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Abstract: Temperature transducers are frequently employed to keep track of process variables with
different kinds of industrial controllers. One of the widely used temperature sensors is Pt100. A
novel approach of utilizing an electroacoustic transducer in signal conditioning for Pt100 is proposed
in this paper. A “signal conditioner” is a resonance tube filled with air, which is operated in a free
resonance mode. The Pt100 wires are connected to one of the leads of the speaker in the resonance
tube where the temperature changes, which is related to Pt100 resistance. The resistance affects the
amplitude of the standing wave that is detected by an electrolyte microphone. An algorithm for
measuring the amplitude of the speaker signal is described, as well as the building and functioning of
the electroacoustic resonance tube signal conditioner. The microphone signal is acquired as a voltage
using LabVIEW software. A virtual instrument (VI) developed under LabVIEW provides a measure
of the voltage using standard VIs. The findings of the experiments reveal a link between the measured
amplitude of the standing wave within the tube and the change in Pt100 resistance as the ambient
temperature changes. Additionally, the suggested method may interface with any computer system
when a sound card is added to it without the need for any extra measuring tools. The maximum
nonlinearity error at full-scale deflection (FSD) is estimated at roughly 3.77%, and the experimental
results and a regression model are used to assess the relative inaccuracy of the developed signal
conditioner. When comparing the proposed approach with well-known approaches for Pt100 signal
conditioning, the proposed one has several advantages such as its simplicity of connecting Pt100 to a
personal computer directly via the sound card of any personal computer. In addition, there is no need
for a reference resistance to perform a temperature measurement using such a signal conditioner.

Keywords: acoustic resonance; temperature measurement; standing wave

1. Introduction

One of the most significant engineering tasks is still the measurement and control
of temperature. This is because the efficiency and performance of technical mechanisms,
machinery and systems are directly impacted by their temperature. This indicates why
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temperature measuring and control research and development is a valuable and ongoing
activity [1].

Different types of transducers are used for temperature measurement and control.
Each type of transducer has its own temperature-measuring parameters, as well as a
somewhat complicated circuitry that is typically employed for signal conditioning and
processing. There is still a need for a simple universal signal conditioner where temperature
sensors can be interfaced directly to PC or microcomputers such as Raspberry PI or Arduino
without the need for additional circuitry. This lowers the cost of the measurement and
control circuit and equipment and unifies the grade and type of temperature transducers
used [2,3].

This research paper presents an investigation into the possibility of using an electroa-
coustic transducer as a signal conditioner for one of the most common thermal resistors,
namely Pt100.

Resistive elements are one of the most common types of sensors [4]. They are inex-
pensive and relatively easy to connect to normalizing circuits. Resistive elements can be
made sensitive to temperature, deformation (under the action of force or bending) and the
flow of light. Many complex physical processes can be measured using these elements,
for example, the flow of liquids or masses (measuring the temperature difference of two
calibrated resistors) [5].

A thermal resistive sensor is a parametric measuring sensor, the active resistance of
which changes with temperature. Thermal resistive sensors can be formed from metal
or semiconductor materials. The latter are called thermistors. The sensitive element of a
metal thermoresistor is a thin copper or platinum wire [6]. The wire is wound bifilarly on
a frame made of insulating and heat-resistant material. The sensitive element is placed
in a metal protective sleeve (tube with a sealed end). Special terminals are available for
connecting the thermoresistive sensors to the respective secondary device, which is called
the signal conditioner. A simple signal conditioner can be made by utilizing a voltage
divider, in which a thermoresistor is connected as one of the resistors of the driver, and the
second resistive is a fixed resistor used as a reference. In the case of a voltage divider circuit,
the temperature change is converted into resistance change, and this resistance change is
produced as an output voltage of the voltage divider [7].

A more accurate approach to converting the temperature change of thermal resistance
is applying a resistive bridge (such as a whetstone bridge). In this case, the thermal sensor
is connected to one of the arms of the bridge and the measured voltage is a function of
the temperature change [8]. The connection of thermal resistive sensors to the whetstone
bridge can be classified according to the number of thermal sensors that are connected to
each arm of the bridge, i.e., quarter, half and full. In some applications, it is recommended
to connect the output voltage of the bride to a special type of amplifier circuit such as a
differential amplifier or instrumentation amplifier for a more accurate solution. Nowadays,
the signal conditioner of a thermal amplifier can be found as an integrated circuit, which is
fabricated by several manufacturers [9].

Electroacoustic transducers are devices that convert electrical energy into acoustic
energy (energy of elastic medium vibrations) and vice versa [10,11]. They identify trans-
mitters and receivers based on the direction of conversion. Essentially, electroacoustic
transducers perform two types of energy conversion [12,13]: electromechanical, in which
a portion of the electrical energy supplied to the transducer is converted into the vibra-
tional energy of a mechanical system, and mechanical-acoustic, in which a sound field is
created in the medium as a result of mechanical system vibrations [14,15]. Sound receivers
based on a change in the electrical resistance of a sensitive element under the influence
of sound pressure [16], such as carbon microphones or semiconductor receivers that use
strain measurement or the dependence of the semiconductor resistance on mechanical
stresses [17,18], belong to a special class of electroacoustic transducers. When a transducer
serves as a transmitter, an electric voltage (V) and current (I) are applied as its input, which
determines its vibrational velocity (c) and sound pressure (P) when it is used as a receiver.
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However, pressure P or vibrational velocity c develops, resulting in voltage V and current
I on its output [19]. Previous articles [20,21] describe the features of the electro-acoustic
transducer–receiver:

- its sensitivity in the no-load and internal resistance Zin modes;
- its frequency dependence types (wideband and resonant receivers).

The operation of the electroacoustic transducer–transmitter is characterized by sensi-
tivity, which is defined as a ratio that is dependent on several factors, including:

- the distance between the transmitter and the receiver;
- the current and voltage applied to the speaker coil;
- an electric energy source’s load, represented by internal resistance;
- the acoustic load resistance ZL, which is equal to the radiation resistance Zr when an

electric field meets a continuous medium.

The stated parameters are frequency dependent. Electroacoustic transducers are
commonly employed to generate and acquire sound. In ultrasonic technology, sonar
and acoustoelectric, they are regarded as the “core” for measuring and receiving elastic
vibrations. The most common electroacoustic transducers are linear, i.e., they meet the
criteria for undistorted signal transmission, they are reversible, i.e., they can function as
both a radiator and a receiver, and they follow the reciprocity principle.

The use of electroacoustic transducers to signal condition the Pt100 thermoresistor
is proposed in this paper. In this scenario, the electroacoustic transducers are part of an
air-filled resonance tube. When an acoustic wave is formed within the tube, the resistance of
the thermoresistor is measured using the principle of amplitude variation. The temperature
is then converted from the recorded amplitude.

Using phenomena based on acoustic wave propagation in a medium, many physical
characteristics such as pressure, density, temperature and displacement could be evaluated.
Acoustic field parameters such as amplitude, frequency and/or phase of an acoustic signal
propagated in the material could be used to measure these quantities [22,23]. Temperature,
pressure, displacement and density are among these variables [23–26]. For example, an
acoustic temperature detector based on establishing a standing wave in a resonance tube
was used to analyze the temperature in a heater [24], and the displacement of a moving
spindle was recorded in the resonance mode of resonance tube operation [10]. In addition,
researchers created a method for measuring the density of gases and vapors based on
acoustic resonance [11].

Acoustic detectors are classed as velocity or impedance detectors based on the mea-
sured variable [11,12]. Time-impulse detectors and phase-interfering detectors are two
types of velocity detectors. The time-based detectors work by detecting the time interval
of an acoustic wave that has been transmitted and propagated through the medium. This
time interval is considered a function of the measured value. The length of a propagated
acoustic wave in an acoustic resonance tube is measured by phase-interfering detectors.
The resonance frequency generated within a resonance tube is measured using both free
resonance and a forced mode of operation [26].

The final required signal is frequency, according to a survey of existing acoustic
detectors proposed in several works. The authors of [27] built software to measure the
frequency of the captured signal. The authors used CBuilder Environment to display the
link between the generated acoustic peak and time in their study, although the LabVIEW
environment might also be used to measure the amplitude, frequency and phase of an
acquired signal [28,29]. This means that extra instruments, such as a “frequency-to-voltage
converter”, must be employed to display the desired signal.

These electronic circuits or signal processors are commonly used to build frequencies-
to-voltage (F-to-V) converters [13]. A combination of electrical components, such as oper-
ational amplifiers, is used in the first technique. The frequency is converted into voltage
using transistors and timers.



Sensors 2023, 23, 2775 4 of 15

Previously, researchers used a U-shape resonance tube to assess the density of various
liquids [28]. It was found that an acoustic wave propagating through a medium can provide
information on the density of liquid.

In [30], the author presented a new signal conditioning circuit that uses a resonance
tube to acquire LVDT signals. The signal conditioner was successfully employed to measure
the disablement of the LVDT core, according to the experimental results.

2. Materials and Methods
2.1. Theoretical Background

The equation for displacement oscillations ξ in a pipe with gas under the adiabatic
law is given by [31]

∂2ξ

∂ t2 = c2 ∂2ξ

∂ x2 , (1)

where c—the velocity of sound;
ξ—the displacement of the particles of this section along the axis of the tube dur-

ing vibrations;
x—the coordinate of the particles located at some cross-section of the pipe.
Equation (1) is called the wave equation. A particular solution of Equation (1) is a

wave traveling along the x axis

ξ = A·cos(ωt − kx + ϕ), (2)

where A—the amplitude of the wave;
ω—the angular frequency;
k = ω/c—the wave number;
ϕ—the initial phase.
Let a tube of length l filled with air be constructed in the form of a glass tube. The

source of the acoustic wave is fixed at one of its ends, at point x = 0, and the microphone is
fixed at point x = l, as shown in Figure 1.
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In Figure 1, acoustic resonance occurs when a standing wave is generated in a tube
filled with a medium such as air. The principle of acoustic resonance is often implemented
by employing a speaker–microphone combination, with the two located at distance L
from each other. An acoustic standing wave between the speaker and the microphone is
generated using the sound card of the PC and transmitted within a tube.
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When resonance is created in the tube, two waves propagate in opposite directions
at the same frequency. With continuous operation of the source, the wave traveling from
it will be added to the reflected wave. For simplicity, we will assume that the reflected
wave has almost the same amplitude as the incident one. By applying Equation (1), let us
write the equations of the wave from the source ξ1 and the reflected wave ξ2 for a closed
pipe [31]

ξ1 = A cos(ωt− kx), (3)

ξ1 = A cos(ωt + kx + π). (4)

As a result of the addition, the oscillation at point x will occur according to the
following formula:

ξ = ξ1 + ξ2 = 2A sin(kx) sin(ωt) = B(x) sin(ωt). (5)

Thus, the oscillation amplitudes B(x) of different points of the resulting wave are
different. The resulting wave is called a standing wave. Points whose oscillation amplitude
is equal to zero are called nodes. We find the coordinates of the nodes from the equation

B(x) = 0 or sin(kx) = 0. (6)

This equation has solutions

x =
πn
k

=
nλ

2
, n = 0, 1, . . . (7)

From Formula (7), it can be seen that the distance between neighboring nodes is equal
to half the wavelength. Since there will be knots at the closed ends of the pipe, an integer
number of half wavelengths λ fits on the length of the pipe L.

The wavelengths correspond to frequencies given by

fn =
c

λn
=

c
2L

n, n = 1, 2, . . . (8)

Harmonic vibrations with frequencies fn in Equation (8) are called natural or normal
vibrations. They are also called harmonics.

Points that oscillate with maximum amplitude are called antinodes. We determine the
antinode coordinates from the equation sin(kx) = ±1:

x =

(
n +

1
2

)
λ

2
, n = 1, 2, . . . (9)

The distance between adjacent antinodes is also equal to half the wavelength.
The amplitude B(x) changes sign when passing through zero, which means that the

points lying on opposite sides of the node oscillate in antiphase. All points enclosed
between neighboring nodes oscillate in phase, as shown in Figure 2.
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When we differentiate Equation (5) with respect to t, we find the expression for the
particle velocity ∂t/∂ξ of the gas

∂ξ

∂t
= 2Aω sin(kx) cos(ωt). (10)

When differentiating (5) with respect to x and applying formula p′−p
p = −γ ∂ξ

∂x
from [30], we obtain the sound pressure

∆p = −2Aγpk cos(kx) sin(ωt), (11)

where γ—the ratio of the heat capacity at constant pressure to the heat capacity at constant
volume;

p—the pressure in initial conditions (if there are no oscillations of gas particles, then
the pressure in the cross sections x and x + ∆x is the same and equals p).

The pressure difference obtained in Equation (11), can be measured by a microphone
as a voltage output.

2.2. Transducer Design

An electroacoustic resonance tube is a glass tube with an acoustic receiver attached to
one end and an acoustic transmitter attached to the other end (Figure 3).
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The acoustic transmitter is a source of oscillation connected to a sound card’s speaker
output or a PC or laptop’s speaker output. A microphone is connected to a sound card’s
MIC input, and it is referred to as an acoustic oscillation receiver. Based on [10], there are
two modes of resonance that can be formed within the resonance tube. The first mode is
called free acoustic resonance. Without adjusting the resonance tube parameters, a standing
wave is formed in this mode (frequency, amplitude, phase). The second mode is called a
forced mode of resonance, and it is created by adjusting the tube’s parameters (specifically,
the frequency value) in relation to the tube’s length and the type of gas it contains.

The operation of the electroacoustic resonance tube signal conditioner is shown below.
When a standing wave is generated within a tube, the parameters of an electroacoustic
resonance tube are extremely important. These are the parameters:

(1) Standing wave frequency;
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(2) Standing wave amplitude;
(3) Standing wave phase;
(4) Voltage applied to the microphone or speaker;
(5) Current sent through the speaker or microphone.

In this work, the resonance tube will be operated as a signal conditioner for resistive-
type sensors, namely Pt100. Figure 3 illustrates the speaker’s connection with Pt100.

The current flows via the resistance Rt, and the coil of the speaker XL is given by the
following formula

I =
Vsp

XL + Rt
, (12)

where Vsp—the output voltage of the speaker;
XL—the inductive reactance of the coil;
Rt—the temperature of Pt100 at temperature t.
Meanwhile, the impedance XL = ωL = 2π f L, so Formula (12) can be written as

I =
Vsp

2π f L + Rt
, (13)

where L—the inductance of the speaker circuit.
An electrodynamic speaker with an elastic membrane can be considered an inductive

transducer, and the following expression is used to describe the relationship between the
coil’s inductance and the produced pressure [15]

L =
µ0N2 A

δ0
, (14)

where µ0—the relative magnetic permittivity of the air;
N—the number of turns of the coil;
A—the area of the membrane;
δ0—the value of the air gap between the membrane and the coil at temperature t0.
By using Formula (4) in Formula (13), we can produce

I =
Vsp

2π f µ0 N2 A
δ0

+ Rt

. (15)

Considering that m = 2π
µ0 N2 A

δ0
= const, Equation (4) has the form

I =
Vsp

f ·K + Rt
. (16)

By rearranging Equation (5) according to Rt, we can produce

Rt =
Vsp

I
− f ·m. (17)

Assuming that a = 1
I , b = − f ·m, Formula (17) can be written as

Rt = a·Vsp + b. (18)

The value of Rt can be calculated using Equation (8) based on the measured Vsp, which
is a sound oscillation acquired by the microphone (VMIC).

Based on the microphone’s physical attributes and design, manufacturers set the
maximum decibel level. The maximum dB level is defined as the level at which the
diaphragm approaches the backplate or at which the total harmonic distortion (THD),
which is commonly 3 percent THD, reaches the prescribed level. The highest decibel
level that a microphone may produce in each application relies on the voltage used and
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the sensitivity of that specific microphone. Calculating the pressure in pascals that the
microphone can withstand is necessary before determining the maximum output for a
microphone utilizing a given preamplifier with an accompanying peak voltage. Using the
formula below, you can determine the pressure [32–36]:

∆p =
VMIC

S
, (19)

where ∆p—equals the pressure of the wave at the antinodes, in (Pa);
VMIC—the voltage produced by the microphone output (mV), which is approximately

equal to half the amplitude of the voltage produced by the speaker when the speaker is
adjusted to generate a voltage between –1 and +1 V;

S—the sensitivity of the microphone, mV/Pa.
From Equation (19), we can obtain the voltage produced by the microphone when the

sensitivity of the microphone is known, so Equation (11) can be written as

VMIC = ∆p·Sensitivty = −2·A·γ·p·k·cos(x) sin(ωt). (20)

So, the microphone measures the double amplitude, which is generated by the speaker
in the resonance mode of operation when a standing wave is generated within a tube, and
Formula (8) can be written as

Rt =
1
2

aVMIC + b. (21)

Formula (9) supports the determination of the resistance of Pt100, which is defined by
the following formula

Rt = R0(1 + αT). (22)

So, to find the temperature from Equation (10), we can use the following

T =

Rt
R0
− 1

α
. (23)

Considering that Rt =
1
2 aVMIC + b, as obtained from Equation (19), we can find the

final relationship for the temperature change with the voltage output of the electroacoustic
signal conditioner, i.e.,

T =

1
2 aVMIC +b

R0
− 1

α
. (24)

Equation (24) presents the relationship, which can be considered a mathematical
model of the signal conditioner output voltage. It translates the change of temperature
of thermal resistor Pt100 into voltage without the need for traditional circuitry such as a
voltage divider Vdivider or whetstone bridge. A possible source of error in the proposed
schemes is presented by the surrounding acoustic features of the environment; the lead
wires effect of Pt100 needs to be considered and compensated for more accurate modeling.

2.3. Software Design

The LabVIEW programming environment was chosen for software development
since it met all the requirements for sound measuring characteristics such as amplitude,
frequency and phase [16].

Figure 4 shows the algorithm for measuring the amplitude of the speaker signal.
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The advantage of using the resonance mode is that the transducer parameters, such as
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can find applications in gas chromatography, where acoustic detectors are used [27,30], to
ensure the affecting temperature can be measured and controlled at the same time as the
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detection process. In addition, a new detector for gas chromatography can be designed
using an acoustic detector and katharometer, where the chromatogram can be presented as
a function of sound pressure and the change of katharometer resistance.

3. Experimental Setup

The experimental setup is shown in Figure 6. It consists of a heater system, along with
an electroacoustic signal conditioner built from a glass tub, speaker and microphone.
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4. Experimental Results and Data Analyses

Table 1 shows the relationship between the temperature, the measured resistance of
Pt100 and the voltage of the speaker when the proposed approach is utilized, as well as
the relationship between the temperature and the voltage when a voltage divider Vdivider
is used.

Table 1. Experimental data.

Surrounding
Temperature, ◦C

Experimental Results

Rt, Ohm Vdivider, V Vsp, mV

20 109.8 2.59 348.9

25 110.6 2.72 336.7

30 113.7 2.64 331.4

35 115.7 2.76 326.7

40 116.6 2.68 322.0

45 119.6 2.80 318.3

50 121.6 2.72 314.0

55 123.5 2.84 310.6

60 125.5 2.76 307.2

65 127.4 2.88 300.0

70 129.4 2.80 296.9

75 130.3 2.92 293.1
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Table 1. Cont.

Surrounding
Temperature, ◦C

Experimental Results

Rt, Ohm Vdivider, V Vsp, mV

80 133.3 2.84 290.1

85 134.2 2.86 285.3

90 136.2 2.87 280.4

95 138.1 2.99 277.9

100 141.1 3.01 273.0

105 143.1 3.03 269.6

110 144.0 3.04 265.4

115 147.0 3.06 260.1

120 148.9 3.08 255.6

125 149.9 2.99 250.3

130 152.8 3.11 246.2

135 154.8 3.12 241.2

140 155.7 3.14 237.0

145 158.7 3.05 232.1

150 159.7 3.17 226.3

155 162.6 3.08 221.1

160 164.6 3.20 215.1

165 166.5 3.21 210.6

170 167.5 3.12 205.4

175 170.4 3.14 201.7

180 172.4 3.15 196.1

185 174.3 3.26 191.6

190 176.3 3.18 185.7

195 178.2 3.29 181.8

200 180.2 3.30 175.5

The results obtained for the electroacoustic signal conditioner are acceptable when
compared with the results obtained for the voltage divider. The main advantage of using
the electroacoustic signal conditioner is that it allows us to obtain the results directly on the
PC, without the need for additional signal processing elements such as DAQ devices.

To test the experimental reproducibility and justification for the proposed approach,
we compare the results obtained for the proposed signal conditioner with those in [35],
where a traditional approach was used. The main comparison points are listed in Table 2.

In Table 2, we can see that the proposed signal conditioner has several advantages
compared to the method proposed in work [35], such as the simplicity of connecting to any
PC sound card and the lack of a need for additional processing blocks.

Figure 7 shows plots between the temperature change, the measured Pt100 resistance
and the measured speaker voltage.
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Table 2. Comparison of the proposed signal conditioner with the traditional approach in [35].

Comparison Parameter Electroacoustic Signal
Conditioner Traditional Approach

Output signal Volts Volts

Need for reference resistor(s) No need

1 resistor for voltage divider
circuit.

3 resistors for whetstone
bridge circuit

V 2 V 5 V

Need for special computer
interfacing block

Does not need additional
blocks

Standard PC sound card can
be implemented

Needs interfacing units to
complete connection with PC

Range of measured
temperature 20–100 ◦C 0–850 ◦C

Sensitivity −7.44 mV/◦C 5.88 mV/◦C
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Figure 7. Plots between the temperature change, the measured Pt100 resistance and the measured
speaker voltage.

The findings of the experiments reveal a relationship between the measured amplitude
of the standing wave within the tube and the change in Pt100 resistance as the ambient
temperature changes.

The cftool is used in MATLAB to calculate the least square regression line, which has
a form similar to Equation (21)

Rt(Vspeaker) = p1·Vspeaker + p2. (25)

The coefficients (with 95% confidence bounds) were found to be p1 = −0.4298 and
p2 = 257.1.

Figure 8 plots the curve fitting (calibration curve).
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Regarding the calibration curve obtained using curve fitting tools, the nonlinearity
is around 3.77%, which is acceptable for such a type of measurement. In order to achieve
lower nonlinearity and high resonance frequency, air may be substituted with a gas that
has a smaller molecular weight (M) and a higher specific heat ratio.

5. Conclusions

Previous studies showed how a resonance tube can be modified to measure a vari-
ety of physical and physical-chemical quantities. This paper demonstrates how to use
a resonance tube as a signal conditioner to measure the resistance and temperature of
Pt100. It was demonstrated experimentally that the measured resistance of Pt100 and the
amplitude of the generated standing wave within a resonance tube have a linear relation-
ship. The relationship between the temperature change and the measured voltage has a
linear characteristic, where the nonlinearity error is about 2.8%. In addition, the proposed
approach does not need any added measurement steps to perform the interfacing with
a PC (or any computer system) via the sound card. When compared to other methods
for Pt100 signal conditioning, the proposed methodology has several advantages, such as
the ability to connect Pt100 directly to any personal computer’s sound card. Moreover,
utilizing such a signal conditioner for temperature monitoring eliminates the requirement
for a reference resistance.
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