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Abstract: The detection of beneficial microbes living within perennial ryegrass seed causing no
apparent defects is challenging, even with the most sensitive and conventional methods, such as
DNA genotyping. Using a near-infrared hyperspectral imaging system (NIR-HSI), we were able to
discriminate not only the presence of the commercial NEA12 fungal endophyte strain but perennial
ryegrass cultivars of diverse seed age and batch. A total of 288 wavebands were extracted for individ-
ual seeds from hyperspectral images. The optimal pre-processing methods investigated yielded the
best partial least squares discriminant analysis (PLS-DA) classification model to discriminate NEA12
and without endophyte (WE) perennial ryegrass seed with a classification accuracy of 89%. Effective
wavelength (EW) selection based on GA-PLS-DA resulted in the selection of 75 wavebands yielding
88.3% discrimination accuracy using PLS-DA. For cultivar identification, the artificial neural network
discriminant analysis (ANN-DA) was the best-performing classification model, resulting in >90% clas-
sification accuracy for Trojan, Alto, Rohan, Governor and Bronsyn. EW selection using GA-PLS-DA
resulted in 87 wavebands, and the PLS-DA model performed the best, with no extensive compromise
in performance, resulting in >89.1% accuracy. The study demonstrates the use of NIR-HSI reflectance
data to discriminate, for the first time, an associated beneficial fungal endophyte and five cultivars of
perennial ryegrass seed, irrespective of seed age and batch. Furthermore, the negligible effects on the
classification errors using EW selection improve the capability and deployment of optimized methods
for real-time analysis, such as the use of low-cost multispectral sensors for single seed analysis and
automated seed sorting devices.

Keywords: phenotyping; PLS-DA; ANN-DA; SVM; genetic algorithm; endophyte; chemical imaging;
NEA12; Epichloë

1. Introduction

Perennial ryegrass (Lolium perenne L.) is used for forage and turf in temperate regions
throughout the world, including Northern Europe, the Pacific Northwest of the USA, Japan,
South-Eastern Australia and New Zealand [1]. It is the most commonly utilised pasture
grass on dairy farms in Australia and has high economic importance. The pasture species
typically forms a symbiotic relationship with a naturally occurring asexual Epichloe spp.
fungal endophyte (henceforth referred to as endophytes). The endophyte confers unique
properties that have led to its utilization as a trait in cultivar development, in particular
for the biocontrol of insect pests, enhancing pasture performance and persistence via the
production of compounds that confer resistance to biotic and abiotic stresses.

Cultivar distinctness and purity, as well as physiological characteristics, are hallmarks
of seed quality [2,3]. In the plant breeding program, determining distinctness, uniformity
and stability (DUS) traits through consecutive generations is critical for commercial rights
over new plant varieties and the development of new cultivars in the market. In pasture
grasses, such as ryegrass, varietal purity extends to endophyte content and purity; thus,
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batch purity of high-quality cultivars is important in marketed forage species. While there
are established quality control measures for cultivar discrimination [4] and endophyte
content and purity [5], using sensitive tests such as DNA-based genotyping is often complex,
labour intensive, expensive and destructive, thus an evaluation is limited to a randomly
selected subset of seeds from a batch and not all batches are tested [6]. These attributes are
not ideal when seeds are valuable and/or the supply is limited.

The well-established non-destructive and high-throughput technique, near-infrared
spectroscopy (NIRS), has been used since the 1960s for quality assessment of agricultural
products [7,8]. NIRS for seed evaluation typically involves the generation of an average
spectrum for a set of seeds or individual seeds from only a few selected points across the
sample. With the development of NIRS coupled with imaging techniques in the late 1990s,
the capability has tremendously improved as both spatial and spectral data can be acquired
for samples [9]. The spatial resolution indicates the distribution of the chemical constituents
within a sample and can vary depending on the size of the pixel, which influences the
signal strength. With the advantages of being a non-destructive and potentially high-
throughput technique for the acquisition of both qualitative and quantitative data, NIR-
HSI investigations for seed quality assessments have become increasingly popular. As
reviewed by Reddy et al. [6], NIR-HSI has been applied in the varietal classification of
plant species, such as cotton and maize, as well as the detection of disease-causing fungal
pathogens on seed [10–16]. However, the potential of the technology for use in seed-based
cultivar discrimination in pastures, such as perennial ryegrass and, importantly, beneficial
endophyte detection, has not been explored.

There is good evidence in the literature that varietal identification can be achieved
with at least 80% accuracy [6]. Zhu et al. [17] identified seven varieties of cotton seeds using
NIR-HSI wavelengths 942–1646 nm. Classification models, including partial least squares
discriminant analysis (PLS-DA), logistic regression (LR) and support vector machine (SVM),
were applied to full wavelengths as well as effective wavelengths (EW) that were selected
according to principal component analysis (PCA) loadings. PLSDA, LR and SVM models
were also used as classifiers for deep learning architectures. Zhao et al. [18] identified
three grape seed varieties using NIR-HSI in the spectral range 874–1734 nm. An SVM
model was built for the classification using effective wavelengths selected by PCA loadings.
Kong et al. [19] identified four rice seed cultivars using NIR-HSI wavelengths covering
874–1734 nm. PLS-DA, soft independent modelling of class analogy (SIMCA), k-nearest
neighbour (KNN) and support vector machine (SVM) and random forest (RF) were applied.
EW was selected using weighted regression coefficients of the PLS-DA. The 12 optimal
wavelengths were used to develop PLS-DA, KNN, SVM and RF models. Thus, NIR-HSI
has been successfully used for varietal classification for many agriculturally relevant seeds,
and while no literature currently exists on NIR-HSI chemical imaging to identify pasture
seed varieties, the successful application of the technology using seed from other species
suggests it is feasible.

The presence of the naturally occurring, asymptomatic, fungal symbiont in perennial
ryegrass contributes to the complexity of the morphology of the seed and its classification.
While there is no literature describing the use of NIR-HSI for the detection of beneficial fun-
gal endophytes in seed, previous reports investigating fungal phytopathogens in seed have
achieved similar accuracies to varietal identifications of at least 80%. Kheiralipour et al. [10]
identified aflatoxin contamination of pistachio kernels at different growth stages using
NIR-HSI wavelengths 900–1700 nm. Classification models were developed using linear
discriminant analysis (LDA) and quadratic discriminant analysis (QDA) based on EW
selected from PCA loadings. Fungal infections were identified in canola seeds using NIR-
HSI covering wavelengths 1000–1600 nm [11]. LDA, QDA and Mahalanobis discriminant
classifiers were applied to effective wavelengths selected based on PCA loadings.

These studies present promising outputs in calibration, validation and prediction, and
the utilization of NIR-HSI is becoming a necessary advancement for real-time analysis of
individual seed quality parameters. These outcomes are being recognized by organisations
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that develop standard methods for seed quality, such as the International Seed Testing
Association (ISTA) and the Association of Official Seed Analysts (AOSA) [20]. Although
seed phenotyping is more challenging, concerted and ongoing research and development
will lead to the industry uptake of routine and real-time applications.

The objective of the present study was to detect, for the first time, the presence/absence
of the beneficial NEA12 fungal endophyte as well as discriminate cultivars of perennial
ryegrass seed within the same cohort, irrespective of seed age and batch. The new means
to phenotype based on established NIR-HSI imaging pipeline techniques would allow for
the development of a real-time high-throughput seed phenotyping tool for seed sorting.

2. Materials and Methods
2.1. Sample Preparation

Cultivars of perennial ryegrass seed were obtained from Barenbrug, Christchurch,
New Zealand. The total number of samples (n) used in this study was 1057. The sample
population of NEA12 (n = 577) endophyte-infected seed (henceforth referred to as E+)
consisted of four cultivars, including Alto (n = 96; received 11 July 2018); Trojan (n = 193;
received 11 July 2018); Rohan (n = 96; received 1 September 2017 and n = 96; received
17 December 2013); Governor (n = 96; received 1 September 2017). The seed samples
without endophyte (WE) (n = 480) (henceforth referred to as E−) also consisted of four
cultivars, including Bronsyn (n = 96; received 11 July 2018); Trojan (n = 96; received 11 July
2018 and n = 96; received 17 December 2013); Rohan (n = 96; received 17 December 2013);
Governor (n = 96; received 17 December 2013).

All seeds were stored in a controlled environment room (CER) at 4 ◦C.

2.2. Hyperspectral Imaging System

This system consisted of a short-wave infrared (SWIR) hyperspectral camera (Specim
Finland), comprising a cryogenically cooled MCT detector scanning 288 spectral bands
between 1000–2500 nm with 384 spatial pixels and 24 × 24 µm pixel size. The size of an
individual uncompressed raw image file of 96 seeds was approximately 217 MB.

2.3. Image Acquisition and Normalization

Perennial ryegrass seeds were arranged on a black plate and placed on a Specim
SisuCHEMA imaging analyser (Specim Finland) at a scan rate of 3 mm.s−1. Samples
were scanned in an airconditioned laboratory with temperature and humidity maintained
at approximately 22–25 ◦C and 30–40% relative humidity (RH), respectively. Seeds were
stored in the laboratory for 24 h prior to scanning to allow seed temperature to equilibrate to
the ambient environment. A hyperspectral image was formed by 288 congruent grayscales
sub-images representing the intensities of 288 wavelength bands. Thus, 3D hypercube data,
representing the hyperspectral images, contained the spectral and spatial information used
to identify perennial ryegrass seed cultivars and endophyte presence. Before hyperspectral
image acquisition, white and dark reference images were acquired. The acquisition of the
dark reference image is to remove the influence of dark current in the camera. A dark
current is a current or flow of electrons generated even when no photons are incident on the
camera. The valence electrons are thermally excited within the silicon chip comprising the
charged couple device (CCD) and into the conduction band. The dark reference image was
acquired by turning off the light source together with covering the camera lens completely
with its opaque cap, while the white reference image was acquired by using a white Teflon
tile with nearly 100% reflectance.

Then the calibrated image or reflectance value (R) was calculated by using the raw
hyperspectral image (IS), white reference image (IW) and dark reference image (ID) (Equa-
tion (1)) [21]:

R =
IS − ID
IW − ID

(1)
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After the hyperspectral images were normalized, the seeds were corrected based on
(Equation (1)). The average spectrum of all pixels in each seed was used as the spectrum of
the sample. In total, 288 spectra for each individual seed were acquired.

2.4. Image Processing

A flow chart summarizing the image processing steps is shown in Figure 1.
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Figure 1. Flow chart of steps for analysing raw hyperspectral image of seeds. (1) Normalisation
of image based on white and dark reference; (2) Image segmentation for background removal;
(3) Spectral pre-processing and classification model development.

2.4.1. Data Extraction

The raw hyperspectral images acquired using NIR-HSI were corrected with white
and dark reference images to obtain reflectance values using MATLAB (The Math-Works
Inc., Natick, MA, USA, Version v.R2022). The corrected sample reflectance spectra were
processed in MIA_Toolbox (v. 9.0 (2022), Eigenvector Research Inc., Manson, WA, USA).
A reverse-mask was used for image segmentation by setting a numerical value of all
background pixels to 0 and all pixels within the sample to 1. An averaged spectrum
was generated for each seed sample to perform object-wise spectral pre-processing and
analysis optimization.

2.4.2. Pre-Processing and Multivariate Analysis Methods

Prior to multivariate analyses, the original NIR spectra were pre-processed to remove
noise interference and irrelevant information, thereby improving the robustness of the
model and improving the signal-to-noise. Based on PLS-DA modelling, optimal pre-
treatment was determined for endophyte and WE discrimination using methods including
detrend, second order automatic weighted least squares (baseline, order = 2), mean centring,
first-order derivative, extended multiplicative scatter correction/signal correction (EMSC),
standard normal variate (SNV) and orthogonal signal correction (OSC).

PLS-DA is a supervised multivariate analysis used to reduce data dimensionality. It is
a widely used method in NIR-HSI spectral analysis and is a variant of the linear regression
model, partial least squares (PLS), that can be used when the response variable (Y) is
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categorical [22]. In this study, it was used to optimize the separation between groups by
linking the X (spectral data) and Y as a set of class labels (perennial ryegrass cultivars or
endophyte presence/absence) using a latent variable approach to model their maximum
covariance structures.

For the SVM and ANN-DA models, PLS data compression was used to reduce dimen-
sionality and overfitting. The SVM algorithm is also used as a supervised statistical method
for high dimensional data but has the ability to solve non-linear problems based on the
maximum margin between the boundaries of groups called the hyperplane [23]. In the
present study, the use of radial basis function (RBF) was used as a kernel with optimization
of an adjustable cost function (C) and gamma (δ)-, which indicated how strongly misclas-
sifications should be penalized and thus, henceforth referred to as C-SVM. ANN-DA is
also a non-linear algorithm based on a collection of connected nodes referred to as artificial
neurons. Herein, the number of nodes in the first hidden layer was optimized to 10.

2.4.3. Model Evaluation

The models were evaluated using true positive rate (sensitivity) (Equation (2)) using
the metrics TP (true positive) and FN (false negative) and true negative rate (specificity)
(Equation (3)), which uses the metrics TN (true negative) and FP (false positive). The
true positive rate (sensitivity) and true negative rate (specificity) are used to determine
the classification error (CE) (Equation (4)), which is equivalent to the average of the false
positive rate and false negative rate.

sensitivity =
TP

TP + FN
(2)

speci f icity =
TN

TN + FP
(3)

CE = 1 − (sensitivity + speci f icity)/2 (4)

Overall accuracy (%) = 100 − CE (5)

Cross validation (CV) was performed for all models, using Venetian blinds by applying
10 data splits, with one sample per blind used to assess individual models and to select the
optimum number of LVs in PLS-DA. The dataset was organized in class order by cultivar.
A total of 288 averaged spectra for each seed image was acquired for 1249 seeds, which
were assigned a class based on endophyte/WE or cultivar. The prediction dataset was
generated by using a Kennard-Stone algorithm, which selects a subset of samples that
uniformly cover the dataset and includes exterior samples as the calibration set (used to
develop the model), and the remainder is placed in the test set (to assess the model). The
dataset was split into 95% calibration and 5% prediction. Overall accuracy (Equation (5))
was based on a class error of prediction or cross validation, whichever was higher within
the classes.

2.4.4. Genetic Algorithm

A genetic algorithm (GA) optimiser, using PLS-DA as a classifier (GA-PLS-DA), was
used to define the most effective wavebands (Table 1). These wavebands were then used as
above for the classification model.

Table 1. Genetic algorithm parameters.

Parameters

Population 64
Max Generations 100

Crossover Double
Mutation rate 0.005

% Convergence 50
Number of GA Iterations 1
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3. Results and Discussion

To discriminate E+ (endophyte strain NEA12) from E− (without endophyte, WE),
irrespective of perennial ryegrass cultivar and seed batch, classification models were
generated based on optimised pre-processed spectra (Table 2). These same pre-processed
spectral data and optimised pre-processing steps were subsequently used to discriminate
perennial ryegrass cultivars within the same cohort.

Table 2. Pre-treatment method optimization for PLS-DA classification models using full spectra for
E+ (n = 551) and E− (n = 454) calibration dataset and E+ (n = 26) and E− (n = 26) prediction dataset.

No. Pre-Treatment Endophyte
Status

Sensitivity
(Cal)

Class
Error
(Cal)

Sensitivity
(CV)

Class
Error
(CV)

Sensitivity
(Pred)

Class
Error
(Pred)

1
Detrend, Baseline (order = 2); Mean centre
(LV = 19)

E+ 0.904 9.9% 0.853 13.7% 0.846 9.6%
E− 0.899 0.872 0.962

2
Detrend, Baseline (order = 2), 2nd Derivative
(order = 2, 15 pt), Mean centre (LV = 19)

E+ 0.906 10.1% 0.851 14.8% 0.846 15.4%
E− 0.892 0.852 0.846

3
Detrend, Baseline (order = 2), 2nd Derivative
(order = 2, 15 pt), EMSC, Mean centre (LV = 18)

E+ 0.900 10.6% 0.858 14.6% 0.885 9.6%
E− 0.888 0.850 0.923

4
Detrend, Baseline (order = 2), OSC, Mean centre
(LV = 11)

E+ 0.966 4.0% 0.887 10.4% 0.885 11.5%
E− 0.954 0.905 0.885

5
Detrend, Baseline (order = 2), 2nd Derivative
(order = 2, 15 pt), OSC, Mean centre (LV = 6)

E+ 0.962 4.2% 0.882 11.5% 0.962 9.6%
E− 0.954 0.888 0.846

6
Detrend, Baseline (order = 2), 2nd Derivative
(order = 2, 15 pt), EMSC, OSC, Mean centre
(LV = 4)

E+ 0.956 4.1% 0.893 11.0% 0.962 3.8%

E− 0.963 0.888 0.962

3.1. Endophyte Discrimination—Pre-Treatment

Spectral pre-processing entails algorithms that correct noise and artifacts generated
from light scattering and variation in surface morphology. This step is important in
developing a robust model. Smoothing can contribute to the removal of instrumental noise
without reducing spectral resolution.

The calibration set was composed of 1005 samples for E+ (n = 551) and E− (n = 454),
and the model was verified with a validation set of 52 samples [E+ (n = 26) and E−
(n = 26)], after the establishment of the PLS-DA model. The pre-processing method utilised
includes detrending, weighted least squares baseline algorithm (baseline), orthogonal
signal correction (OSC) and mean centring. The baseline pre-treatment iteratively performs
baseline fitting to each spectrum and determines the variables above the baseline while
limiting the negative signals. Mean centring calculates the mean of each column (variable)
and subtracts this from the column. It indicates the deviation from the spectral mean
for each row (seed) from the original data matrix. The additional pre-treatment methods
that were trialled include orthogonal signal correction (OSC), extended multiplicative
scatter correction/signal correction (EMSC) and derivatives. OSC achieves the removal of
excessive background by filtering from the spectral matrix X, the component that is not
correlated to Y, i.e., it removes the uninformative component from the response variable
Y [24,25]. EMSC removes undesirable scatter effects from the data matrix and performs
polynomial reference correction and baseline fitting to the wavelength axis prior to data
modelling [26]. Derivatives (mainly first and second derivatives) are methods used to
remove additive and/or multiplicative effects in spectral data. The first derivative removes
baseline drifts, and the second derivative has the function of resolving linear trends and
sharpening spectral features.

It is important to evaluate the effect of various pre-processing algorithms on the final
model. The results of calibration, validation and prediction for the PLS-DA models using
selected pre-treatments to discriminate E+ or E− seeds are presented in Table 1. A combina-
tion of detrend, baseline, derivative, EMSC, OSC and mean centre (Table 1, pre-treatment
no.6) yielded the lowest prediction (CEP = 3.8%) and cross validation errors (CV = 11.0%)
and the lowest number of latent variables (LV = 4), indicating a more parsimonious model
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with an 89% overall accuracy. Removing EMSC from the pre-treatment resulted in a higher
CEP (9.6%) and marginally higher CV error (11.5%) with an increase in the number of
LVs. The best prediction of the E+/E− discrimination was achieved with the inclusion of
OSC. The optimised pre-processing steps, as shown in Table 1, were used to evaluate the
performance of models henceforth.

3.2. Differentiation of E+ (NEA12) and E− (WE) Seeds
3.2.1. Discriminant Models for E+ and E− Using Full Spectra

It is known that the resident endophyte alters the physiology of the host seed [27–30].
For example, metabolite composition associated with sugars (i.e., mannitol, ribitol and tre-
halose), antioxidants (i.e., tocochromanols and glutathione) and alkaloid content (peramine,
ergovaline and lolitrem B) are altered in Epichloë endophyte-infected seed, which may
account for the wider absorbance range in the spectra of E+ compared to E− seed (Figure 2).
Perennial ryegrass seeds are small in length (5 to 8 mm) and width (1 to 1.5 mm (midpoint))
compared to grain crops such as maize and wheat and thus discerning physiological traits
may not be as obvious due to constraints in not only size but quantities of individual
seed required for evaluation in a high-throughput manner. The presence of the naturally
occurring beneficial fungal symbiont also contributes to the complexity of the seed. An
example of a true hyperspectral image of WE and NEA12 perennial ryegrass seed of the
cultivar Trojan is shown in Figure 3.
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The results of calibration, validation, and prediction models to discriminate E+ and E−
are shown in Table 3. Using the optimised pre-treatments (Table 2, pre-treatment no. 6), the
PLS-DA (CEP = 3.8%; CV = 11.0%) model outperformed ANN-DA (CEP = 5.8%; CV = 11.0%)
and C-SVM (CEP = 19.2%; CV = 23.7%) models resulting in an 89% overall accuracy.

Table 3. Classification models using full spectra for E+ (n = 551) and E− (n = 454) calibration dataset
and E+ (n = 26) and E− (n = 26) prediction dataset.

Model Endophyte
Status

Sensitivity
(Cal)

Class Error
(Cal)

Sensitivity
(CV)

Class Error
(CV)

Sensitivity
(Pred)

Class Error
(Pred)

PLS-DA E+ 0.956 4.1% 0.893 11.0% 0.962 3.8%
LV = 4 E− 0.963 0.888 0.962

C-SVM * E+ 0.873 20.4% 0.849 23.7% 0.731 19.2%
C = 1 E− 0.718 0.676 0.885

δ = 0.32
ANN-DA * E+ 0.971 2.5% 0.895 11.0% 0.962 5.8%

E− 0.974 0.885 0.923

* partial least squares data compression performed on the x-block based on 4 latent variables.

While there are many applications that are developed to identify microbial pathogens
that sometimes result in visual defects, to our knowledge, this is the first NIR-HSI method
to accurately detect a beneficial, asymptomatic, fungal endophyte in the seed. Compa-
rable studies reported are for the detection of early stages of fungal infection/disease or
identification of atoxicogenic fungal strains [12,16,31,32].

Senthilkumar et al. [12] reported differences in sterile and infected kernels of stored
barley on statistical classifers, including linear, quadratic and Mahalanobis, using NIR-HSI
wavelengths 1000–1600 nm. The images were acquired every 2 weeks and showed at least
80% classification accuracy at initial periods of fungal infection and 100% after four weeks
of infection for all classifiers. Based on fluorescene hyperspectral imaging, Yao et al. [31]
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reported 100% classification accuracy of atoxicogenic and toxiogenic Aspergillus flavus
fungal strains in maize kernels based on an LDA classifier. The kernels were on the
germ side and adjacent to the infected kernels, identifiable by their bright fluorescence.
Fluorosence imaging is based on a visible near-infrared (VIS-NIR) hyperspectral imager
covering the 400–700 nm range, thus having similar spectral and spatial resolutions. A
classification accuracy of 94.4% of healthy and contaminated corn kernels (germ side) was
also achieved based on aflatoxin threshold levels of 20 ppb and 100 ppb, respectively.
Lee et al. [16] described the identification of bacteria-infected watermelon seed using NIR-
HSI with a spectral range of 400–1000 nm using PLS-DA and least squares support vector
machine (LS-SVM) with a classification accuracy of 91.7% and 90.5% respectively. Although
these studies did not pertain to endophyte-infected seeds, we surmise that by applying
statistical classifiers on hyperspectral imaging acquistion data, low levels of contamination
and early stages of fungal and bacterial infection can be detected in a seed.

3.2.2. Discriminant Models for E+ and E− Using Effective Wavelengths

Identification of effective wavelengths (EW) removes redundancy and collinearity of
spectral data and allows the use of low-cost multispectral cameras in place of hyperspectral
cameras. It also increases the data-processing speed and reduces the need for high-end
computing infrastructure, processing power and storage. There are many variable selection
methods for NIR-HSI spectral data. In this study, Genetic Algorithm (GA) was used to
select optimal wavelengths, along with PLS-DA as a classifier for effective waveband
selection. GA is inspired by natural evolution and natural genetics that is used to select the
most effective waveband combination based on the “survival of the fittest” approach [33],
where a string of ‘chromosomes’ or individuals (i.e., a subset of wavebands) are assigned a
fitness score using root mean standard error for cross-validation (RMSECV) fitness function,
based on how well the individual performs in distinguishing between treatments. This
is evolved over successive generations, using waveband selection (wavebands with high
fitness scores), mutation (modification of individual by the introduction of new wavebands)
and crossover (random selection of wavebands from two individuals) to produce waveband
combinations that produce the lowest RMSECV scores- a better fit to the data, in GA-PLS-
DA modelling.

The number of wavebands used for classification was reduced to 75 from 288 using
the GA-PLS-DA model (Table 4). The 75 wavelengths are the most effective wavelength
combination selected. A combination of detrend, baseline, derivative, OSC and mean centre
(Table 2, pre-treatment no. 5) yielded the lowest calibration, validation and prediction
errors for the PLS-DA (CEP = 11.4%; CV = 11.7%; LV = 9) model compared to ANN-DA,
which resulted in consistent prediction errors (CEP = 11.4%) but a slightly higher cross
validation error (CV = 12.2%). The C-SVM model resulted in poor prediction (CEP = 15.6%)
and cross validation errors (CV = 13.3%). Although the PLS-DA model performed the
best, it was not unexpected that the cross validation and prediction errors were moderately
higher than full wavelength classification models, but the minor compromise to the overall
accuracy (88.3%) was acceptable.

Wallays et al. [34] described the use of GA-PLS-DA for the selection of wavebands
in the range of 400 to 950 nm of NIR-HSI acquisition data for discrimination between
pure kernels and material other than grain (MOG) comprising chaff and straw of diverse
varieties of wheat. Seo et al. [35] also describes the use of NIR-HSI (950–2500 nm) to identify
cucumber green mosaic virus in watermelon seed with classifiers including PLS-DA, SVM
and LS-SVM, showing 78%, 81.3% and 92.3% classification accuracy, respectively, based
on healthy vs. infected seed. GA-PLS-DA implementation resulted in 93.4% accuracy of
selected bands using the LS-SVM classifier.

These studies indicate that GA-PLS-DA is an effective technique for the selection
of wavebands and reduce redundancy in hyperspectral images for the identification of
various traits in small seed and grain samples. In this study, hyperspectral waveband
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selection could allow for the subsequent development of low-cost multispectral sensors for
online measurement.

Table 4. Classification models using 75 optimal wavelengths for E+ (n = 550) and E− (n = 455)
calibration dataset and E+ (n = 27) and E− (n = 25) prediction dataset.

Model Endophyte
Status

Sensitivity
(Cal)

Class Error
(Cal)

Sensitivity
(CV)

Class Error
(CV)

Sensitivity
(Pred)

Class Error
(Pred)

PLS-DA E+ 0.922 9.6% 0.898 11.7% 0.852 11.4%
LV =9 E− 0.886 0.868 0.920

C-SVM * E+ 0.916 10.3% 0.887 13.3% 0.889 15.6%
C = 100 E− 0.877 0.846 0.800
δ = 0.003

ANN-DA * E+ 0.929 6.8% 0.870 12.2% 0.852 11.4%
E− 0.899 0.885 0.920

* partial least squares data compression performed on the x-block based on 9 latent variables.

3.3. Differentiation of Perennial Ryegrass Cultivars
3.3.1. Discriminant Models for Perennial Ryegrass Cultivars Using Full Spectra

The raw NIR spectral data plot of 5 perennial ryegrass cultivars—Trojan, Alto, Rohan,
Governor and Bronsyn—is shown in Figure 4. The results of calibration, validation, and
prediction models to discriminate cultivars are shown in Table 5 using a combination of pre-
treatments, including detrend, baseline, derivative, EMSC, OSC and mean centre (Table 2,
pre-treatment no. 6). Overall, the ANN-DA model performed moderately better than PLS-
DA and C-SVM, particularly in the class error prediction for all cultivars. With exception to
cross validation error of Governor (CV = 6.9%), individual cultivars in the ANN-DA model
revealed lower errors compared to PLS-DA and C-SVM with a 90% overall accuracy.

Table 5. Classification models using full spectra for cultivars Trojan (n = 369); Alto (n = 86); Rohan
(n = 277); Governor (n = 181) and Bronsyn (n = 92) calibration dataset and Trojan (n = 16); Alto (n = 10);
Rohan (n = 11); Governor (n = 11); Bronsyn (n = 4) prediction dataset.

Model Cultivar Sensitivity
(Cal)

Class Error
(Cal)

Sensitivity
(CV)

Class Error
(CV)

Sensitivity
(Pred)

Class Error
(Pred)
(CV)

PLS-DA Trojan 0.957 4.1% 0.900 9.5% 1.000 0.0%
LV = 18 Alto 0.965 4.7% 0.919 7.7% 1.000 3.6%

Rohan 0.921 7.6% 0.881 10.8% 0.909 4.5%
Governor 0.967 4.1% 0.950 5.8% 1.000 4.9%
Bronsyn 0.957 4.0% 0.902 7.7% 1.000 2.1%

C-SVM * Trojan 0.981 1.9% 0.900 8.6% 1.000 2.8%
C = 10 Alto 0.919 4.2% 0.767 12.3% 0.900 6.2%
δ = 0.01 Rohan 0.957 2.6% 0.856 10.2% 0.727 13.6%

Governor 0.989 1.0% 0.878 7.2% 0.909 7.0%
Bronsyn 0.989 0.6% 0.913 4.8% 0.750 13.5%

ANN-DA * Trojan 0.992 2.5% 0.892 8.4% 1.000 0.0%
Alto 1.000 2.8% 0.919 6.3% 1.000 1.2%

Rohan 1.000 2.0% 0.874 10.0% 0.909 4.5%
Governor 0.994 3.1% 0.906 6.9% 1.000 2.4%
Bronsyn 0.989 1.3% 0.902 7.0% 1.000 0.0%

* partial least squares data compression performed on the x-block based on 18 latent variables.
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3.3.2. Discriminant Models for Perennial Ryegrass Cultivars Using Effective Wavelengths

The number of wavebands used for classification was reduced to 87 from 288 using
the GA-PLS-DA model. The 87 wavelengths are the most effective wavelength combina-
tion selected using a combination of detrend, baseline, derivative, OSC and mean centre
pre-processing (Table 2, pre-treatment no. 5). The results of calibration, validation and
prediction are shown in Table 6. Overall, the C-SVM model revealed a lower rate for the
cross validation in Trojan (CV = 9.3%), Rohan (CV = 10.0%) and Governor (CV= 7.6%) and
prediction errors in Alto (CEP = 1.1%), Governor (CEP = 0.0%) and Bronsyn (CEP = 0.0%)
compared to PLS-DA and ANN-DA.

Table 6. Classification models using 87 optimal wavebands for cultivars Trojan (n = 366); Alto (n = 91);
Rohan (n = 271); Governor (n = 185) and Bronsyn (n = 92) calibration dataset and Trojan (n = 19); Alto
(n = 5); Rohan (n = 17); Governor (n = 7) and Bronsyn (n = 4) prediction dataset.

Model Cultivar Sensitivity
(Cal)

Class Error
(Cal)

Sensitivity
(CV)

Class Error
(CV)

Sensitivity
(Pred)

Class Error
(Pred)
(CV)

PLS-DA Trojan 0.932 8.0% 0.896 10.9% 0.895 9.8%
LV = 19 Alto 0.956 4.1% 0.923 5.8% 1.000 5.3%

Rohan 0.889 11.3% 0.878 12.4% 0.941 7.2%
Governor 0.903 8.1% 0.886 9.7% 1.000 11.1%
Bronsyn 0.946 6.4% 0.913 8.3% 1.000 1.0%

C-SVM * Trojan 0.940 5.0% 0.904 9.3% 0.842 10.9%
C = 1 Alto 0.967 1.8% 0.857 7.5% 1.000 1.1%

δ = 0.03 Rohan 0.915 5.8% 0.852 10.0% 0.882 8.7%
Governor 0.951 3.0% 0.870 7.6% 1.000 0.0%
Bronsyn 0.913 4.6% 0.826 9.0% 1.000 0.0%

ANN-DA * Trojan 0.956 4.1% 0.888 10.1% 0.789 13.6%
Alto 0.967 2.2% 0.934 4.8% 1.000 2.1%

Rohan 0.934 5.5% 0.860 11.5% 0.941 11.5%
Governor 0.919 6.2% 0.886 8.8% 1.000 1.1%
Bronsyn 0.957 3.7% 0.902 7.4% 1.000 1.0%

* partial least squares data compression performed on the x-block based on 19 latent variables.

The overall performance of the ANN-DA model with full spectra (288 wavebands)
compared to model performance using 87 selected wavebands based on C-SVM shows that
there is no extensive compromise in the overall accuracy of 89.1%.

Cultivar identification performed in other seed applications has also shown 80–100%
levels of calibration and prediction accuracy [6]. A study that discriminated between rice
seed cultivars of the same age to avoid batch effects using NIR-HSI covering wavelengths
874–1734 nm resulted in 80% classification accuracy using PLS-DA and KNN and 100%
accuracy using Soft Independent Modeling of Class Analogy (SIMCA), RF and SVM
classifiers. Wavebands were selected using weighted regression coefficients of the PLS-DA
and resulted in over 80% classification rates [19]. Similar results were achieved by Wu et al.
in oat seed varieties of the same age, which yielded 99.19% accuracy in the validation set
using deep convolutional neural network (DCNN) on NIR-HSI (875–1734 nm) acquisition
data [36]. The classification accuracies of traditional classifiers LR (98.69%), SVM (98.05%)
and linear SVM (97.88%) improved when combined with DCNN, resulting in 98.72, 99.05
and 99.02%, respectively. Wavebands were selected based on the variable selection using the
second derivative method, and SVM (87.31%) performed better than linear SVM (84.21%)
and LR (84.92%).

The classification accuracies of previous studies are comparable to the current study
for the varietal classification of seeds, indicating traditional classifiers and deep learning
algorithms are effective statistical methods for discrimination. It is noteworthy that in
the present study, at least 90% and 89.1% classification accuracy were achieved based
on full wavelengths and effective wavelengths, respectively, of perennial ryegrass seed
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cultivars. The minor reduction in classification accuracy based on EW is similar to some
of the previous studies described and is likely due to a reduction in collinearity between
wavebands. Moreover, the elimination of effects from seed age and batch in the multivariate
models developed in this study indicates the potential to identify other cultivars and
associated endophytes of perennial ryegrass seed of any age and batch.

4. Conclusions

The study investigated non-destructive, rapid, seed-based diagnostics of perennial
ryegrass using NIR-HSI technology. E+/E− seed from five different cultivars and of
varying ages was effectively discriminated. Accurate cultivar discrimination was achieved
using five cultivars (Trojan, Alto, Rohan, Bronsyn and Governor) of perennial ryegrass that
also varied in endophyte status and age of the seed. A PLS-DA, C-SVM and ANN-DA
model was developed using averaged NIR spectra for each seed, encompassing 288 discrete
wavelengths using optimal pre-treatment algorithms developed on a PLS-DA model. The
best discrimination accuracy for E+/E− was the PLS-DA model, which yielded an 89%
overall accuracy. Effective wavelength selection using GA-PLS-DA on the NIR spectral
matrix for classes E+/E− reduced wavebands to 75 and resulted in a minor compromise
to the overall accuracy (88.3%) based on PLS-DA. Classification models were generated
on these same spectra for cultivars (Trojan, Alto, Rohan, Bronsyn and Governor). The
ANN-DA model performed better than C-SVM and PLS-DA, with a 90% overall accuracy.
Effective wavelength selection using GA-PLS-DA reduced the wavebands to 87, and the
C-SVM model performed the best, with no extensive compromise in model performance,
revealing an 89.1% overall accuracy.

Thus, hyperspectral-NIR reflectance imaging is promising for the discrimination of
seed with endophyte strain NEA12 from seed without endophyte as well as cultivars
(Trojan, Alto, Rohan, Bronsyn and Governor). The established imaging pipeline has not
only the potential to be applied to other perennial ryegrass cultivars and endophytes but
other pasture grass species, such as tall fescue and its associated endophytes. The limited
loss of accuracies in using effective wavelengths also demonstrates practical deployment
using low-cost multispectral sensors for single seed analysis.
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