no preprocessing techniques were used.
- Augmentation technique usage—it was considered that no augmentation techniques were used.
2.5. Data Synthesis and Analysis
3. Results
3.1. Performance Metrics
3.2. Datasets
3.3. Preprocessing
3.4. Data Augmentation
3.5. Backbone Architectures
3.6. Performance Comparison
Reference | Subject and Classes (Each Bullet Represents a Different Model) | Methodology | Original Images (Training Samples) | Results |
---|---|---|---|---|
Goyal et al. (2018) [65] | Diabetic foot ulcer
|
| Normal: 2028 (28,392)Abnormal: 2080 (29,120) |
|
Amin et al. (2020) [42] | Diabetic foot ulcer
|
| Ischemia: 9870 (9870) Infection: 5892 (5892) | Ischemia:
|
Han et al. (2020) [87] | Diabetic foot ulcer
|
| 2688 (2668) |
|
Anisuzzaman et al. (2022) [25] | Wound
|
| 1800 (9580) |
|
Huang et al. (2022) [88] | Wound
|
| 727 (3600) |
|
Reference | Subject and Classes (Each Bullet Represents a Different Model) | Methodology | Original Images (Training Samples) | Results |
---|---|---|---|---|
García-Zapirain et al. (2018) [26] | Pressure ulcer
|
| 193 (193) |
|
Li et al. (2018) [22] | Wound
|
| 950 (57,000) |
|
Zahia et al. (2018) [36] | Pressure ulcer
|
| Granulation: 22 (270,762) Necrotic: 22 (37,146) Slough: 22 (80,636) | Granulation:
|
Jiao et al. (2019) [93] | Burn wound
|
| 1150 |
|
Khalil et al. (2019) [16] | Wound
|
| 377 |
|
Li et al. (2019) [23] | Wound
|
| 950 |
|
Rajathi et al. (2019) [57] | Varicose ulcer
|
| 1250 |
|
Şevik et al. (2019) [94] | Burn wound
|
| 105 |
|
Blanco et al. (2020) [59] | Dermatological ulcer
|
| 217 (179,572) |
|
Chino et al. (2020) [66] | Wound
|
| 446 (1784) |
|
Muñoz et al. (2020) [95] | Diabetic foot ulcer
|
| 520 |
|
Wagh et al. (2020) [55] | Wound
|
| 1442 |
|
Wang et al. (2020) [32] | Foot ulcer
|
| 1109 (4050) |
|
Zahia et al. (2020) [28] | Pressure ulcer
|
| 210 |
|
Chang et al. (2021) [96] | Burn wound
|
| 2591 |
|
Chauhan et al. (2021) [64] | Burn wound
|
| 449 |
|
Dai et al. (2021) [68] | Burn wound
|
| 1150 |
|
Liu et al. (2021) [31] | Burn wound
|
| 1200 |
|
Pabitha et al. (2021) [56] | Burn wound
|
| 1800 | Segmentation:
|
Sarp et al. (2021) [49] | Wound
|
| 13,000 |
|
Cao et al. (2022) [18] | Diabetic foot ulcer
|
| 1426 |
|
Chang et al. (2022) [60] | Pressure ulcer
|
| Wound And Reepithelization: 755 (2893) Tissue: 755 (2836) | Wound And Reepithelization:
|
Chang et al. (2022) [50] | Burn wound
|
| 4991 |
|
Lien et al. (2022) [58] | Diabetic foot ulcer
|
| 219 |
|
Ramachandram et al. (2022) [48] | Wound
|
| Wound: 465,187Tissue: 17,000 | Wound:
|
Scebba et al. (2022) [27] | Wound
|
| 1330 |
|
4. Limitations
5. Discussion and Conclusions
- There are poor preprocessing strategies when images are taken from multiple different sources. Methods that can improve uniformity and eliminate artifacts introduced in an uncontrolled environment should be analyzed.
- There is a lack of or excessive use of augmentation techniques. Augmentation strategies that yield better model generalization capabilities should be tested. Deep-learning-based methods should be applied.
- There is a limited amount of annotated data. An unsupervised or weakly supervised deep learning model for semantic segmentation should be developed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peer, N.; Balakrishna, Y.; Durao, S. Screening for Type 2 Diabetes Mellitus. Cochrane Database Syst. Rev. 2020, 5, CD005266. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes. Federation IDF Diabetes Atlas; IDF: Brussels, Belgium, 2021; ISBN 9782930229980. [Google Scholar]
- Mavrogenis, A.F.; Megaloikonomos, P.D.; Antoniadou, T.; Igoumenou, V.G.; Panagopoulos, G.N.; Dimopoulos, L.; Moulakakis, K.G.; Sfyroeras, G.S.; Lazaris, A. Current Concepts for the Evaluation and Management of Diabetic Foot Ulcers. EFORT Open Rev. 2018, 3, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Moulik, P.K.; Mtonga, R.; Gill, G.V. Amputation and Mortality in New-Onset Diabetic Foot Ulcers Stratified by Etiology. Diabetes Care 2003, 26, 491–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Wang, J.; Zhu, H.; Wang, S.H.; Zhang, Y.D. A Review of Deep Learning on Medical Image Analysis. Mob. Netw. Appl. 2021, 26, 351–380. [Google Scholar] [CrossRef]
- Tulloch, J.; Zamani, R.; Akrami, M. Machine Learning in the Prevention, Diagnosis and Management of Diabetic Foot Ulcers: A Systematic Review. IEEE Access 2020, 8, 198977–199000. [Google Scholar] [CrossRef]
- Zahia, S.; Zapirain, M.B.G.; Sevillano, X.; González, A.; Kim, P.J.; Elmaghraby, A. Pressure Injury Image Analysis with Machine Learning Techniques: A Systematic Review on Previous and Possible Future Methods. Artif. Intell. Med. 2020, 102, 101742. [Google Scholar] [CrossRef]
- Chan, K.S.; Lo, Z.J. Wound Assessment, Imaging and Monitoring Systems in Diabetic Foot Ulcers: A Systematic Review. Int. Wound J. 2020, 17, 1909–1923. [Google Scholar] [CrossRef]
- Anisuzzaman, D.M.; Wang, C.; Rostami, B.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. Image-Based Artificial Intelligence in Wound Assessment: A Systematic Review. Adv. Wound Care 2022, 11, 687–709. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, Y.; Peng, L.; Zhou, Q.; Wang, Z.; Qi, M. A Comprehensive Review of Methods Based on Deep Learning for Diabetes-Related Foot Ulcers. Front. Endocrinol. 2022, 13, 1679. [Google Scholar] [CrossRef]
- Zhang, R.; Tian, D.; Xu, D.; Qian, W.; Yao, Y. A Survey of Wound Image Analysis Using Deep Learning: Classification, Detection, and Segmentation. IEEE Access 2022, 10, 79502–79515. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In ACM International Conference Proceeding Series, Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; Blekinge Institute of Technology: Karlskrona, Sweden, 2014. [Google Scholar]
- Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1–11. [Google Scholar] [CrossRef]
- Khalil, A.; Elmogy, M.; Ghazal, M.; Burns, C.; El-Baz, A. Chronic Wound Healing Assessment System Based on Different Features Modalities and Non-Negative Matrix Factorization (NMF) Feature Reduction. IEEE Access 2019, 7, 80110–80121. [Google Scholar] [CrossRef]
- Yogapriya, J.; Chandran, V.; Sumithra, M.G.; Elakkiya, B.; Shamila Ebenezer, A.; Suresh Gnana Dhas, C. Automated Detection of Infection in Diabetic Foot Ulcer Images Using Convolutional Neural Network. J. Healthc. Eng. 2022, 2022, 2349849. [Google Scholar] [CrossRef]
- Cao, C.; Qiu, Y.; Wang, Z.; Ou, J.; Wang, J.; Hounye, A.H.; Hou, M.; Zhou, Q.; Zhang, J. Nested Segmentation and Multi-Level Classification of Diabetic Foot Ulcer Based on Mask R-CNN. Multimed Tools Appl. 2022, 1–20. [Google Scholar] [CrossRef]
- Kręcichwost, M.; Czajkowska, J.; Wijata, A.; Juszczyk, J.; Pyciński, B.; Biesok, M.; Rudzki, M.; Majewski, J.; Kostecki, J.; Pietka, E. Chronic Wounds Multimodal Image Database. Comput. Med. Imaging Graph. 2021, 88, 101844. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.P.; Sharma, A.; Singh, M.; Goyal, A. Feature Extraction Based Machine Learning for Human Burn Diagnosis from Burn Images. IEEE J. Transl. Eng. Health Med. 2019, 7, 1800507. [Google Scholar] [CrossRef]
- Kendrick, C.; Cassidy, B.; Pappachan, J.M.; O’Shea, C.; Fernandez, C.J.; Chacko, E.; Jacob, K.; Reeves, N.D.; Yap, M.H. Translating Clinical Delineation of Diabetic Foot Ulcers into Machine Interpretable Segmentation. arXiv 2022, arXiv:2204.11618. [Google Scholar]
- Li, F.; Wang, C.; Liu, X.; Peng, Y.; Jin, S. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks. Comput. Intell. Neurosci. 2018, 2018, 4149103. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, C.; Peng, Y.; Yuan, Y.; Jin, S. Wound Segmentation Network Based on Location Information Enhancement. IEEE Access 2019, 7, 87223–87232. [Google Scholar] [CrossRef]
- Medetec Pictures of Wounds and Wound Dressings. Available online: http://www.medetec.co.uk/files/medetec-image-databases.html (accessed on 16 January 2023).
- Anisuzzaman, D.M.; Patel, Y.; Niezgoda, J.A.; Gopalakrishnan, S.; Yu, Z. A Mobile App for Wound Localization Using Deep Learning. IEEE Access 2022, 10, 61398–61409. [Google Scholar] [CrossRef]
- García-Zapirain, B.; Elmogy, M.; El-Baz, A.; Elmaghraby, A.S. Classification of Pressure Ulcer Tissues with 3D Convolutional Neural Network. Med. Biol. Eng. Comput. 2018, 56, 2245–2258. [Google Scholar] [CrossRef] [PubMed]
- Scebba, G.; Zhang, J.; Catanzaro, S.; Mihai, C.; Distler, O.; Berli, M.; Karlen, W. Detect-and-Segment: A Deep Learning Approach to Automate Wound Image Segmentation. Inf. Med. Unlocked 2022, 29, 100884. [Google Scholar] [CrossRef]
- Zahia, S.; Garcia-Zapirain, B.; Elmaghraby, A. Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning. Sensors 2020, 20, 2933. [Google Scholar] [CrossRef] [PubMed]
- Anisuzzaman, D.M.; Patel, Y.; Rostami, B.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. Multi-Modal Wound Classification Using Wound Image and Location by Deep Neural Network. Sci. Rep. 2022, 12, 20057. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Santamaría, J.; Duan, Y. Robust Application of New Deep Learning Tools: An Experimental Study in Medical Imaging. Multimed Tools Appl. 2022, 81, 13289–13317. [Google Scholar] [CrossRef]
- Liu, H.; Yue, K.; Cheng, S.; Li, W.; Fu, Z. A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning. Comput. Math. Methods Med. 2021, 2021, 5514224. [Google Scholar] [CrossRef]
- Wang, C.; Anisuzzaman, D.M.; Williamson, V.; Dhar, M.K.; Rostami, B.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. Fully Automatic Wound Segmentation with Deep Convolutional Neural Networks. Sci. Rep. 2020, 10, 21897. [Google Scholar] [CrossRef]
- Rostami, B.; Anisuzzaman, D.M.; Wang, C.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. Multiclass Wound Image Classification Using an Ensemble Deep CNN-Based Classifier. Comput. Biol. Med. 2021, 134, 104536. [Google Scholar] [CrossRef]
- Wang, C.; Mahbod, A.; Ellinger, I.; Galdran, A.; Gopalakrishnan, S.; Niezgoda, J.; Yu, Z. FUSeg: The Foot Ulcer Segmentation Challenge. arXiv 2022. [Google Scholar] [CrossRef]
- National Pressure Ulcer Advisory Panel Pressure Injury Photos. Available online: https://npiap.com/page/Photos (accessed on 16 January 2023).
- Zahia, S.; Sierra-Sosa, D.; Garcia-Zapirain, B.; Elmaghraby, A. Tissue Classification and Segmentation of Pressure Injuries Using Convolutional Neural Networks. Comput. Methods Programs Biomed. 2018, 159, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Park, J.; Lee, H.; Kim, S.; Lee, B.U.; Chung, K.Y.; Oh, B. Sequential Change of Wound Calculated by Image Analysis Using a Color Patch Method during a Secondary Intention Healing. PLoS ONE 2016, 11, e0163092. [Google Scholar] [CrossRef] [Green Version]
- Yap, M.H.; Cassidy, B.; Pappachan, J.M.; O’Shea, C.; Gillespie, D.; Reeves, N.D. Analysis towards Classification of Infection and Ischaemia of Diabetic Foot Ulcers. In Proceedings of the BHI 2021—2021 IEEE EMBS International Conference on Biomedical and Health Informatics, Proceedings, Athens, Greece, 27–30 July 2021. [Google Scholar] [CrossRef]
- Cassidy, B.; Reeves, N.D.; Pappachan, J.M.; Gillespie, D.; O’Shea, C.; Rajbhandari, S.; Maiya, A.G.; Frank, E.; Boulton, A.J.; Armstrong, D.G.; et al. The DFUC 2020 Dataset: Analysis Towards Diabetic Foot Ulcer Detection. Eur. Endocrinol. 2021, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Ahmad, N.; Wang, C.; Yap, M.H. Recognition of Ischaemia and Infection in Diabetic Foot Ulcers: Dataset and Techniques. Comput. Biol. Med. 2020, 117, 103616. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; John, J.; Agu, E. Diabetic Foot Ulcer Ischemia and Infection Classification Using EfficientNet Deep Learning Models. IEEE Open J. Eng. Med. Biol. 2022, 3, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Sharif, M.; Anjum, M.A.; Khan, H.U.; Malik, M.S.A.; Kadry, S. An Integrated Design for Classification and Localization of Diabetic Foot Ulcer Based on CNN and YOLOv2-DFU Models. IEEE Access 2020, 8, 228586–228597. [Google Scholar] [CrossRef]
- Al-Garaawi, N.; Harbi, Z.; Morris, T. Fusion of Hand-Crafted and Deep Features for Automatic Diabetic Foot Ulcer Classification. TEM J. 2022, 11, 1055–1064. [Google Scholar] [CrossRef]
- Das, S.K.; Roy, P.; Mishra, A.K. Recognition of Ischaemia and Infection in Diabetic Foot Ulcer: A Deep Convolutional Neural Network Based Approach. Int. J. Imaging Syst. Technol. 2022, 32, 192–208. [Google Scholar] [CrossRef]
- Xu, Y.; Han, K.; Zhou, Y.; Wu, J.; Xie, X.; Xiang, W. Classification of Diabetic Foot Ulcers Using Class Knowledge Banks. Front. Bioeng. Biotechnol. 2022, 9, 1531. [Google Scholar] [CrossRef]
- Al-Garaawi, N.; Ebsim, R.; Alharan, A.F.H.; Yap, M.H. Diabetic Foot Ulcer Classification Using Mapped Binary Patterns and Convolutional Neural Networks. Comput. Biol. Med. 2022, 140, 105055. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Fadhel, M.A.; Al-Shamma, O.; Zhang, J.; Santamaría, J.; Duan, Y.; Oleiwi, S.R. Towards a Better Understanding of Transfer Learning for Medical Imaging: A Case Study. Appl. Sci. 2020, 10, 4523. [Google Scholar] [CrossRef]
- Ramachandram, D.; Ramirez-GarciaLuna, J.L.; Fraser, R.D.J.; Martínez-Jiménez, M.A.; Arriaga-Caballero, J.E.; Allport, J. Fully Automated Wound Tissue Segmentation Using Deep Learning on Mobile Devices: Cohort Study. JMIR Mhealth Uhealth 2022, 10, e36977. [Google Scholar] [CrossRef]
- Sarp, S.; Kuzlu, M.; Pipattanasomporn, M.; Guler, O. Simultaneous Wound Border Segmentation and Tissue Classification Using a Conditional Generative Adversarial Network. J. Eng. 2021, 2021, 125–134. [Google Scholar] [CrossRef]
- Chang, C.W.; Ho, C.Y.; Lai, F.; Christian, M.; Huang, S.C.; Chang, D.H.; Chen, Y.S. Application of Multiple Deep Learning Models for Automatic Burn Wound Assessment. Burns 2022, in press. [Google Scholar] [CrossRef]
- Goyal, M.; Reeves, N.D.; Davison, A.K.; Rajbhandari, S.; Spragg, J.; Yap, M.H. DFUNet: Convolutional Neural Networks for Diabetic Foot Ulcer Classification. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 4, 728–739. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, A.; Ugail, H.; Bukar, A.M. Assessment of Human Skin Burns: A Deep Transfer Learning Approach. J. Med. Biol. Eng. 2020, 40, 321–333. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Z.; Agu, E.; Wagh, A.; Jain, S.; Lindsay, C.; Tulu, B.; Strong, D.; Kan, J. Fine-Grained Diabetic Wound Depth and Granulation Tissue Amount Assessment Using Bilinear Convolutional Neural Network. IEEE Access 2019, 7, 179151–179162. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, Z.; He, Z.; Chen, X.; Zhang, Y.; Xie, P.; Li, T.; Zhou, J.; Li, F.; Yang, C.; et al. Real-Time Burn Depth Assessment Using Artificial Networks: A Large-Scale, Multicentre Study. Burns 2020, 46, 1829–1838. [Google Scholar] [CrossRef]
- Wagh, A.; Jain, S.; Mukherjee, A.; Agu, E.; Pedersen, P.C.; Strong, D.; Tulu, B.; Lindsay, C.; Liu, Z. Semantic Segmentation of Smartphone Wound Images: Comparative Analysis of AHRF and CNN-Based Approaches. IEEE Access 2020, 8, 181590–181604. [Google Scholar] [CrossRef]
- Pabitha, C.; Vanathi, B. Densemask RCNN: A Hybrid Model for Skin Burn Image Classification and Severity Grading. Neural Process. Lett. 2021, 53, 319–337. [Google Scholar] [CrossRef]
- Rajathi, V.; Bhavani, R.R.; Wiselin Jiji, G. Varicose Ulcer(C6) Wound Image Tissue Classification Using Multidimensional Convolutional Neural Networks. Imaging Sci. J. 2019, 67, 374–384. [Google Scholar] [CrossRef]
- Lien, A.S.Y.; Lai, C.Y.; Wei, J.D.; Yang, H.M.; Yeh, J.T.; Tai, H.C. A Granulation Tissue Detection Model to Track Chronic Wound Healing in DM Foot Ulcers. Electronics 2022, 11, 2617. [Google Scholar] [CrossRef]
- Blanco, G.; Traina, A.J.M.; Traina, C.; Azevedo-Marques, P.M.; Jorge, A.E.S.; de Oliveira, D.; Bedo, M.V.N. A Superpixel-Driven Deep Learning Approach for the Analysis of Dermatological Wounds. Comput. Methods Programs Biomed. 2020, 183, 105079. [Google Scholar] [CrossRef]
- Chang, C.W.; Christian, M.; Chang, D.H.; Lai, F.; Liu, T.J.; Chen, Y.S.; Chen, W.J. Deep Learning Approach Based on Superpixel Segmentation Assisted Labeling for Automatic Pressure Ulcer Diagnosis. PLoS ONE 2022, 17, e0264139. [Google Scholar] [CrossRef]
- Khalifa, N.E.; Loey, M.; Mirjalili, S. A Comprehensive Survey of Recent Trends in Deep Learning for Digital Images Augmentation. Artif. Intell. Rev. 2022, 55, 2351–2377. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Goyal, P. BPBSAM: Body Part-Specific Burn Severity Assessment Model. Burns 2020, 46, 1407–1423. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, M.D.; Mirdell, R.; Sjöberg, F.; Pham, T.D. Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks. J. Burn. Care Res. 2019, 40, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Goyal, P. Convolution Neural Network for Effective Burn Region Segmentation of Color Images. Burns 2021, 47, 854–862. [Google Scholar] [CrossRef]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Yap, M.H. Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE J. Biomed. Health Inf. 2019, 23, 1730–1741. [Google Scholar] [CrossRef] [Green Version]
- Chino, D.Y.T.; Scabora, L.C.; Cazzolato, M.T.; Jorge, A.E.S.; Traina, C.; Traina, A.J.M. Segmenting Skin Ulcers and Measuring the Wound Area Using Deep Convolutional Networks. Comput. Methods Programs Biomed. 2020, 191, 105376. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4217–4228. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Zhang, D.; Su, K.; Xin, N. Burn Images Segmentation Based on Burn-GAN. J. Burn. Care Res. 2021, 42, 755–762. [Google Scholar] [CrossRef]
- Gatys, L.; Ecker, A.; Bethge, M. A Neural Algorithm of Artistic Style. J. Vis. 2016, 16, 326. [Google Scholar] [CrossRef]
- Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017-Conference Track Proceedings, Toulon, France, 24–26 April 2017. [Google Scholar]
- Amjoud, A.B.; Amrouch, M. Convolutional Neural Networks Backbones for Object Detection. In Image and Signal Processing, Proceedings of the 9th International Conference, ICISP 2020, Marrakesh, Morocco, 4–6 June 2020; Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 12119. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML, Long Beach, CA, USA, 9–15 June 2019; Volume 2019. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision, Proceedings of the ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 8693. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; Volume 2016. [Google Scholar]
- Venkatesan, C.; Sumithra, M.G.; Murugappan, M. NFU-Net: An Automated Framework for the Detection of Neurotrophic Foot Ulcer Using Deep Convolutional Neural Network. Neural Process. Lett. 2022, 54, 3705–3726. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Fadhel, M.A.; Oleiwi, S.R.; Al-Shamma, O.; Zhang, J. DFU_QUTNet: Diabetic Foot Ulcer Classification Using Novel Deep Convolutional Neural Network. Multimed Tools Appl. 2020, 79, 15655–15677. [Google Scholar] [CrossRef]
- Das, S.K.; Roy, P.; Mishra, A.K. DFU_SPNet: A Stacked Parallel Convolution Layers Based CNN to Improve Diabetic Foot Ulcer Classification. ICT Express 2022, 8, 271–275. [Google Scholar] [CrossRef]
- Das, S.K.; Roy, P.; Mishra, A.K. Fusion of Handcrafted and Deep Convolutional Neural Network Features for Effective Identification of Diabetic Foot Ulcer. Concurr. Comput. 2022, 34, e6690. [Google Scholar] [CrossRef]
- Petkov, N. Biologically Motivated Computationally Intensive Approaches to Image Pattern Recognition. Future Gener. Comput. Syst. 1995, 11, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection to Cite This Version: Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Casado-García, Á.; Domínguez, C.; García-Domínguez, M.; Heras, J.; Inés, A.; Mata, E.; Pascual, V. Clodsa: A Tool for Augmentation in Classification, Localization, Detection, Semantic Segmentation and Instance Segmentation Tasks. BMC Bioinform. 2019, 20, 323. [Google Scholar] [CrossRef] [Green Version]
- Blagus, R.; Lusa, L. SMOTE for High-Dimensional Class-Imbalanced Data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Zhang, Y.; Liu, Q.; Dong, Q.; Zhao, F.; Shen, X.; Liu, Y.; Yan, S.; Zhou, S. Application of Refinements on Faster-RCNN in Automatic Screening of Diabetic Foot Wagner Grades. Acta Med. Mediterr. 2020, 36, 661–665. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML, Lille, France, 6–11 July 2015; Volume 1. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jiao, C.; Su, K.; Xie, W.; Ye, Z. Burn Image Segmentation Based on Mask Regions with Convolutional Neural Network Deep Learning Framework: More Accurate and More Convenient. Burn. Trauma 2019, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şevik, U.; Karakullukçu, E.; Berber, T.; Akbaş, Y.; Türkyilmaz, S. Automatic Classification of Skin Burn Colour Images Using Texture-Based Feature Extraction. IET Image Process 2019, 13, 2018–2028. [Google Scholar] [CrossRef]
- Munoz, P.; Rodríguez, R.; Montalvo, N. Automatic Segmentation of Diabetic Foot Ulcer from Mask Region-Based Convolutional Neural Networks. J. Biomed. Res. Clin. Investig. 2020, 2. [Google Scholar] [CrossRef]
- Chang, C.W.; Lai, F.; Christian, M.; Chen, Y.C.; Hsu, C.; Chen, Y.S.; Chang, D.H.; Roan, T.L.; Yu, Y.C. Deep Learning–Assisted Burn Wound Diagnosis: Diagnostic Model Development Study. JMIR Med. Inf. 2021, 9, e22798. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Computer Vision, Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 11211. [Google Scholar]
- Li, Z.; Chen, J. Superpixel Segmentation Using Linear Spectral Clustering. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Everingham, M.; Eslami, S.M.A.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Published in English | |
Journal articles | Conference proceedings, unpublished articles, and reviews |
Full text available | Abstract or full text not available |
Research subject of chronic wounds:
| Other types of dermatological pathologies |
Computer vision used for:
| Unrelated to computer vision |
Red, green, and blue (RGB) images were used as the main modality | Thermograms, spectroscopy, depth, and other modalities requiring special equipment were used as the main modality |
Deep learning technologies were used | Only machine learning or statistical methods were used |
Performance was reported with any of the following metrics:
| Performance was not reported |
Metric | Formula | Description | |
---|---|---|---|
Accuracy | Correct prediction ratio | ||
Sensitivity | Fraction of correct positive predictions | ||
Specificity | Fraction of correct negative predictions | ||
Precision | Correct positive predictions over all positive predictions | ||
Recall | Correct positive predictions over all correct predictions | ||
F1 (or DICE or F score) | Harmonic mean between precision and recall | ||
AUC (area under the curve) | Threshold-invariant prediction quality | ||
MCC (Matthews correlation coefficient) | Correlation between prediction and ground truth | ||
mAP (mean average precision) | Average precision of all classes |
Nr. | References | Image Count | Sets Used | Wound Types | Annotation Types | Use Count | External Use References |
---|---|---|---|---|---|---|---|
1 | [19] | 188 | 1 |
| Mask | 0 | |
2 | [20] | 74 | 1 |
| 0 | ||
3 | [21] | 4000 | 1 |
| Mask | 0 | |
4 | [22] | N/A | 1 |
| 2 | [23] | |
5 | [24] | 594 | 8 |
| 9 | [16,22,23,25,26,27,28,29,30] | |
6 | [31] | 1200 | 1 |
| 1 | ||
7 | [25,32,33,34] | 3867 | 4 |
| ROI Mask | 4 | |
8 | [35] | 40 | 2 |
| 2 | [16,36] | |
9 | [37] | 210 | 1 |
| 1 | [27] | |
10 | [38,39,40] | 5659 | 2 |
| Class labe lROI | 10 | [17,18,27,41,42,43,44,45,46] |
11 | [47] | 1000 | 1 |
| 1 | ||
Total: | 11,173 |
Reference | Subject and Classes (Each Bullet Represents a Different Model) | Methodology | Original Images (Training Samples) | Results |
---|---|---|---|---|
Goyal et al. (2018) [51] | Diabetic foot ulcer
|
| 344 (22,605) |
|
Cirillo et al. (2019) [63] | Burn wound
|
| 23 (676) |
|
Zhao et al. (2019) [53] | Diabetic foot ulcer
|
| 1639 | Wound Depth:
|
Abubakar et al. (2020) [52] | Burn wound
|
| 1900 |
|
Alzubaidi et al. (2020) [79] | Diabetic foot ulcer
|
| 754 (20,917) |
|
Alzubaidi et al. (2020) [47] | Diabetic foot ulcer
|
| 1200 (2677) |
|
Chauhan et al. (2020) [62] | Burn wound
|
| 141 (316) |
|
Goyal et al. (2020) [40] | Diabetic foot ulcer
|
| Ischemia: 1459 (9870) Infection: 1459 (5892) | Ischemia:
|
Wang et al. (2020) [54] | Burn wound
|
| 484 (5637) |
|
Rostami et al. (2021) [33] | Wound
|
| 400 (19,040) |
|
Xu et al. (2021) [45] | Diabetic foot ulcer
|
| Ischemia: 9870 (9870) Infection: 5892 (5892) | Ischemia:
|
Al-Garaawi et al. (2022) | Diabetic foot ulcer
|
| Wound: 1679 (16,790) Ischemia: 9870 (9870) Infection: 5892 (5892) | Wound:
|
Al-Garaawi et al. (2022) [43] | Diabetic foot ulcer
|
| 1679 (1679) |
|
Alzubaidi et al. (2022) [30] | Diabetic foot ulcer
|
| 3288 (59,184) |
|
Anisuzzaman et al. (2022) [29] | Wound
|
| 1088 (6108) |
|
Das et al. (2022) [80] | Diabetic foot ulcer
|
| 397 (3222) |
|
Das et al. (2022) [81] | Diabetic foot ulcer
|
| Wound: 1679 (1679) Ischemia: 9870 (9870) Infection: 5892 (5892) | Wound:
|
Das et al. (2022) [44] | Diabetic foot ulcer
|
| Ischemia: 9870 (9870) Infection: 5892 (5892) | Ischemia:
|
Liu et al. (2022) [41] | Diabetic foot ulcer
|
| Ischemia: 2946 (58,200) Infection: 2946 (58,200) | Ischemia:
|
Venkatesan et al. (2022) [78] | Diabetic foot ulcer
|
| 1679 (18,462) |
|
Yogapriya et al. (2022) [17] | Diabetic foot ulcer
|
| 5892 (29,450) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kairys, A.; Pauliukiene, R.; Raudonis, V.; Ceponis, J. Towards Home-Based Diabetic Foot Ulcer Monitoring: A Systematic Review. Sensors 2023, 23, 3618. https://doi.org/10.3390/s23073618
Kairys A, Pauliukiene R, Raudonis V, Ceponis J. Towards Home-Based Diabetic Foot Ulcer Monitoring: A Systematic Review. Sensors. 2023; 23(7):3618. https://doi.org/10.3390/s23073618
Chicago/Turabian StyleKairys, Arturas, Renata Pauliukiene, Vidas Raudonis, and Jonas Ceponis. 2023. "Towards Home-Based Diabetic Foot Ulcer Monitoring: A Systematic Review" Sensors 23, no. 7: 3618. https://doi.org/10.3390/s23073618
APA StyleKairys, A., Pauliukiene, R., Raudonis, V., & Ceponis, J. (2023). Towards Home-Based Diabetic Foot Ulcer Monitoring: A Systematic Review. Sensors, 23(7), 3618. https://doi.org/10.3390/s23073618