Non-Linear Conductivity Response of Graphene on Thin-Film PET Characterized by Transmission and Reflection Air-Plasma THz-TDS
<p>(<b>a</b>) A 1.4 µm laser driven two-color air-plasma-based THz-TDS which can easily switch between transmission-mode and reflection-mode configurations. L1, L2: lens with 300 mm focal length. HV: high voltage electrodes. BPF: band-pass filter at 400 nm. APD: avalanche photodiode. Si BS: silicon beamsplitter. (<b>b</b>) Typical THz waveforms of the original THz wave, the waveform transmitted through PET thin-film, and the measured waveform reflected from PET thin-film. (<b>c</b>) The corresponding spectra of the waveforms in (<b>b</b>).</p> "> Figure 2
<p>(<b>a</b>) The Raman histogram of the ratio of D band to G band intensity. (<b>b</b>) The Raman histogram of the ratio of the 2D band to G band intensity. Inset, an optical image of the graphene.</p> "> Figure 3
<p>(<b>a,b</b>) Transmitted waveforms and spectra through bare PET (Ref) or through graphene/PET (Sam) with an incident THz field strength of 60 kV/cm. Light red and blue bands indicate the experimental standard deviation between scans. (<b>c</b>) Extracted complex-valued conductance spectrum of the graphene under low THz field strength (together with the Drude model fitting curves). Light blue and magenta bands indicate the standard deviation of the calculated conductance. (<b>d,e</b>) Transmission waveforms and spectra (Ref and Sam) with an incident THz field strength of 1050 kV/cm. (<b>f</b>) Extracted and fitted conductance spectra at strong THz field strength.</p> "> Figure 4
<p>(<b>a</b>) DC conductance and scattering time obtained from Drude fits at various incident peak THz field strengths from the transmission-mode THz-TDS measurements. Solid squares: DC conductance. Open circles: scattering time. (<b>b</b>) The same parameters extracted from Drude fits reflection-mode measurements.</p> "> Figure 5
<p>Phase offset correction of the reflection-mode THz-TDS data analysis. (<b>a–d</b>) With optimum offset correction, the extracted conductance spectra match the best with the Drude model. The calculated reflection and phase difference curves also match best with the fit. (<b>e–h</b>) With 2 fs extra phase offset, the extracted parameters show significant deviation from the Drude model fits. (<b>i–l</b>) With 4 fs extra offset, a Drude fit is impossible in the broad frequency range.</p> "> Figure 6
<p>Reflection-mode measurement results. (<b>a,b</b>) Reflection waveform and spectra through bare PET (Ref) or through graphene/PET (Sam) in the incident THz field strength of 60 kV/cm. Light red and blue bands indicate the experimental standard deviation between scans. (<b>c</b>) Extracted complex-valued conductance spectrum of the graphene under low THz field strength (together with the Drude model fitting curves). Light blue and magenta bands indicate the standard deviation of the calculated conductance. (<b>d,e</b>) Reflection waveform and spectra (Ref and Sam) with the incident THz field strength of 1050 kV/cm. (<b>f</b>) Extracted and fitted conductance spectra under strong THz field strength.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Measurements in Transmission-Mode Configuration
3.2. Phase Corrections in Reflection-Mode Air-Plasma THz-TDS
3.3. Measurements from the Reflection-Mode Air-Plasma THz-TDS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Sciences 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidambi, P.R.; Mariappan, D.D.; Dee, N.T.; Vyatskikh, A.; Zhang, S.; Karnik, R.; Hart, A.J. A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting. ACS Appl. Mater. Interfaces 2018, 10, 10369–10378. [Google Scholar] [CrossRef] [Green Version]
- Backes, C.; Abdelkader, A.M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R. Production and processing of graphene and related materials. 2D Mater. 2020, 7, 02201. [Google Scholar] [CrossRef]
- Bøggild, P.; Mackenzie, D.; Whelan, P.R.; Petersen, D.H.; Buron, J.C.D.; Zurutuza, A.; Gallop, J.; Hao, L.; Jepsen, P.U. Mapping the electrical properties of large-area graphene. 2D Mater. 2017, 4, 042003. [Google Scholar] [CrossRef] [Green Version]
- Horng, J.; Chen, C.; Geng, B.; Girit, C.; Zhang, Y.; Hao, Z.; Bechtel, H.A.; Martin, M.; Zettl, A.; Crommie, M.F.; et al. Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 2011, 83, 165113. [Google Scholar] [CrossRef] [Green Version]
- Buron, J.D.; Petersen, D.H.; Bøggild, P.; Cooke, D.G.; Hilke, M.; Sun, J.; Whiteway, E.; Nielsen, P.F.; Hansen, O.; Yurgens, A.; et al. Graphene Conductance Uniformity Mapping. Nano Lett. 2012, 12, 5074–5081. [Google Scholar] [CrossRef] [PubMed]
- Buron, J.D.; Pizzocchero, F.; Jepsen, P.U.; Petersen, D.H.; Caridad, J.M.; Jessen, B.S.; Booth, T.J.; Bøggild, P. Graphene mobility mapping. Sci. Rep. 2015, 5, 12305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, P.R.; Shen, Q.; Luo, D.; Wang, M.; Ruoff, R.S.; Jepsen, P.U.; Bøggild, P.; Zhou, B. Reference-free THz-TDS conductivity analysis of thin conducting films. Opt. Express 2020, 28, 28819–28830. [Google Scholar] [CrossRef]
- Jnawali, G.; Rao, Y.; Yan, H.; Heinz, T.F. Observation of a Transient Decrease in Terahertz Conductivity of Single-Layer Graphene Induced by Ultrafast Optical Excitation. Nano Lett. 2013, 13, 524–530. [Google Scholar] [CrossRef]
- Whelan, P.R.; Panchal, V.; Petersen, D.H.; Mackenzie, D.M.A.; Melios, C.; Pasternak, I.; Gallop, J.; Østerberg, F.W.; Jepsen, P.U.; Strupinski, W.; et al. Electrical Homogeneity Mapping of Epitaxial Graphene on Silicon Carbide. ACS Appl. Mater. Interfaces 2018, 10, 31641–31647. [Google Scholar] [CrossRef] [Green Version]
- Whelan, P.R.; Huang, D.; Mackenzie, D.; Messina, S.A.; Li, Z.; Li, X.; Li, Y.; Booth, T.J.; Jepsen, P.U.; Shi, H.; et al. Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Opt. Express 2018, 26, 17748–17754. [Google Scholar] [CrossRef] [PubMed]
- Whelan, P.R.; Shen, Q.; Zhou, B.B.; Serrano, I.G.; Kamalakar, M.V.; Mackenzie, D.M.A.; Ji, J.; Huang, D.; Shi, H.; Luo, D.; et al. Fermi velocity renormalization in graphene probed by terahertz time-domain spectroscopy. 2D Mater. 2020, 7, 035009. [Google Scholar] [CrossRef]
- Lin, H.; Braeuninger-Weimer, P.; Kamboj, V.S.; Jessop, D.S.; Degl’Innocenti, R.; Beere, H.E.; Ritchie, D.A.; Zeitler, J.A.; Hofmann, S. Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy. Sci. Rep. 2017, 7, 10625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, D.M.A.; Whelan, P.R.; Bøggild, P.; Jepsen, P.U.; Redo-Sanchez, A.; Etayo, D.; Fabricius, N.; Petersen, D.H. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. Opt. Express 2018, 26, 9220–9229. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Burton, O.J.; Engelbrecht, S.; Tybussek, K.; Fischer, B.M.; Hofmann, S. Through-substrate terahertz time-domain reflection spectroscopy for environmental graphene conductivity mapping. Appl. Phys. Lett. 2020, 116, 021105. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.; Zhang, J.; Ji, J.; Yang, H.; Zhou, B.; Chen, X.; Bøggild, P.; Jepsen, P.U.; Tang, J.; Wang, F.; et al. Bottom-Up-Etching-Mediated Synthesis of Large-Scale Pure Monolayer Graphene on Cyclic-Polishing-Annealed Cu(111). Adv. Mater. 2022, 34, 2108608. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Brandt, N.C.; Farhat, H.; Hsu, A.L.; Kong, J.; Nelson, K.A. Nonlinear THz Conductivity Dynamics in P-Type CVD-Grown Graphene. J. Phys. Chem. B 2013, 117, 15819–15824. [Google Scholar] [CrossRef]
- Mics, Z.; Tielrooij, K.-J.; Parvez, K.; Jensen, S.A.; Ivanov, I.; Feng, X.L.; Müllen, K.; Bonn, M.; Turchinovich, D. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Comm. 2015, 6, 7655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalev, S.; Hafez, H.A.; Tielrooij, K.; Deinert, J.; Ilyakov, I.; Awari, N.; Alcaraz, D.; Soundarapandian, K.; Saleta, D.; Germanskiy, S.; et al. Electrical tunability of terahertz nonlinearity in graphene. Sci. Adv. 2021, 7, eabf9809. [Google Scholar] [CrossRef] [PubMed]
- Yeh, K.L.; Hoffmann, M.C.; Hebling, J.; Nelson, K.A. Generation of 10 µJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 2007, 90, 171121. [Google Scholar]
- Leitenstorfer, A.; Moskalenko, A.S.; Kampfrath, T.; Kono, J.; Castro-Camus, E.; Peng, K.; Qureshi, N.; Turchinovich, D.; Tanaka, K.; Markelz, A.; et al. The 2023 Terahertz Science and Technology Roadmap. J. Phys. D Appl. Phys. 2023; in press. [Google Scholar] [CrossRef]
- Klarskov, P.; Strikwerda, A.C.; Iwaszczuk, K.; Jepsen, P.U. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma. New J. Phys. 2013, 15, 075012. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.; Nagy, O.; Skupin, S.; Stathopulos, A.; Berg, L.; Jepsen, P.U.; Zhou, B. Frequency-resolved characterization of broadband two-color air-plasma terahertz beam profiles. Opt. Express 2023, 31, 9287–9298. [Google Scholar] [CrossRef]
- Karpowicz, N.; Dai, J.M.; Lu, X.F.; Chen, Y.Q.; Yamaguchi, M.; Zhao, H.W.; Zhang, X.C.; Zhang, L.L.; Zhang, C.L.; Price-Gallagher, M.; et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett. 2008, 92, 011131. [Google Scholar] [CrossRef]
- Kaltenecker, K.J.; Kelleher, E.J.R.; Zhou, B.; Jepsen, P.U. Attenuation of THz Beams: A “How to” Tutorial. J. Infrared Millim. Terahertz Waves 2019, 40, 878–904. [Google Scholar] [CrossRef] [Green Version]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, B.; Whelan, P.R.; Shivayogimath, A.; Mackenzie, D.M.A.; Bøggild, P.; Booth, T.J. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene. Chem. Mater. 2016, 28, 3789–3795. [Google Scholar] [CrossRef] [Green Version]
- Pashkin, A.; Kempa, M.; Němec, H.; Kadlec, F.; Kužel, P. Phase-sensitive time-domain terahertz reflection spectroscopy. Rev. Sci. Inst. 2003, 74, 4711–4717. [Google Scholar] [CrossRef] [Green Version]
- Thrane, L.; Jacobsen, R.H.; Jepsen, P.U.; Keiding, S.R. THz reflection spectroscopy of liquid water. Chem. Phys. Lett. 1995, 240, 330–333. [Google Scholar] [CrossRef]
- Vartiainen, E.M.; Ino, Y.; Shimano, R.; Kuwata-Gonokami, M.; Svirko, Y.P.; Peiponen, K. Numerical phase correction method for terahertz time-domain reflection spectroscopy. J. Appl. Phys. 2004, 96, 4171–4175. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, Y.; Lyu, Z.; Zhang, D.; Huang, Y.; Meng, C.; Zhao, Z.; Yuan, J. THz Time-Domain Spectroscopic Ellipsometry With Simultaneous Measurements of Orthogonal Polarizations. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Lü, Z.; Zhang, D.; Meng, C.; Sun, L.; Zhou, Z.; Zhao, Z.; Yuan, J. Polarization-sensitive air-biased-coherent-detection for terahertz wave. Appl. Phys. Lett. 2012, 101, 081119. [Google Scholar] [CrossRef]
- Jeon, T.; Grischkowsky, D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl. Phys. Lett. 1998, 72, 3032–3034. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Rasmussen, M.; Whelan, P.R.; Ji, J.; Shivayogimath, A.; Bøggild, P.; Jepsen, P.U. Non-Linear Conductivity Response of Graphene on Thin-Film PET Characterized by Transmission and Reflection Air-Plasma THz-TDS. Sensors 2023, 23, 3669. https://doi.org/10.3390/s23073669
Zhou B, Rasmussen M, Whelan PR, Ji J, Shivayogimath A, Bøggild P, Jepsen PU. Non-Linear Conductivity Response of Graphene on Thin-Film PET Characterized by Transmission and Reflection Air-Plasma THz-TDS. Sensors. 2023; 23(7):3669. https://doi.org/10.3390/s23073669
Chicago/Turabian StyleZhou, Binbin, Mattias Rasmussen, Patrick Rebsdorf Whelan, Jie Ji, Abhay Shivayogimath, Peter Bøggild, and Peter Uhd Jepsen. 2023. "Non-Linear Conductivity Response of Graphene on Thin-Film PET Characterized by Transmission and Reflection Air-Plasma THz-TDS" Sensors 23, no. 7: 3669. https://doi.org/10.3390/s23073669
APA StyleZhou, B., Rasmussen, M., Whelan, P. R., Ji, J., Shivayogimath, A., Bøggild, P., & Jepsen, P. U. (2023). Non-Linear Conductivity Response of Graphene on Thin-Film PET Characterized by Transmission and Reflection Air-Plasma THz-TDS. Sensors, 23(7), 3669. https://doi.org/10.3390/s23073669