A Fiber Optic Sensor for Monitoring the Spectral Alterations and Depth in Ex Vivo and In Vivo Cryosurgery
<p>(<b>a</b>) Schematic diagram of top view of the fiber array sensor and experimental setup with thermocouple, laser source, and data acquisition system (DAS). (<b>b</b>) The fiber array sensor.</p> "> Figure 2
<p>Timelines of intensities and temperature showing the temporal change in temperature and backscattering optical intensities from the six fibers during thawing [<a href="#B13-sensors-23-02690" class="html-bibr">13</a>].</p> "> Figure 3
<p>(<b>a</b>) Average backscattering intensity variation (of region B in <a href="#sensors-23-02690-f002" class="html-fig">Figure 2</a>) with depth of freezing for the inner fibers 3 and 4 of the array sensor. (<b>b</b>) Optical diffusion in frozen and unfrozen tissues.</p> "> Figure 4
<p>Schematic diagram of experimental setup used for spectral analysis of ex vivo porcine and in vivo human measurements.</p> "> Figure 5
<p>(<b>a</b>) Ex vivo porcine spectral measurements taken during thawing. (<b>b</b>) In vivo human finger spectral measurements taken during thawing.</p> "> Figure 6
<p>(<b>a</b>) Spectral variations in frozen (black) and unfrozen (red) porcine tissue. (<b>b</b>) Spectral variations in frozen (black) and unfrozen (red) live human finger tissue. (<b>c</b>) Normalized spectral variations in frozen (black) and unfrozen (red) porcine tissue, (<b>d</b>) Normalized spectral variations in frozen (black) and unfrozen (red) live human finger tissue.</p> "> Figure 7
<p>Comparison of frozen and unfrozen porcine/human tissues (black/red, respectively). (<b>a</b>) Frozen porcine/human tissue; (<b>b</b>) Unfrozen porcine/human tissue (black/red, respectively).</p> "> Figure 8
<p>Thawing timeline of human tissues at 650 nm. (<b>a</b>) Total thawing timeline of human tissues. (<b>b</b>) Thawing timeline of initial 250 s of human tissue’s estimated frozen depth (mm).</p> ">
Abstract
:1. Introduction
2. Principle of the Measurement Technique
3. Calibration Depth in Porcine Ex Vivo Tissue
3.1. Optical Transmission and Backscattering Setup and Procedure
3.2. Measurement of Frozen Skin Thickness with the Fiber Array Sensor
4. Spectral Study and Comparison of Porcine and Human Spectra
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gage, A.A.; Baust, J.G. Cryosurgery for Tumors. J. Am. Coll. Surg. 2007, 205, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.; Zhao, G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Adv. Sci. 2021, 8, 2002425. [Google Scholar] [CrossRef] [PubMed]
- Rubinsky, B. Cryosurgery. Annu. Rev. Biomed. Eng. 2000, 2, 157–187. [Google Scholar] [CrossRef] [PubMed]
- Gaitanis, G.; Nomikos, K.; Vava, E.; Alexopoulos, E.; Bassukas, I. Immunocryosurgery for Basal Cell Carcinoma: Results of a Pilot, Prospective, Open-Label Study of Cryosurgery during Continued Imiquimod Application. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Scandiffio, R.; Bozzi, E.; Ezeldin, M.; Capanna, R.; Ceccoli, M.; Colangeli, S.; Donati, D.M.; Colangeli, M. Image-Guided Cryotherapy for Musculoskeletal Tumors. Curr. Med. Imaging 2021, 17, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Tacke, J.; Speetzen, R.; Heschel, I.; Hunter, D.W.; Rau, G.; Günther, R.W. Imaging of Interstitial Cryotherapy—An in Vitro Comparison of Ultrasound, Computed Tomography, and Magnetic Resonance Imaging. Cryobiology 1999, 38, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Samset, E.; Mala, T.; Edwin, B.; Gladhaug, I.; Søreide, O.; Fosse, E. Validation of Estimated 3D Temperature Maps during Hepatic Cryo Surgery. Magn. Reson. Imaging 2001, 19, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, H.; Liu, J.; Deng, Z.; Rao, W.; Xiang, S. Feasibility Study on Using an Infrared Thermometer for Evaluation and Administration of Cryosurgery. Minim. Invasive Ther. Allied Technol. 2007, 16, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Milner, T.E.; Kim, J.; Goodman, J.N.; Vargas, G.; Aguilar, G.; Nelson, J.S. Use of Optical Coherence Tomography to Monitor Biological Tissue Freezing during Cryosurgery. J. Biomed. Opt. 2004, 9, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Mitri, F.G.; Davis, B.J.; Alizad, A.; Greenleaf, J.F.; Wilson, T.M.; Mynderse, L.A.; Fatemi, M. Prostate Cryotherapy Monitoring Using Vibroacoustography: Preliminary Results of an Ex Vivo Study and Technical Feasibility. IEEE Trans. Biomed. Eng. 2008, 55, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Edd, J.F.; Ivorra, A.; Horowitz, L.; Rubinsky, B. Imaging Cryosurgery with EIT: Tracking the Ice Front and Post-Thaw Tissue Viability. Physiol. Meas. 2008, 29, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef] [PubMed]
- Spasopoulos, D.; Rattas, G.; Kaisas, A.; Dalagiannis, T.; Bassukas, I.D.; Kourkoumelis, N.; Ikiades, A. Fiber Optic Sensor for Real-Time Monitoring of Freezing–Thawing Cycle in Cryosurgery. Appl. Sci. 2020, 10, 1053. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, C.; Kashou, N.H. New Window on Optical Brain Imaging; Medical Development, Simulations and Applications. In Selected Topics on Optical Fiber Technology; Yasin, M., Harun, S.W., Arof, H., Eds.; IntechOpen: Rijeka, Croatia, 2012; p. 11. [Google Scholar]
- Dervieux, E.; Bodinier, Q.; Uhring, W.; Théron, M. Measuring Hemoglobin Spectra: Searching for Carbamino-Hemoglobin. J. Biomed. Opt. 2020, 25, 105001. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikiades, A.; Bassukas, I.D.; Kourkoumelis, N. A Fiber Optic Sensor for Monitoring the Spectral Alterations and Depth in Ex Vivo and In Vivo Cryosurgery. Sensors 2023, 23, 2690. https://doi.org/10.3390/s23052690
Ikiades A, Bassukas ID, Kourkoumelis N. A Fiber Optic Sensor for Monitoring the Spectral Alterations and Depth in Ex Vivo and In Vivo Cryosurgery. Sensors. 2023; 23(5):2690. https://doi.org/10.3390/s23052690
Chicago/Turabian StyleIkiades, Aris, Ioannis D. Bassukas, and Nikolaos Kourkoumelis. 2023. "A Fiber Optic Sensor for Monitoring the Spectral Alterations and Depth in Ex Vivo and In Vivo Cryosurgery" Sensors 23, no. 5: 2690. https://doi.org/10.3390/s23052690
APA StyleIkiades, A., Bassukas, I. D., & Kourkoumelis, N. (2023). A Fiber Optic Sensor for Monitoring the Spectral Alterations and Depth in Ex Vivo and In Vivo Cryosurgery. Sensors, 23(5), 2690. https://doi.org/10.3390/s23052690