Detection of Geothermal Anomalies in Hydrothermal Systems Using ASTER Data: The Caldeiras da Ribeira Grande Case Study (Azores, Portugal)
<p>Land-use map (based on [<a href="#B37-sensors-23-02258" class="html-bibr">37</a>] and the geographic location of the Ribeira Grande geothermal field) with the existing geothermal wells (based on the studies of [<a href="#B23-sensors-23-02258" class="html-bibr">23</a>,<a href="#B38-sensors-23-02258" class="html-bibr">38</a>,<a href="#B39-sensors-23-02258" class="html-bibr">39</a>]), the main fumarolic emissions [<a href="#B35-sensors-23-02258" class="html-bibr">35</a>], and fault type (based on [<a href="#B40-sensors-23-02258" class="html-bibr">40</a>]).</p> "> Figure 2
<p>Location of the study area highlighting the surrounding area of the RG4 well (signed as a black triangle). (<b>A</b>) São Miguel DEM; (<b>B</b>) orthophoto map of the RG4 surrounding area in 2006, before the thermal anomaly; and (<b>C</b>) UAV RGB image after the thermal anomaly, 2020 (Source: CIVISA). The red line corresponds to the area with the highest concentration of anomalies and visible alteration of vegetation.</p> "> Figure 3
<p>Oblique aerial photo of the degassing area located next to the RG4 well with altered vegetation. (<b>A</b>) The visible image shows the altered vegetation associated with the thermal anomaly, and (<b>B</b>) the thermal image acquired with a FLIR Therma CAM™ SC640 thermal infrared camera (thermal and visible image provided by IVAR/CIVISA acquired on July 21, 2010).</p> "> Figure 4
<p>Part of the Geothermal Concession Area: (<b>A</b>) the ASTER nighttime thermal infrared image from 29 March 2010, (<b>B</b>) normal temperatures (below average temperature + 2σ) presented in green, above average temperatures + 2σ in orange, and above average + 3σ in red, and (<b>C</b>) framing of the area near the RG4 well, where it was not possible to identify thermal anomalies; (<b>D</b>) the ASTER nighttime thermal infrared image from 24 June 2010, (<b>E</b>) normal temperatures presented in green, above average temperatures + 2σ in orange, and above average + 3σ in red, and (<b>F</b>) framing of the area near the RG4 well, where it was not possible to identify thermal anomalies; (<b>G</b>) the ASTER nighttime thermal infrared image from 21 September 2010, (<b>H</b>) normal temperatures presented in green, above average temperatures + 2σ in orange, and above average + 3σ in red, and (<b>I</b>) framing of the area near the RG4 well, where it was not possible to identify thermal anomalies; (<b>J</b>) the ASTER nighttime thermal infrared image from 14 August 2011, (<b>K</b>) normal temperatures presented in green, above average temperatures + 2σ in orange, and above average + 3σ in red, and (<b>L</b>) framing of the area near the RG4 well, where it was possible to identify thermal anomalies; (<b>M</b>) the ASTER nighttime thermal infrared image from 09 August 2012, (<b>N</b>) normal temperatures presented in green, above average temperatures + 2σ in orange, and above average + 3σ in red, and (<b>O</b>) framing of the area near the RG4 well, where it was possible to identify thermal anomalies.</p> "> Figure 5
<p>Comparison map with (<b>A</b>) in situ soil temperature map (data from January 2012) (Source: F. Viveiros, IVAR/CIVISA, 2012) and (<b>B</b>) thermal anomalies on 08 August 2012.</p> "> Figure 6
<p>Comparison between temperature (<b>A</b>) in the soil at a depth of 10 cm (Pacheco, 2013), (<b>B</b>) on the ground surface in situ (Pacheco, 2013), and (<b>C</b>) measured using the ASTER sensor in the area comprising the Furnas hydrothermal fumaroles.</p> "> Figure 7
<p>Part of the northern flank of Fogo Volcano: the ASTER RGB composite image (bands 3, 2, 1), the NDVI map of the study area, and framing of the NDVI map near the RG4 well, respectively, for the following dates: 25 February 2010 (<b>A</b>,<b>B</b>,<b>C</b>); 23 April 2010 (<b>D</b>,<b>E</b>,<b>F</b>); 5 September 2010 (<b>G</b>,<b>H</b>,<b>I</b>); 16 March 2011 (<b>J</b>,<b>K</b>,<b>L</b>); 12 April 2012 (<b>M</b>,<b>N</b>,<b>O</b>).</p> "> Figure 8
<p>Overlay of the lowest NDVI map values (April 2012) with the respective in situ soil temperatures map (January 2012). (<b>A</b>) In situ soil temperature; (<b>B</b>) the ASTER NDVI values; and (<b>C</b>) a comparison of the soil temperature and lowest values of the NDVI.</p> "> Figure 9
<p>Yellowstone new thermal anomaly near Tern Lake: the ASTER RGB composite image (bands 3, 2, 1) and the NDVI map, respectively, for the following dates: 16 August 2000 (<b>A</b>,<b>E</b>); 28 August 2001 (<b>B</b>,<b>F</b>); 14 September 2007 (<b>C</b>,<b>G</b>); 28 August 2022 (<b>D</b>,<b>H</b>). The black line corresponds to the new thermal anomaly area.</p> ">
Abstract
:1. Introduction
Research Constraints and Challenges
2. Study Area
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madonia, P.; Rizzo, A.L.; Diliberto, I.S.; Favara, R. Continuous Monitoring of Fumarole Temperatures at Mount Etna (Italy). J. Volcanol. Geotherm. Res. 2013, 257, 12–20. [Google Scholar] [CrossRef]
- Girona, T.; Realmuto, V.; Lundgren, P. Large-Scale Thermal Unrest of Volcanoes for Years Prior to Eruption. Nat. Geosci. 2021, 14, 238–241. [Google Scholar] [CrossRef]
- Pyle, D.M.; Mather, T.A.; Biggs, J. Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling-Introduction. Geol. Soc. Spec. Publ. 2013, 380, 1–13. [Google Scholar] [CrossRef]
- Dean, K.; Dehn, J.; McNutt, S.; Neal, C.; Moore, R.; Schneider, D. Satellite Imagery Proves Essential for Monitoring Erupting Aleutian Volcano. EOS Trans. Am. Geophys. Union 2002, 83, 241. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. MODVOLC: Near-Real-Time Thermal Monitoring of Global Volcanism. J. Volcanol. Geotherm. Res. 2004, 135, 29–49. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; del Negro, C. The HOTSAT Volcano Monitoring System Based on Combined Use of SEVIRI and MODIS Multispectral Data. Ann. Geophys. 2011, 54, 544–550. [Google Scholar] [CrossRef]
- Gouhier, M.; Guéhenneux, Y.; Labazuy, P.; Cacault, P.; Decriem, J.; Rivet, S. HOTVOLC: A Web-Based Monitoring System for Volcanic Hot Spots. Geol. Soc. Lond. Spec. Publ. 2016, 426, 223–241. [Google Scholar] [CrossRef]
- Lombardo, V. AVHotRR: Near-Real Time Routine for Volcano Monitoring Using IR Satellite Data. Geol. Soc. Lond. Spec. Publ. 2016, 426, 73–92. [Google Scholar] [CrossRef]
- Gordeev, E.I.; Girina, O.A.; Lupyan, E.A.; Sorokin, A.A.; Kramareva, L.S.; Efremov, V.Y.; Kashnitskii, A.V.; Uvarov, I.A.; Burtsev, M.A.; Romanova, I.M.; et al. The VolSatView Information System for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands. J. Volcanol. Seismol. 2016, 10, 382–394. [Google Scholar] [CrossRef]
- Pergola, N.; Coviello, I.; Filizzola, C.; Lacava, T.; Marchese, F.; Paciello, R.; Tramutoli, V. A Review of RST VOLC, an Original Algorithm for Automatic Detection and near-Real-Time Monitoring of Volcanic Hotspots from Space. Geol. Soc. Lond. Spec. Publ. 2016, 426, 55–72. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Donne, D.D.; Ripepe, M. Enhanced Volcanic Hot-Spot Detection Using MODIS IR Data: Results from the MIROVA System. Geol. Soc. Lond. Spec. Publ. 2016, 426, 181–205. [Google Scholar] [CrossRef]
- Murphy, S.W.; de Souza Filho, C.R.; Wright, R.; Sabatino, G.; Correa Pabon, R. HOTMAP: Global Hot Target Detection at Moderate Spatial Resolution. Remote Sens. Environ. 2016, 177, 78–88. [Google Scholar] [CrossRef]
- Reath, K.; Pritchard, M.E.; Moruzzi, S.; Alcott, A.; Coppola, D.; Pieri, D. The AVTOD (ASTER Volcanic Thermal Output Database) Latin America Archive. J. Volcanol. Geotherm. Res. 2019, 376, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Valade, S.; Ley, A.; Massimetti, F.; D’Hondt, O.; Laiolo, M.; Coppola, D.; Loibl, D.; Hellwich, O.; Walter, T.R. Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sens. 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Genzano, N.; Pergola, N.; Marchese, F. A Google Earth Engine Tool to Investigate, Map and Monitor Volcanic Thermal Anomalies at Global Scale by Means of Mid-High Spatial Resolution Satellite Data. Remote Sens. 2020, 12, 3232. [Google Scholar] [CrossRef]
- Carter, A.J.; Girina, O.; Ramsey, M.S.; Demyanchuk, Y.V. ASTER and Field Observations of the 24 December 2006 Eruption of Bezymianny Volcano, Russia. Remote Sens. Environ. 2008, 112, 2569–2577. [Google Scholar] [CrossRef]
- Mannini, S.; Harris, A.J.L.; Jessop, D.E.; Chevrel, M.O.; Ramsey, M.S. Combining Ground- and ASTER-Based Thermal Measurements to Constrain Fumarole Field Heat Budgets: The Case of Vulcano Fossa 2000–2019. Geophys. Res. Lett. 2019, 46, 11868–11877. [Google Scholar] [CrossRef]
- Chan, H.-P.; Konstantinou, K.I.; Blackett, M. Spatio-Temporal Surface Temperature Variations Detected by Satellite Thermal Infrared Images at Merapi Volcano, Indonesia. J. Volcanol. Geotherm. Res. 2021, 420, 107405. [Google Scholar] [CrossRef]
- Steffke, A.M.; Harris, A.J.L. A Review of Algorithms for Detecting Volcanic Hot Spots in Satellite Infrared Data. Bull. Volcanol. 2011, 73, 1109–1137. [Google Scholar] [CrossRef]
- Lagios, E.; Vassilopoulou, S.; Sakkas, V.; Dietrich, V.; Damiata, B.N.; Ganas, A. Testing Satellite and Ground Thermal Imaging of Low-Temperature Fumarolic Fields: The Dormant Nisyros Volcano (Greece). ISPRS J. Photogramm. Remote Sens. 2007, 62, 447–460. [Google Scholar] [CrossRef]
- Silvestri, M.; Cardellini, C.; Chiodini, G.; Buongiorno, M.F. Satellite-Derived Surface Temperature and in Situ Measurement at Solfatara of Pozzuoli (Naples, Italy). Geochem. Geophys. Geosystems 2016, 17, 2095–2109. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, R.G.; Hungerford, J.D.G.; Keller, W. A Newly Emerging Thermal Area in Yellowstone. Front. Earth Sci. 2020, 8, 204. [Google Scholar] [CrossRef]
- Franco, A.; Guimarães, T.; Henneberger, R. Geothermal Geology of the Outflow Zone of the Ribeira Grande Geothermal System, São Miguel Island, Azores. GRC Transactions 2018, 42, 1316–1326. [Google Scholar]
- Gemitzi, A.; Dalampakis, P.; Falalakis, G. Detecting Geothermal Anomalies Using Landsat 8 Thermal Infrared Remotely Sensed Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102283. [Google Scholar] [CrossRef]
- Silvestri, M.; Rabuffi, F.; Musacchio, M.; Teggi, S.; Buongiorno, M.F. The Use of Satellite TIR Time Series for Thermal Anomalies’ Detection on Natural and Urban Areas. Eng. Proc. 2021, 5, 5. [Google Scholar]
- Vaughan, R.G. Provisional Maps of Thermal Areas in Yellowstone National Park, Based on Satellite Thermal Infrared Imaging and Field Observations; U.S. Geological Survey: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Murphy, S.W.; Filho, C.R.d.S.; Oppenheimer, C. Monitoring Volcanic Thermal Anomalies from Space: Size Matters. J. Volcanol. Geotherm. Res. 2011, 203, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Carn, S.A. Gas, Plume, and Thermal Monitoring. In The Encyclopedia of Volcanoes; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1125–1149. [Google Scholar]
- Abrams, M.; Hook, S. ASTER Users Handbook Version 2; Jet Propulsion Laboratory: Pasadena, CA, USA, 2002. [Google Scholar]
- Blackett, M. Review of the Utility of Infrared Remote Sensing for Detecting and Monitoring Volcanic Activity with the Case Study of Shortwave Infrared Data for Lascar Volcano from 2001–2005. Geol. Soc. Lond. Spec. Publ. 2013, 380, 107–135. [Google Scholar] [CrossRef]
- Gaspar, J.; Guest, J.E.; Duncan, A.; Chester, D.; Barriga, F. Chapter 1: Introduction. In Volcanic Geology of São Miguel Island (Azores Archipelago); Geological Society of London: London, UK, 2015; Volume 44, pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.; Gaspar, J.; Viveiros, F.; Marcos, M.; Faria, C.; Sousa, F. Monitoring of Fumarole Discharge and CO2 Soil Degassing in the Azores: Contribution to Volcanic Surveillance and Public Health Risk Assessment. Ann. Geophys. 2005, 48, 787–796. [Google Scholar] [CrossRef]
- Cruz, J.V.; Freire, P.; Costa, A. Mineral Waters Characterization in the Azores Archipelago (Portugal). J. Volcanol. Geotherm. Res. 2010, 190, 353–364. [Google Scholar] [CrossRef]
- Viveiros, F.; Ferreira, T.; Silva, C.; Vieira, J.C.; Gaspar, J.L.; Virgili, G.; Amaral, P. Chapter 20 Permanent Monitoring of Soil CO2 Degassing at Furnas and Fogo Volcanoes (São Miguel Island, Azores). Geol. Soc. Lond. Mem. 2015, 44, 271–288. [Google Scholar] [CrossRef]
- Caliro, S.; Viveiros, F.; Chiodini, G.; Ferreira, T. Gas Geochemistry of Hydrothermal Fluids of the S. Miguel and Terceira Islands, Azores. Geochim. Cosmochim. Acta 2015, 168, 43–57. [Google Scholar] [CrossRef]
- Carvalho, J.M.; Nunes, J.C.; Do, M.; Carvalho, R. Direct Uses as Environmental Mitigation Measure in Ribeira Grande Geothermal Field (S. Miguel, Azores Islands, Portugal). In Proceedings of the European Geothermal Congress, Strasbourg, France, 19–24 September 2016. [Google Scholar]
- Direção Regional do Ambiente. Ficha Técnica Título Carta de Ocupação do Solo da Região Autónoma dos Açores; Direção Regional do Ambiente: Lisboa, Portugal, 2020; pp. 1–82. [Google Scholar]
- Rangel, M. Temperature Model and Tracer Test Analysis for the Ribeira Grande Geothermal System, São Miguel Island, Azores. Orkustofnun 2014, 9, 615–642. [Google Scholar]
- Franco, A.; Francisco, R.; Ataíde, P. Subsurface Geology and Hydrothermal Alteration of Cachaços-Lombadas Sector, Ribeira Grande Geothermal Field, São Miguel Island, Azores; United Nations University: Reykjavik, Iceland, 2016; pp. 113–160. [Google Scholar]
- Carmo, R.; Madeira, J.; Ferreira, T.; Queiroz, G.; Hipólito, A. Chapter 6: Volcano-Tectonic Structures of São Miguel Island, Azores. In Volcanic Geology of São Miguel Island (Azores Archipelago)Geological Society Memoir; Geological Society of London: London, UK, 2015; Volume 44, pp. 65–86. [Google Scholar]
- Viveiros, F.; Silva, C.; Matias, D.; Moreno, L.; Driesner, T.; Zanon, V.; Uchoa, J.; Cruz, J.V.; Freire, P.; Pereira, M.L.; et al. Geochemical Tools as a Contribution to Improve Geothermal Potential on the Azores Archipelago. In Proceedings of the World Geothermal Congress 2020, Reykjavic, Iceland, 26 April–2 May 2020; p. 8. [Google Scholar]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Chen, Y.; Quan, J. A Simple Method Based on the Thermal Anomaly Index to Detect Industrial Heat Sources. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 627–637. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Keszthelyi, L.P.; Davies, A.G.; Schneider, D.J.; Jaworowski, C.; Heasler, H. Exploring the Limits of Identifying Sub-Pixel Thermal Features Using ASTER TIR Data. J. Volcanol. Geotherm. Res. 2010, 189, 225–237. [Google Scholar] [CrossRef]
- Gil, A.; Fonseca, C.; Lobo, A.; Calado, H. Linking GMES Space Component to the Development of Land Policies in Outermost Regions—The Azores (Portugal) Case-Study. Eur. J. Remote Sens. 2012, 45, 263–281. [Google Scholar] [CrossRef] [Green Version]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano Surveillance Using Infrared Cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Tortini, R.; van Manen, S.M.; Parkes, B.R.B.; Carn, S.A. The Impact of Persistent Volcanic Degassing on Vegetation: A Case Study at Turrialba Volcano, Costa Rica. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 92–103. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1973; pp. 1–112. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Zaitunah, A.; Samsuri, S.; Ahmad, A.G.; Safitri, R.A. Normalized Difference Vegetation Index (Ndvi) Analysis for Land Cover Types Using Landsat 8 Oli in Besitang Watershed, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banda Aceh, Indonesia, 26–27 September 2018; Volume 126. [Google Scholar]
- Sutomo, S.; Wahab, L. Changes in Vegetation on Mount Agung Volcano Bali Indonesia. J. Trop. Biodivers. Biotechnol. 2019, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Trota, A.; Rocha, S.; Almeida, J.; Oliveira, A.; Simão, J.; Ferreira Gomes, L.M. Aplicação de Uma Metodologia Termométrica Expedita Na Identificação de Zonas Com Anomalia Geotérmica Na Ribeira Grande, Ilha de S. Miguel, Açores. Comun. Geológicas 2014, 101, 15–27. [Google Scholar]
- Pereira, M.L.; Matias, D.; Viveiros, F.; Moreno, L.; Silva, C.; Zanon, V.; Uchôa, J. The Contribution of Hydrothermal Mineral Alteration Analysis and Gas Geothermometry for Understanding High-Temperature Geothermal Fields—The Case of Ribeira Grande Geothermal Field, Azores. Geothermics 2022, 105, 102519. [Google Scholar] [CrossRef]
- Braddock, M.; Biggs, J.; Watson, I.M.; Hutchison, W.; Pyle, D.M.; Mather, T.A. Satellite Observations of Fumarole Activity at Aluto Volcano, Ethiopia: Implications for Geothermal Monitoring and Volcanic Hazard. J. Volcanol. Geotherm. Res. 2017, 341, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Chazarra, A.; Mestre, A.; Pires, V.; Cunha, S.; Silva, Á.; Marques, J.; Carvalho, F.; Mendes, M.; Neto, J.; Mendes, L.; et al. Climate Atlas of the Archipelagos of the Canary Islands, Madeira and the Azores; Ministry of Agriculture, Food and Environment, State Meteorological Agency: Madrid, Spain, 2011; pp. 1–77. [Google Scholar]
- Gill, N.S.; Stallman, J.K.; Pratt, L.; Lewicki, J.; Elias, T.; Nadeau, P.A.; Yelenik, S. Out of the Frying Pan and into the Fire: Effects of Volcanic Heat and Other Stressors on the Conservation of a Critically Endangered Plant in Hawai’i. Environ. Conserv. 2023, 1–8. [Google Scholar] [CrossRef]
- Aziz, A.; Umar, M.; Mansha, M.; Khan, M.S.; Javed, M.N.; Gao, H.; Farhan, S.B.; Iqbal, I.; Abdullah, S. Assessment of Drought Conditions Using HJ-1A/1B Data: A Case Study of Potohar Region, Pakistan. Geomat. Nat. Hazards Risk 2018, 9, 1019–1036. [Google Scholar] [CrossRef] [Green Version]
- Pause; Raasch; Marrs; Csaplovics Monitoring Glyphosate-Based Herbicide Treatment Using Sentinel-2 Time Series—A Proof-of-Principle. Remote Sens. 2019, 11, 2541. [CrossRef] [Green Version]
- Serrano, J.; Shahidian, S.; Paixão, L.; Marques da Silva, J.; Morais, T.; Teixeira, R.; Domingos, T. Spatiotemporal Patterns of Pasture Quality Based on NDVI Time-Series in Mediterranean Montado Ecosystem. Remote Sens. 2021, 13, 3820. [Google Scholar] [CrossRef]
- Fernando, G.; Víctor, C. Pasture Monitoring Applying Normalized Difference Vegetation Index (NDVI) Time Series with Sentinel-2 and Landsat 8 Images, to Improve Milk Production at Santa Mónica Farm, Imbabura, Ecuador. In Proceedings of the 20th International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; pp. 560–575. [Google Scholar]
Operational Dates | Band | Reflected Range (µm) | Spatial Resolution (m) | Band Explanation/Uses |
---|---|---|---|---|
Dec 1999 to Present | 1 | 0.52–0.60 | 15 m | Visible and Near-Infrared |
2 | 0.63–0.69 | 15 m | Visible and Near-Infrared | |
3N | 0.78–0.86 | 15 m | Visible and Near-Infrared | |
Dec 1999 to April 2008 | 4 | 1.600–1.700 | 30 m | Shortwave Infrared |
5 | 2.145–2.185 | 30 m | Shortwave Infrared | |
6 | 2.185–2.225 | 30 m | Shortwave Infrared | |
7 | 2.235–2.285 | 30 m | Shortwave Infrared | |
8 | 2.295–2.365 | 30 m | Shortwave Infrared | |
9 | 2.360–2.430 | 30 m | Shortwave Infrared | |
Dec 1999 to Present | 10 | 8.125–8.475 | 90 m | Thermal Infrared |
11 | 8.475–8.825 | 90 m | Thermal Infrared | |
12 | 8.925–9.275 | 90 m | Thermal Infrared | |
13 | 10.25–10.95 | 90 m | Thermal Infrared | |
14 | 10.95–11.65 | 90 m | Thermal Infrared |
Data Acquisition Dates | (Day/Night) |
---|---|
25 February 2010 | Day |
29 March 2010 | Night |
23 April 2010 | Day |
24 June 2010 | Night |
13 August 2010 | Day |
5 September 2010 | Day |
21 September 2010 | Night |
16 March 2011 | Day |
14 August 2011 | Night |
12 April 2012 | Day |
9 August 2012 | Night |
NDVI Ranges | Class of Vegetation Vigor |
---|---|
−1–0.2 | Very Low |
0.2–0.4 | Low |
0.4–0.6 | Moderately Low |
0.6–0.8 | Moderately High |
0.8–1 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchôa, J.; Viveiros, F.; Tiengo, R.; Gil, A. Detection of Geothermal Anomalies in Hydrothermal Systems Using ASTER Data: The Caldeiras da Ribeira Grande Case Study (Azores, Portugal). Sensors 2023, 23, 2258. https://doi.org/10.3390/s23042258
Uchôa J, Viveiros F, Tiengo R, Gil A. Detection of Geothermal Anomalies in Hydrothermal Systems Using ASTER Data: The Caldeiras da Ribeira Grande Case Study (Azores, Portugal). Sensors. 2023; 23(4):2258. https://doi.org/10.3390/s23042258
Chicago/Turabian StyleUchôa, Jéssica, Fátima Viveiros, Rafaela Tiengo, and Artur Gil. 2023. "Detection of Geothermal Anomalies in Hydrothermal Systems Using ASTER Data: The Caldeiras da Ribeira Grande Case Study (Azores, Portugal)" Sensors 23, no. 4: 2258. https://doi.org/10.3390/s23042258
APA StyleUchôa, J., Viveiros, F., Tiengo, R., & Gil, A. (2023). Detection of Geothermal Anomalies in Hydrothermal Systems Using ASTER Data: The Caldeiras da Ribeira Grande Case Study (Azores, Portugal). Sensors, 23(4), 2258. https://doi.org/10.3390/s23042258