Indoor 2D Positioning Method for Mobile Robots Based on the Fusion of RSSI and Magnetometer Fingerprints
<p>Architecture of the proposed method.</p> "> Figure 2
<p>Measurement setup of the first scenario: (<b>a</b>) environment; (<b>b</b>) schematic drawing.</p> "> Figure 3
<p>Heatmap of RSSI values in the first scenario for: (<b>a</b>) AP1; (<b>b</b>) AP2; (<b>c</b>) AP3; (<b>d</b>) AP4; and (<b>e</b>) AP5.</p> "> Figure 3 Cont.
<p>Heatmap of RSSI values in the first scenario for: (<b>a</b>) AP1; (<b>b</b>) AP2; (<b>c</b>) AP3; (<b>d</b>) AP4; and (<b>e</b>) AP5.</p> "> Figure 4
<p>Heatmap of the magnetic field strength in the first scenario for: (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>; (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>; (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>; (<b>d</b>) <span class="html-italic">B<sub>xy</sub></span>; and (<b>e</b>) <span class="html-italic">B<sub>xyz</sub></span>.</p> "> Figure 5
<p>Measurement setup of the second scenario: (<b>a</b>) environment of the laboratory; (<b>b</b>) environment with the mobile robot; and (<b>c</b>) schematic drawing.</p> "> Figure 6
<p>Heatmap of RSSI values in the second scenario for: (<b>a</b>) AP1; (<b>b</b>) AP2; (<b>c</b>) AP3; (<b>d</b>) AP4; and (<b>e</b>) AP5.</p> "> Figure 6 Cont.
<p>Heatmap of RSSI values in the second scenario for: (<b>a</b>) AP1; (<b>b</b>) AP2; (<b>c</b>) AP3; (<b>d</b>) AP4; and (<b>e</b>) AP5.</p> "> Figure 7
<p>Heatmap of the magnetic field strength in the second scenario for: (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>; (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>; (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>; (<b>d</b>) <span class="html-italic">B<sub>xy</sub></span>; and (<b>e</b>) <span class="html-italic">B<sub>xyz</sub></span>.</p> "> Figure 7 Cont.
<p>Heatmap of the magnetic field strength in the second scenario for: (<b>a</b>) <span class="html-italic">B<sub>x</sub></span>; (<b>b</b>) <span class="html-italic">B<sub>y</sub></span>; (<b>c</b>) <span class="html-italic">B<sub>z</sub></span>; (<b>d</b>) <span class="html-italic">B<sub>xy</sub></span>; and (<b>e</b>) <span class="html-italic">B<sub>xyz</sub></span>.</p> "> Figure 8
<p>Histogram of the <span class="html-italic">B<sub>xyz</sub></span> magnetic field magnitude for: (<b>a</b>) first scenario; and (<b>b</b>) second scenario.</p> "> Figure 9
<p>Results achieved in the first scenario using different number of hidden layer neurons with different versions of used data for: (<b>a</b>) all points in the grid (training data); (<b>b</b>) every second point in the grid (training data); and (<b>c</b>) every second point in the grid (test data).</p> "> Figure 10
<p>CDFs of errors achieved in the first scenario with different versions of used data for: (<b>a</b>) all points in the grid (training data); (<b>b</b>) every second point in the grid (training data); and (<b>c</b>) every second point in the grid (test data).</p> "> Figure 10 Cont.
<p>CDFs of errors achieved in the first scenario with different versions of used data for: (<b>a</b>) all points in the grid (training data); (<b>b</b>) every second point in the grid (training data); and (<b>c</b>) every second point in the grid (test data).</p> "> Figure 11
<p>Achieved results in the second scenario using different number of hidden layer neurons with different versions of used data for: (<b>a</b>) grid points (training data); and (<b>b</b>) test points.</p> "> Figure 12
<p>CDFs of errors achieved in the first scenario with different versions of used data for: (<b>a</b>) grid points (training data); and (<b>b</b>) test points.</p> ">
Abstract
:1. Introduction
- A novel 2D fingerprint-based positioning method is proposed, which fuses both the RSSI and magnetometer fingerprints using multilayer perceptron (MLP) neural networks. The method utilizes fingerprints measured in one plane near to the ground, since the goal is to provide absolute position information for the sensor fusion framework of a mobile robot. To the authors’ best knowledge, no such method was previously proposed.
- The proposed method is validated using measurements collected in two different indoor scenarios. Both scenarios are realistic since they include static obstacles.
- Three different combinations of magnetometer data are tested in the study. In the first version, the magnetometer measurements of the three sensor axes are tested. The second version utilizes the Z-axis measurements together with the magnetic field magnitudes in the X-Y plane, while the 3D magnitudes are utilized in the third version.
- The results obtained using the different fusion versions are compared with the results provided by utilizing only RSSI or magnetometer data to examine the improvement caused by the fusion of two data types.
2. Position Estimation Using the Fusion of RSSI and Magnetic Fingerprints
2.1. RSSI-Based Positioning
2.2. Magnetic Fingerprints
2.3. Proposed Positioning Method
2.3.1. Magnetometer Data
- The first version utilizes the measurements on the three sensor axes, i.e., the Bx, By, and Bz measurements. This kind of application of the magnetometer readings is only possible if the orientation of the sensor in the global coordinate frame is known for the given point, since different orientations at the same location result in different sensor readings. This version can be used to examine the most achievable positioning performance of the proposed method, since it contains the most information.
- In the second version, the 3D magnetic field magnitude (Bxyz), which can be computed from the sensor outputs using Equation (2), is utilized since it is orientation independent.
- If the mobile robot is moving on a flat surface, then the degree of freedom decreases to three, i.e., (X, Y, θ). This makes the measurements in the Z-axis directly usable. The magnetic field magnitude in the X-Y plane (Bxy), which can be calculated using Equation (3), can also be utilized without the knowledge of the θ angle. Thus, this version uses together the Bz and the Bxy.
2.3.2. Fingerprinting Algorithm
3. Applied Measurement Data
3.1. Measurement System
3.2. Data Acquisition
3.2.1. First Scenario
3.2.2. Second Scenario
4. Experimental Results
4.1. Datasets and MLP Training
- RSSI
- Bx, By, Bz
- Bxy, Bz
- Bxyz
- RSSI, Bx, By, Bz
- RSSI, Bxy, Bz
- RSSI, Bxyz
4.2. Evaluation of the First Scenario
4.3. Evaluation of the Second Scenario
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukhopadhyay, A.; Mallisscry, A. TELIL: A Trilateration and Edge Learning based Indoor Localization Technique for Emergency Scenarios. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Low, R.; Yuen, C.; Blessing, L. Plug-Mate: An IoT-based occupancy-driven plug load management system in smart buildings. Build. Environ. 2022, 223, 109472. [Google Scholar] [CrossRef]
- Balaji, B.; Xu, J.; Nwokafor, A.; Gupta, R.; Agarwal, Y. Sentinel: Occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys), Rome, Italy, 11–15 November 2013. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Chong, A. Occupancy prediction using deep learning approaches across multiple space types: A minimum sensing strategy. Build. Environ. 2022, 226, 109689. [Google Scholar] [CrossRef]
- Gogolák, L.; Fürstner, I. Wireless Sensor Network Aided Assembly Line Monitoring According to Expectations of Industry 4.0. Appl. Sci. 2021, 11, 25. [Google Scholar] [CrossRef]
- Peng, Y.; Niu, X.; Tang, J.; Mao, D.; Qian, C. Fast Signals of Opportunity Fingerprint Database Maintenance with Autonomous Unmanned Ground Vehicle for Indoor Positioning. Sensors 2018, 18, 3419. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Park, J. An Enhanced Indoor Positioning Algorithm Based on Fingerprint Using Fine-Grained CSI and RSSI Measurements of IEEE 802.11n WLAN. Sensors 2021, 21, 2769. [Google Scholar] [CrossRef]
- Kolakowski, M. Automated Calibration of RSS Fingerprinting Based Systems Using a Mobile Robot and Machine Learning. Sensors 2021, 21, 6270. [Google Scholar] [CrossRef]
- Yang, T.; Cabani, A.; Chafouk, H. A Survey of Recent Indoor Localization Scenarios and Methodologies. Sensors 2021, 21, 8086. [Google Scholar] [CrossRef]
- Singh, N.; Choe, S.; Punmiya, R. Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview. IEEE Access 2021, 9, 127150–127174. [Google Scholar] [CrossRef]
- Qin, J.; Sun, S.; Deng, Q.; Liu, L.; Tian, Y. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks. Sensors 2017, 17, 1275. [Google Scholar] [CrossRef]
- Roy, P.; Chowdhury, C. A Survey of Machine Learning Techniques for Indoor Localization and Navigation Systems. J. Intell. Robot. Syst. 2021, 101, 63. [Google Scholar] [CrossRef]
- Luo, R.C.; Hsiao, T.J. Dynamic Wireless Indoor Localization Incorporating with an Autonomous Mobile Robot Based on an Adaptive Signal Model Fingerprinting Approach. IEEE Trans. Ind. Electron. 2019, 66, 1940–1951. [Google Scholar] [CrossRef]
- Tian, X.; Shen, R.; Liu, D.; Wen, Y.; Wang, X. Performance Analysis of RSS Fingerprinting Based Indoor Localization. IEEE Trans. Mob. Comput. 2016, 16, 2847–2861. [Google Scholar] [CrossRef]
- Alhomayani, F.; Mahoor, M.H. Deep learning methods for fingerprint-based indoor positioning: A review. J. Locat. Based Serv. 2020, 14, 129–200. [Google Scholar] [CrossRef]
- Yoo, J. Multiple Fingerprinting Localization by an Artificial Neural Network. Sensors 2022, 22, 7505. [Google Scholar] [CrossRef]
- Xue, W.; Qiu, W.; Hua, X.; Yu, K. Improved Wi-Fi RSSI Measurement for Indoor Localization. IEEE Sens. J. 2017, 17, 2224–2230. [Google Scholar] [CrossRef]
- Poulose, A.; Kim, J.; Han, D.S. A Sensor Fusion Framework for Indoor Localization Using Smartphone Sensors and Wi-Fi RSSI Measurements. Appl. Sci. 2019, 9, 4379. [Google Scholar] [CrossRef]
- Rizk, H.; Elmogy, A.; Yamaguchi, H. A Robust and Accurate Indoor Localization Using Learning-Based Fusion of Wi-Fi RTT and RSSI. Sensors 2022, 22, 2700. [Google Scholar] [CrossRef]
- Li, B.; Gallagher, T.; Dempster, A.G.; Rizos, C. How feasible is the use of magnetic field alone for indoor positioning? In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2012. [Google Scholar] [CrossRef]
- He, S.; Shin, K.G. Geomagnetism for Smartphone-Based Indoor Localization: Challenges, Advances, and Comparisons. ACM Comput. Surv. 2018, 50, 1–37. [Google Scholar] [CrossRef]
- Ouyang, G.; Abed-Meraim, K. A Survey of Magnetic-Field-Based Indoor Localization. Electronics 2022, 11, 864. [Google Scholar] [CrossRef]
- Wu, H.; Mo, Z.; Tan, J.; He, S.; Chen, S.-H.G. Efficient Indoor Localization Based on Geomagnetism. ACM Trans. Sens. Netw. 2019, 15, 42. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, M.; Zheng, Z. Learning Sequence-Based Fingerprint for Magnetic Indoor Positioning System. IEEE Access 2019, 7, 163231–163244. [Google Scholar] [CrossRef]
- Haverinen, J.; Kemppainen, A. Global indoor self-localization based on the ambient magnetic field. Rob. Auton. Syst. 2009, 57, 1028–1035. [Google Scholar] [CrossRef]
- Ashraf, I.; Zikria, Y.B.; Hur, S.; Park, Y. A Comprehensive Analysis of Magnetic Field Based Indoor Positioning with Smartphones: Opportunities, Challenges and Practical Limitations. IEEE Access 2020, 8, 228548–228571. [Google Scholar] [CrossRef]
- Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic WiFi Sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [Google Scholar] [CrossRef]
- Ban, R.; Kaji, K.; Hiroi, K.; Kawaguchi, N. Indoor Positioning Method Integrating Pedestrian Dead Reckoning with Magnetic Field and WiFi Fingerprints. In Proceedings of the International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Hakodate, Japan, 20–22 January 2015. [Google Scholar] [CrossRef]
- Li, Y.; He, Z.; Nielsen, J.; Lachapelle, G. Using Wi-Fi/magnetometers for indoor location and personal navigation. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, Y.; Lan, H.; Zhou, Q.; Niu, X.; El-Sheimy, N. A Hybrid WiFi/Magnetic Matching/PDR Approach for Indoor Navigation with Smartphone Sensors. IEEE Commun. Lett. 2016, 20, 169–172. [Google Scholar] [CrossRef]
- Huang, X.; Guo, S.; Wu, Y.; Yang, Y. A fine-grained indoor fingerprinting localization based on magnetic field strength and channel state information. Pervasive Mob. Comput. 2017, 41, 150–165. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Park, Y. mPILOT-Magnetic Field Strength Based Pedestrian Indoor Localization. Sensors 2018, 18, 2283. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Nie, J.; Lin, L. Magnetic-Based Indoor Localization Using Smartphone via a Fusion Algorithm. IEEE Sens. J. 2019, 19, 6477–6485. [Google Scholar] [CrossRef]
- Wu, H.; He, S.; Chen, S.-H.G. A Graphical Model Approach for Efficient Geomagnetism-Pedometer Indoor Localization. In Proceedings of the IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 22–25 October 2017. [Google Scholar] [CrossRef]
- Subbu, K.P.; Gozick, B.; Dantu, R. LocateMe: Magnetic-Fields-Based Indoor Localization Using Smartphones. ACM Trans. Intell. Syst. Technol. 2013, 4, 73. [Google Scholar] [CrossRef]
- Kim, B.; Kong, S.-H. A Novel Indoor Positioning Technique Using Magnetic Fingerprint Difference. IEEE Trans. Instrum. Meas. 2016, 65, 2035–2045. [Google Scholar] [CrossRef]
- Fan, X.; Wu, J.; Long, C.; Zhu, Y. Accurate and Low-cost Mobile Indoor Localization with 2-D Magnetic Fingerprints. In Proceedings of the ACM Workshop on Mobile Crowdsensing Systems and Applications (CrowdSenSys), Delft, The Netherlands, 6–8 November 2017. [Google Scholar] [CrossRef]
- Ashraf, I.; Kang, M.; Hur, S.; Park, Y. MINLOC: Magnetic Field Patterns-Based Indoor Localization Using Convolutional Neural Networks. IEEE Access 2020, 8, 66213–66227. [Google Scholar] [CrossRef]
- Ouyang, G.; Abed-Meraim, K. Analysis of Magnetic Field Measurements for Indoor Positioning. Sensors 2022, 22, 4014. [Google Scholar] [CrossRef]
- Lee, N.; Ahn, S.; Han, D. AMID: Accurate Magnetic Indoor Localization Using Deep Learning. Sensors 2018, 18, 1598. [Google Scholar] [CrossRef] [Green Version]
- Frassl, M.; Angermann, M.; Lichtenstern, M.; Robertson, P.; Julian, B.J.; Doniec, M. Magnetic Maps of Indoor Environments for Precise Localization of Legged and Non-legged Locomotion. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013. [Google Scholar] [CrossRef]
- Antsfeld, L.; Chidlovskii, B. Magnetic Field Sensing for Pedestrian and Robot Indoor Positioning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021. [Google Scholar] [CrossRef]
- Secer, G.; Barshan, B. Improvements in deterministic error modeling and calibration of inertial sensors and magnetometers. Sens. Actuator A Phys. 2016, 247, 522–538. [Google Scholar] [CrossRef]
- Hadjigeorgiou, N.; Asimakopoulos, K.; Papafotis, K.; Sotiriadis, P.P. Vector Magnetic Field Sensors: Operating Principles, Calibration, and Applications. IEEE Sens. J. 2021, 21, 12531–12544. [Google Scholar] [CrossRef]
- Csik, D.; Odry, A.; Sarcevic, P. Comparison of RSSI-Based Fingerprinting Methods for Indoor Localization. In Proceedings of the IEEE International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 15–17 September 2022. [Google Scholar]
- He, S.; Chan, S.-H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. IEEE Commun. Surv. Tutor. 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Giovanelli, D.; Farella, E.; Fontanelli, D.; Macii, D. Bluetooth-Based Indoor Positioning Through ToF and RSSI Data Fusion. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018. [Google Scholar] [CrossRef]
- Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth Low Energy approach to identify occupancy patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [Google Scholar] [CrossRef]
- Mackensen, E.; Lai, M.; Wendt, T.M. Bluetooth Low Energy (BLE) based wireless sensors. In Proceedings of the IEEE SENSORS, Taipei, Taiwan, 28–31 October 2012. [Google Scholar] [CrossRef]
- Hahnel, D.; Burgard, W.; Fox, D.; Fishkin, K.; Philipose, M. Mapping and localization with RFID technology. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, USA, 26 April–1 May 2004. [Google Scholar] [CrossRef]
- Tesoriero, R.; Tebar, R.; Gallud, J.A.; Lozano, M.D.; Penichet, V.M.R. Improving location awareness in indoor spaces using RFID technology. Expert Syst. Appl. 2010, 37, 894–898. [Google Scholar] [CrossRef]
- Ma, J.; Duan, X.; Shang, C.; Ma, M.; Zhang, D. Improved Extreme Learning Machine Based UWB Positioning for Mobile Robots with Signal Interference. Machines 2022, 10, 218. [Google Scholar] [CrossRef]
- Sarcevic, P.; Pletl, S.; Kincses, Z. Evolutionary algorithm based 9DOF sensor board calibration. In Proceedings of the IEEE International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 11–13 September 2014. [Google Scholar] [CrossRef] [Green Version]
Hyperparameter | Value |
---|---|
training function | Levenberg–Marquardt backpropagation |
performance function | mean squared error (MSE) |
normalization | minmax to range [−1, +1] |
ratio of data used for training | 70% |
ratio of data used for validation | 30% |
maximum number of epochs to train | 6000 |
performance goal | 0 |
maximum validation failures | 20 |
minimum performance gradient | 10−7 |
maximum time to train in seconds | inf |
Used Data | All Points in the Grid (Training Data) | Every Second Point in the Grid (Training Data) | Every Second Point in the Grid (Test Data) | |||
---|---|---|---|---|---|---|
MAE ± STD [cm] | RMSE [cm] | MAE ± STD [cm] | RMSE [cm] | MAE ± STD [cm] | RMSE [cm] | |
RSSI | 50.71 ± 44.05 | 67.13 | 40.04 ± 37.39 | 56.91 | 75.43 ± 58.12 | 97.06 |
Bx, By, Bz | 96.88 ± 60.38 | 118.01 | 87.48 ± 54.95 | 104.86 | 141.48 ± 76.47 | 161.10 |
Bxy, Bz | 119.01 ± 65.28 | 138.07 | 105.52 ± 65.93 | 126.61 | 145.12 ± 73.04 | 163.54 |
Bxyz | 159.19 ± 74.25 | 175.72 | 149.67 ± 75.32 | 167.64 | 167.02 ± 76.12 | 183.48 |
RSSI, Bx, By, Bz | 34.64 ± 32.87 | 51.86 | 32.44 ± 37.27 | 49.35 | 76.67 ± 56.20 | 96.81 |
RSSI, Bxy, Bz | 41.68 ± 36.58 | 55.42 | 29.07 ± 41.18 | 52.58 | 75.03 ± 55.33 | 93.14 |
RSSI, Bxyz | 49.86 ± 45.38 | 67.39 | 32.54 ± 39.17 | 50.85 | 77.79 ± 58.17 | 97.05 |
Used Data | Grid Points (Training Data) | Test Points (Test Data) | ||
---|---|---|---|---|
MAE ± STD [cm] | RMSE [cm] | MAE ± STD [cm] | RMSE [cm] | |
RSSI | 172.80 ± 111.14 | 205.43 | 151.58 ± 116.25 | 199.00 |
Bx, By, Bz | 152.67 ± 129.81 | 200.37 | 130.49 ± 113.16 | 172.51 |
Bxy, Bz | 228.28 ± 166.67 | 284.65 | 232.86 ± 172.64 | 295.42 |
Bxyz | 285.20 ± 176.22 | 338.88 | 255.07 ± 193.52 | 317.23 |
RSSI, Bx, By, Bz | 99.59 ± 78.93 | 127.06 | 77.27 ± 76.75 | 110.47 |
RSSI, Bxy, Bz | 110.19 ± 86.44 | 140.03 | 87.63 ± 94.27 | 137.01 |
RSSI, Bxyz | 128.96 ± 96.54 | 161.07 | 126.25 ± 115.66 | 175.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarcevic, P.; Csik, D.; Odry, A. Indoor 2D Positioning Method for Mobile Robots Based on the Fusion of RSSI and Magnetometer Fingerprints. Sensors 2023, 23, 1855. https://doi.org/10.3390/s23041855
Sarcevic P, Csik D, Odry A. Indoor 2D Positioning Method for Mobile Robots Based on the Fusion of RSSI and Magnetometer Fingerprints. Sensors. 2023; 23(4):1855. https://doi.org/10.3390/s23041855
Chicago/Turabian StyleSarcevic, Peter, Dominik Csik, and Akos Odry. 2023. "Indoor 2D Positioning Method for Mobile Robots Based on the Fusion of RSSI and Magnetometer Fingerprints" Sensors 23, no. 4: 1855. https://doi.org/10.3390/s23041855