Recent Development of Air Gauging in Industry 4.0 Context
<p>Block diagram of a typical back-pressure air gauge.</p> "> Figure 2
<p>Schematic of the test rig: (<b>a</b>) Simplified block diagram of the air gauge test rig; (<b>b</b>) Registered relation between displacement <span class="html-italic">z</span> and back-pressure <span class="html-italic">p<sub>k</sub></span>.</p> "> Figure 3
<p>Schematic of the dynamic calibration: (<b>a</b>) Simplified block diagram of the air gauge dynamic calibration setup; (<b>b</b>) Registered amplitude-frequency characteristics.</p> ">
Abstract
:1. Introduction
- Big Data and Analytics, which covers processing of all kinds of data types and volumes through data collection, ordering, record and storage, retrieval, real-time analysis and dissemination that may extend beyond just automation and improvement of the existing processes [7];
- Simulation understood as the procedure of working out a model of a system, either real or hypothetical one, to describe and analyze the performance of the system, including the process of designing a model, usually a simplified set of assumptions expressed by a mathematical or logical relationship, and making the model to operate over time imitating the process consisting of interrelated elements [8];
- Industrial Internet of Things (IIoT), making possible to integrate Operational Technologies (OT) and Information Technology (IT) domains, through automation of industrial processes with relevance on machine-to-machine communication especially with a high volume of data involved [9];
- Autonomous Robots that are able to make decisions with high autonomy and to perform real-time tasks without intervention of humans [10];
- Cybersecurity, i.e., protection of manufacturing systems from cyber-attacks that may entail some negative impacts, such as (1) sabotage of the infrastructure or machines and components, (2) denial of networks and computers proper service, (3) crimes like theft of intellectual property, (4) violation of safety and environmental pollution, (5) dangerous and life-threatening situations for workers [11];
- Horizontal and Vertical System Integration, including physical and business structures, as well as integration of physical and digital worlds through cyberphysical systems, where vertical integration covers the alignment of human, equipment, organization, products, etc., and the horizontal integration interconnecting procurement, planning, management, and customer services with counterparties of a company [12];
- The Cloud providing virtually unlimited on-demand utilities of computing, storage, and communication resources [13];
- Additive Manufacturing covering a wide range of technologies that can build objects and components adding layer-by-layer portions of a raw material [14];
- Augmented Reality as a sort of “immersive technology”, aimed to strengthen the interaction between humans and the industrial environment, increasing the connection with surrounding objects through the intensified perception of objects without replacing the reality with virtual objects [15].
2. Feasibility of Air Gauging to the Concept of Industry 4.0
3. Research Directions in Recent Papers
3.1. Researches on Static Characteristics of the Air Gauges
- In both areas I and II the pressure ratio is below βkr;
- In the inlet restriction (I) the pressure ratio is below βkr, while in the flapper-nozzle area (II) it is higher than βkr;
- In the area I the pressure ratio is higher than βkr, while in the area II it is lower;
- In both areas I and II the pressure ratio is higher than βkr.
3.2. Investigations on Dynamic Characteristics
3.3. Uncertainty Estimations for Air Gauging Systems
3.4. Recent Specific Applications of the Air Gauges
3.5. Integration with Computer Systems
4. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burrows, V.R. The Principles and Applications of Pneumatic Gauging. Found. Weld. Prod. Eng. 1976, 10, 31–42. [Google Scholar]
- Tanner, C.J. Air gauging—History and future developments. Inst. Prod. Eng. J. 1958, 37, 448–462. [Google Scholar] [CrossRef]
- Schuetz, G. Air Gaging Gets Better with Age. Qual. Mag. 2008, 3, 28–32. [Google Scholar]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Klingenberg, C.O.; Borges, M.A.V.; do Vale Antunes, J.A. Industry 4.0: What makes it a revolution? A historical framework to understand the phenomenon. Technol. Soc. 2022, 70, 102009. [Google Scholar] [CrossRef]
- Schulze, F.; Dallasega, P. Industry 4.0 Concepts and Lean Methods Mitigating Traditional Losses in Engineer-to-Order Manufacturing with Subsequent Assembly On-Site: A Framework. Procedia Manuf. 2020, 51, 1363–1370. [Google Scholar] [CrossRef]
- Talaoui, Y.; Kohtamäki, M.; Ranta, M.; Paroutis, S. Recovering the divide: A review of the big data analytics—Strategy relationship. Long Range Plan. 2023, 102290. [Google Scholar] [CrossRef]
- De Paula Ferreira, W.; Armellini, F.; De Santa-Eulalia, L.A. Simulation in industry 4.0: A state-of-the-art review. Comput. Ind. Eng. 2020, 149, 106868. [Google Scholar] [CrossRef]
- Kebande, V.R. Industrial internet of things (IIoT) forensics: The forgotten concept in the race towards industry 4.0. Forensic Sci. Int. Rep. 2022, 5, 100257. [Google Scholar] [CrossRef]
- Anand, R.; Nath, A.; Raj, S.A. The Autonomy of Autonomous Robots. In Smart Manufacturing Technologies for Industry 4.0: Integration, Benefits, and Operational Activities; Kandasamy, J., Muduli, K., Kommula, V.P., Meena, P.L., Eds.; CRC Press: Boca Raton, FL, USA, 2023; pp. 9–18. [Google Scholar] [CrossRef]
- Corallo, A.; Lazoi, M.; Lezzi, M. Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts. Comput. Ind. 2020, 114, 103165. [Google Scholar] [CrossRef]
- De la Peña Zarzuelo, I.; Soeane, M.J.F.; Bermúdez, B.L. Industry 4.0 in the port and maritime industry: A literature review. J. Ind. Inf. Integr. 2020, 20, 100173. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Mu, H.; He, F.; Yuan, L.; Commins, P.; Wang, H.; Pan, Z. Toward a smart wire arc additive manufacturing system: A review on current developments and a framework of digital twin. J. Manuf. Syst. 2023, 67, 174–189. [Google Scholar] [CrossRef]
- Lagorio, A.; Di Pasquale, V.; Cimini, C.; Miranda, S.; Pinto, R. Augmented Reality in Logistics 4.0: Implications for the human work. IFAC Pap. 2022, 55, 329–334. [Google Scholar] [CrossRef]
- Ertz, M.; Sun, S.; Boily, E.; Kubiat, P.; Quenum, G.G.Y. How transitioning to Industry 4.0 promotes circular product lifetimes. Ind. Mark. Manag. 2022, 101, 125–140. [Google Scholar] [CrossRef]
- Calabrese, A.; Costa, R.; Tiburzi, L.; Brem, A. Merging two revolutions: A human-artificial intelligence method to study how sustainability and Industry 4.0 are intertwined. Technol. Forecast. Soc. Change 2023, 188, 122265. [Google Scholar] [CrossRef]
- Kebisek, M.; Tanuska, P.; Spendla, L.; Kotianova, J.; Strelec, P. Artificial Intelligence Platform Proposal for Paint Structure Quality Prediction within the Industry 4.0 Concept. IFAC Pap. 2020, 53, 11168–11174. [Google Scholar] [CrossRef]
- Henao-Hernández, I.; Solano-Charris, E.L.; Muñoz-Villamizar, A.; Santos, J.; Henríquez-Machado, R. Control and monitoring for sustainable manufacturing in the Industry 4.0: A literature review. IFAC Pap. 2019, 52, 195–200. [Google Scholar] [CrossRef]
- Menzies, I.; Koshy, P. In-process detection of surface porosity in machined castings. Int. J. Mach. Tools Manuf. 2009, 49, 530–535. [Google Scholar] [CrossRef]
- Koehn, C. In-Process Air Gaging. Qual. Mag. 2014, 53, 22–23. [Google Scholar]
- Stout, K. Quality Control in Automation; Kogan Page: London, UK, 1985. [Google Scholar]
- Raghavendra, N.V.; Krishnamurthy, L. Engineering Metrology and Measurements; Oxford University Press: New Delhi, India, 2013. [Google Scholar]
- Smith, G.T. Industrial Metrology; Springer: London, UK, 2002. [Google Scholar]
- Bloch, H.P.; Geitner, F.K. Machinery Component Maintenance and Repair, 4th ed.; Gulf Professional Publishing: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Switzer, C.A.; Juel, L.H. Machining Practice. In Nuclear Graphite; Nightingale, R.E., Ed.; Academic Press: New York, NY, USA, 2013; pp. 53–65. [Google Scholar] [CrossRef]
- Audy, J. An appraisal of techniques and equipment for cutting force measurement. J. Zhejiang Univ. Sci. A 2006, 7, 1781–1789. [Google Scholar] [CrossRef]
- Pohl, P.; Jermak, C. Directions of development of pneumatic measurement methods to be applied for roughness measurements of surfaces of wood and wood-based materials. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2007, 62, 145–149. [Google Scholar]
- Koshy, P.; Grandy, D.; Klocke, F. Pneumatic non-contact topography characterization of finish-ground surfaces using multivariate projection methods. Precis. Eng. 2011, 35, 282–288. [Google Scholar] [CrossRef]
- Grandy, D.; Koshy, P.; Klocke, F. Pneumatic non-contact roughness assessment of moving surfaces. CIRP Ann. 2009, 58, 515–518. [Google Scholar] [CrossRef]
- Khawaya, K.; Seneviratne, L.; Althoefer, K. Wheel-Tooling Gap Measurement System for Conform™ Extrusion Machinery Based on a Capacitive Sensor. Trans. ASME 2005, 127, 394–401. [Google Scholar] [CrossRef]
- Baldoni, J.G.; Buljan, S.T.; Sarin, V.K. Continuous tool wear monitoring in turning. In Science of Hard Materials; Viswanadham, R.K., Ed.; Plenum Press: New York, NY, USA, 1983; pp. 991–1002. [Google Scholar]
- Cheng, Y.; Huang, T.; Chieng, C.C. Thick-film lithography using laser write. Microsyst. Technol. 2002, 9, 17–22. [Google Scholar] [CrossRef]
- Molle, R. Les Lois de la Metrologie Pneumatique. Rev. Gen Mec. 1950, 34, 26–30. [Google Scholar]
- Fullmer, I.H. Dimensional Metrology: Subject-Classified with Abstracts; US Government Printing Office: Washington, DC, USA, 1966. [Google Scholar]
- Bennett, S. The use of measuring and controlling instruments in the chemical industry in Great Britain and the USA during the period 1900–1939. In Determinants in the Evolution of the European Chemical Industry, 1900–1939; Travis, A.S., Schröter, H.G., Homburg, E., Morris, P.J.T., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 215–237. [Google Scholar]
- Wang, B.; Tao, F.; Fang, X.; Liu, C.; Liu, Y.; Freiheit, T. Smart manufacturing and intelligent manufacturing: A comparative review. Engineering 2021, 7, 738–757. [Google Scholar] [CrossRef]
- Baroroh, D.K.; Chu, C.H.; Wang, L. Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence. J. Manuf. Syst. 2021, 61, 696–711. [Google Scholar] [CrossRef]
- De Paula Ferreira, W.; Armellini, F.; de Santa-Eulalia, L.A.; Thomasset-Laperrière, V. A framework for identifying and analysing industry 4.0 scenarios. J. Manuf. Syst. 2022, 65, 192–207. [Google Scholar] [CrossRef]
- Castelo-Branco, I.; Amaro-Henriques, M.; Cruz-Jesus, F.; Oliveira, T. Assessing the Industry 4.0 European divide through the country/industry dichotomy. Comput. Ind. Eng. 2022, 108925. [Google Scholar] [CrossRef]
- Laiton-Bonadiez, C.; Branch-Bedoya, J.W.; Zapata-Cortes, J.; Paipa-Sanabria, E.; Arango-Serna, M. Industry 4.0 Technologies Applied to the Rail Transportation Industry: A Systematic Review. Sensors 2022, 22, 2491. [Google Scholar] [CrossRef] [PubMed]
- Fedullo, T.; Morato, A.; Peserico, G.; Trevisan, L.; Tramarin, F.; Vitturi, S.; Rovati, L. An IoT Measurement System Based on LoRaWAN for Additive Manufacturing. Sensors 2022, 22, 5466. [Google Scholar] [CrossRef] [PubMed]
- Rojek, I.; Dostatni, E.; Mikołajewski, D.; Pawłowski, L.; Węgrzyn-Wolska, K. Modern approach to sustainable production in the context of Industry 4.0. Bull. Pol. Acad. Sci. Technol. Sci. 2022, 70, e143828. [Google Scholar] [CrossRef]
- Kostrzewski, M.; Abdelatty, Y.; Eliwa, A.; Nader, M. Analysis of Modern vs. Conventional Development Technologies in Transportation—The Case Study of a Last-Mile Delivery Process. Sensors 2022, 22, 9858. [Google Scholar] [CrossRef]
- Sousa, J.; Mendonça, J.P.; Machado, J. A generic interface and a framework designed for industrial metrology integration for the Internet of Things. Comput. Ind. 2022, 138, 103632. [Google Scholar] [CrossRef]
- Ferrucci, M.; Haitjema, H.; Leach, R. Dimensional Metrology. In Basics of Precision Engineering; Leach, R., Smith, S.T., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 151–203. [Google Scholar] [CrossRef]
- Eichstädt, S.; Keidel, A.; Tesch, J. Metrology for the digital age. Meas. Sens. 2021, 18, 100232. [Google Scholar] [CrossRef]
- Cuesta, E.; Meana, V.; Álvarez, B.J.; Giganto, S.; Martínez-Pellitero, S. Metrology Benchmarking of 3D Scanning Sensors Using a Ceramic GD&T-Based Artefact. Sensors 2022, 22, 8596. [Google Scholar] [CrossRef]
- Bishop, B.W.; Hank, C. Measuring FAIR Principles to Inform Fitness for Use. Int. J. Digit. Curation 2018, 13, 35–46. [Google Scholar] [CrossRef]
- Schuetz, G. Pushing the limits of air gaging-and keeping them there. Qual. Mag. 2015, 54, 22–26. [Google Scholar]
- Vora, H.D.; Sanyal, S. A comprehensive review: Metrology in additive manufacturing and 3D printing technology. Prog. Addit. Manuf. 2020, 5, 319–353. [Google Scholar] [CrossRef]
- Jain, V.K. Manufacturing Processes; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Shi, H.T.; Wu, D.; Pang, C.K.; Huang, H.Y.; Zhang, X.; Xu, Y.; Chen, X.L.; Wu, G. Noncontact 3D measurement method on hole-structure precision inspection. Optoelectron. Lett. 2021, 17, 231–235. [Google Scholar] [CrossRef]
- Mezhericher, M.; Nunes, J.K.; Guzowski, J.J.; Stone, H.A. Aerosol-assisted synthesis of submicron particles at room temperature using ultra-fine liquid atomization. Chem. Eng. J. 2018, 346, 606–620. [Google Scholar] [CrossRef]
- Simiz, J.G.; Hasan, T.; Staals, F.; Le-Gratiet, B.; Gilgenkrantz, P.; Villaret, A.; Pasqualini, F.; Tel, W.T.; Prentice, C.; Tishchenko, A. Predictability and impact of product layout induced topology on across-field focus control. In Metrology, Inspection, and Process Control for Microlithography XXIX; SPIE Advanced Lithography: Bellingham, WA, USA, 2015; Available online: https://hal-ujm.archives-ouvertes.fr/ujm-01272848/file/Predictability%20and%20impact%20of%20product%20layout%20induced%20topology%20on%20across-field%20focus%20control_V2.pdf (accessed on 8 February 2023).
- Gatefait, M.; Lam, A.; Le Gratiet, B.; Mikolajczak, M.; Morin, V.; Chojnowski, N.; Kocsis, Z.; Smith, I.; Decaunes, J.; Ostrovsky, A.; et al. AGILE integration into APC for high mix logic fab. In Proceedings of the 31st European Mask and Lithography Conference, Eindhoven, The Netherlands, 4 September 2015; 96610p. [Google Scholar] [CrossRef]
- Dong, X.; Miao, Z.; Wang, W.; Yang, Z.; Liu, B.; Zhao, L.; Leng, J.; Zhang, Y. The Application of AGILE for 40nm Via Hole Development of Lithography Process and Solutions. ECS Trans. 2014, 60, 63–68. [Google Scholar] [CrossRef]
- Beater, P. Pneumatic Drives; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Jermak, C.J. Discussion on Flow-Through Phenomena in the Air Gauge Cascade. Acta Mech. Autom. 2017, 11, 38–46. [Google Scholar] [CrossRef]
- Burazer, J.; Skoko, D.; Bukurov, M.; Novković, Đ.; Adžić, V.; Lečić, M.; Vorotović, G. Possibility for improving the performance of a differential pneumatic comparator by inclining the measuring nozzle. Measurement 2022, 112415. [Google Scholar] [CrossRef]
- Jakubowicz, M.; Derezynski, J. The measuring position designed to determine the metrological properties of air gauges. Adv. Sci. Technol. Res. J. 2017, 11, 198–205. [Google Scholar] [CrossRef]
- Thang, V.T.; Tuan, N.A.; Tiep, N.V. Evaluation of grinding wheel wear in wet profile grinding for the groove of the ball bearing’s inner ring by pneumatic probes. J. Mech. Sci. Technol. 2018, 32, 1297–1305. [Google Scholar] [CrossRef]
- Bokov, V.B. Pneumatic gauge steady-state modelling by theoretical and empirical methods. Measurement 2011, 44, 303–311. [Google Scholar] [CrossRef]
- Bokov, V.B. Pneumatic gauge empirical-mechanistic modelling. Measurement 2011, 44, 1166–1176. [Google Scholar] [CrossRef]
- Jermak, C.J.; Piątkowski, R.; Dereżyński, J.; Rucki, M. Comparison of the models of the air gauge static characteristics. Arch. Mech. Eng. 2017, 44, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Balakšin, O.B. Automation of the Industrial Pneumatic Dimensional Measurement; Mashinostroenie: Moscow, Russia, 1964. (In Russian). [Google Scholar]
- Gluchow, W.J.; Tupolew, A.A. Non-contact pneumatic measuring control devices for the production of workpieces with discontinuous surfaces. Feingeratetechnik 1974, 23, 69–73. (In German). [Google Scholar]
- Gluchow, V.I. Calculation of the high-pressure pneumatic systems for dimensional measurements. Izmer. Tekhnika 1971, 6, 107. [Google Scholar]
- Cimino, A.; Gnoni, M.G.; Longo, F.; Barone, G.; Fedele, M.; Le Piane, D. Modeling & Simulation as Industry 4.0 enabling technology to support manufacturing process design: A real industrial application. Procedia Comput. Sci. 2023, 217, 1877–1886. [Google Scholar] [CrossRef]
- Rucki, M.; Jermak, C.J. Dynamic Properties of Small Chamber Air Gages. J. Dyn. Syst. Meas. Control. 2012, 134, 011001. [Google Scholar] [CrossRef]
- Jermak, C.J.; Spyra, A.; Rucki, M. Mathematical model of the dynamic work conditions in the measuring chamber of an air gauge. Metrol. Meas. Syst. 2012, 19, 29–38. [Google Scholar] [CrossRef]
- Jakubowicz, M.; Rucki, M.; Varga, G.; Majchrowski, R. Influence of the Inlet Nozzle Diameter on the Air Gauge Dynamics. In Advances in Manufacturing; Lecture Notes in Mechanical Engineering; Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M., Eds.; Springer: Poznan, Poland, 2018; pp. 733–743. [Google Scholar] [CrossRef]
- Bokov, V.B. The Agile Development of High-Speed Response Air Gauging Technology. Qual. Eng. 2002, 14, 421–433. [Google Scholar] [CrossRef]
- Leizea, I.; Herrera, I.; Puerto, P. Calibration Procedure of a Multi-Camera System: Process Uncertainty Budget. Sensors 2023, 23, 589. [Google Scholar] [CrossRef]
- Jermak, C.J.; Jakubowicz, M.; Derezynski, J.; Rucki, M. Uncertainty of the air gauge test rig. Int. J. Precis. Eng. Manuf. 2017, 18, 479–485. [Google Scholar] [CrossRef]
- Jakubowicz, M.; Rucki, M.; Babic, M. Uncertainty of Sine Input Calibration Apparatus for the Air Gauges. In Advances in Manufacturing II, Volume 5—Metrology and Measurement Systems; Lecture Notes in Mechanical, Engineering; Diering, M., Wieczorowski, M., Brown, C.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 82–94. [Google Scholar] [CrossRef]
- BIPM/JCGM 100:2008; Evaluation of Measurement Data—Guide to the Expression of Uncertainty of Measurement. Joint Committee for Guides in Metrology, BIPM: Paris, France, 2008.
- Tanaka, K.; Koshy, P. A pneumatic sensor for grinding wheel condition monitoring. Precis. Eng. 2019, 56, 62–68. [Google Scholar] [CrossRef]
- Stalin John, M.R.; Balaji, B.; Vinayagam, B.K. Optimisation of internal roller burnishing process in CNC machining center using response surface methodology. J Braz. Soc. Mech. Sci. Eng. 2017, 39, 4045–4057. [Google Scholar] [CrossRef]
- Yen, C.T.; Kao, H.A.; Wang, S.M.; Wang, W.B. On-Line Quality Inspection System for Automotive Component Manufacturing Process. In Proceedings of the Institute of Industrial Engineers Asian Conference 2013; Lin, Y.-K., Tsao, Y.-C., Lin, S.-W., Eds.; Springer Science + Business Media: Singapore, 2013; pp. 1031–1038. [Google Scholar] [CrossRef]
- Adamczak, S.; Zmarzły, P.; Stępień, K. Identification and analysis of optimal method parameters of the V-block waviness measurements. Bull. Pol. Acad. Sci. Technol. Sci. 2016, 64, 325–332. [Google Scholar] [CrossRef]
- Jermak, C.J.; Rucki, M.; Jakubowicz, M. Accuracy of the pneumatic follower for the wooden surface quality assessment. Eur. J. Wood Wood Prod. 2020, 78, 1149–1159. [Google Scholar] [CrossRef]
- Jakubowicz, M. Accuracy of roundness assessment using air gauge with the slot-shaped measuring nozzle. Measurement 2020, 155, 107558. [Google Scholar] [CrossRef]
- Jermak, C.J.; Rucki, M. Static Characteristics of Air Gauges Applied in the Roundness Assessment. Metrol. Meas. Syst. 2016, 23, 85–96. [Google Scholar] [CrossRef]
- Jermak, C.J.; Jakubowicz, M.; Wieczorowski, M.; Rucki, M. Fast and Precise Non-Contact Measurement of Cylindrical Surfaces with Air Gauges. Materials 2021, 14, 3728. [Google Scholar] [CrossRef]
- Damir, M.; Abou-Ali, M.; Damir, A. Pneumatic Non-Contact Measuring System for In-Process Dimensions Measurements. Procedia CIRP 2021, 101, 234–237. [Google Scholar] [CrossRef]
- Schuetz, G. It is Never Too Late to Teach an Old Custom Gage New Tricks. Qual. Mag. 2022, 61, 14. [Google Scholar]
- Jermak, C. Concept of the pneumatic devices PneuStar for dimensional measurement. Apar. Badaw. Dydakt. 2013, 18, 25–30. (In Polish). [Google Scholar]
- Jermak, C.J.; Jakubowicz, M.; Dereżyński, J.; Rucki, M. Air Gauge Characteristics Linearity Improvement. J. Control. Sci. Eng. 2016, 2016, 8701238. [Google Scholar] [CrossRef]
- Marinov, M.B.; Nikolov, N.; Dimitrov, S.; Todorov, T.; Stoyanova, Y.; Nikolov, G.T. Linear Interval Approximation for Smart Sensors and IoT Devices. Sensors 2022, 22, 949. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rucki, M. Recent Development of Air Gauging in Industry 4.0 Context. Sensors 2023, 23, 2122. https://doi.org/10.3390/s23042122
Rucki M. Recent Development of Air Gauging in Industry 4.0 Context. Sensors. 2023; 23(4):2122. https://doi.org/10.3390/s23042122
Chicago/Turabian StyleRucki, Miroslaw. 2023. "Recent Development of Air Gauging in Industry 4.0 Context" Sensors 23, no. 4: 2122. https://doi.org/10.3390/s23042122
APA StyleRucki, M. (2023). Recent Development of Air Gauging in Industry 4.0 Context. Sensors, 23(4), 2122. https://doi.org/10.3390/s23042122