Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure
<p>Humidity sensor. (<b>a</b>) Sectional view of the 3D model; (<b>b</b>) cavity diagram: internal conductor (1), external conductor (2), magnetic coupling loops (3), cavity excitation line (4), and receiving line (5); and (<b>c</b>) distribution of electric E and magnetic B fields along the axis <span class="html-italic">z</span> of the cylinder.</p> "> Figure 2
<p>Block diagram of amplitude-phase humidity measurements.</p> "> Figure 3
<p>Experimental characteristics of the humidity sensor. <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is the amplitudefrequency dependence of the signal transmitted through the cavity, and <math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> is the frequency dependence of the signal output from the measuring system for a sensor with and without the gas (the dashed line and the solid line, respectively).</p> "> Figure 4
<p>Output signal as a function of the variation Δ<span class="html-italic">ε</span> in the dielectric permittivity of the medium inside the cavity. The zero signal from the phase detector corresponds to the equality <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="sans-serif-italic">ε</mi> </mrow> </semantics></math> = 0 (gas-free cavity).</p> "> Figure 5
<p>Scheme of the setup for spectroscopic measurements in the frequency band near 183 GHz.</p> "> Figure 6
<p>Experimental recording of the H<sub>2</sub>O line near 183 GHz, which was obtained under a pressure of 0.43 Torr: (<b>a</b>) the initial recording averaged over 16 triangular scans (solid red line) and the base line (dotted blue line); (<b>b</b>) the profile obtained after the subtraction of the variable component of the baseline (solid red line) and the residual “experiment minus model” shifted to 55 mV relative to 0 and multiplied by 10.</p> "> Figure 7
<p>Output signal of the humidity sensor as a function of the air pressure: ○ is for air under natural conditions, and Δ is for dry air with a humidity of less than 1%.</p> "> Figure 8
<p>Output signal of the humidity sensor as a function of the vacuum meter readings during water vapor injection.</p> "> Figure 9
<p>Experimentally determined water vapor pressure as a function of the vacuum gauge readings. The data are obtained using the spectroscopic method. The grey area shows a possible deviation of the real pressure from the readings of the vacuum gauge with the gauge error taken into account.</p> ">
Abstract
:1. Introduction
2. Description of the Humidity Sensor
3. Amplitude-Phase Method of Measuring Small Frequency Shifts
4. Calibration Procedure of the Humidity Sensor
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruskin, R.E.; Wexler, A. (Eds.) Humidity and Moisture. Measurements and Control in Science and Industry, Vol. 1, Principles and Methods of Measuring Humidity in Gases; Reinhold Publishing Corp.: New York, NY, USA, 1965. [Google Scholar] [CrossRef]
- Zahn, C.T. Association, adsorption, and dielectric constant. Phys. Rev. 1926, 27, 329–340. [Google Scholar] [CrossRef]
- Magee, J.B.; Crain, C.M. Recording microwave hygrometer. Rev. Sci. Instrum. 1958, 29, 51–54. [Google Scholar] [CrossRef]
- Hasegawa, S.; Stokesberry, D.P. Automatic digital microwave hygrometer. Rev. Sci. Instrum. 1975, 46, 867–873. [Google Scholar] [CrossRef]
- Crain, C.M. The dielectric constant of several gases at a wave-length of 3.2 centimeters. Phys. Rev. 1948, 74, 691–693. [Google Scholar] [CrossRef]
- Stranathan, J.D. Dielectric Constant of Water Vapor. Phys. Rev. 1935, 48, 538–544. [Google Scholar] [CrossRef]
- Wiederhold, P.R. Water Vapor Measurement; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Park, J.-K.; Jang, C.; Yun, G.-H.; Lee, H.-J.; Choi, H.H.; Yook, J.-G. Sensitive Relative Humidity Monitoring Sensor Based on Microwave Active Resonator With PEDOT:PSS. IEEE Access 2020, 8, 166283–166293. [Google Scholar] [CrossRef]
- Nguyen, T.-K.; Tseng, C.-H. A New Microwave Humidity Sensor with Near-Field Self-Injection-Locked Technology. IEEE Sens. J. 2021, 21, 21520–21528. [Google Scholar] [CrossRef]
- Gaikovich, K.P.; Gaikovich, P.K.; Maksimovitch, Y.S.; Badeev, V.A. Pseudopulse Near-Field Subsurface Tomography. Phys. Rev. Lett. 2012, 108, 163902. [Google Scholar] [CrossRef]
- Hoecker, F.E. Dielectric Constants of Extremely Dilute Solutions. J. Phys. Chem. 1936, 4, 431–434. [Google Scholar] [CrossRef]
- Belyaev, B.A.; Serzhantov, A.M.; Leksikov, A.A.; Balva, Y.F. Multilayered multiconductor stripline resonator and its application to bandpass filter with wide stopband. Microw. Opt. Technol. Lett. 2017, 59, 2212. [Google Scholar] [CrossRef]
- Ndoye, M.; Kerroum, I.; Deslandes, D.; Domingue, F. Air-filled substrate integrated cavity resonator for humidity sensing. Sens. Actuators B Chem. 2017, 252, 951–955. [Google Scholar] [CrossRef]
- Zhu, C.; Gerald, R.E.; Huang, J. Highly sensitive open-ended coaxial cable-based microwave resonator for humidity sensing. Sens. Actuators A Phys. 2020, 314, 112244. [Google Scholar] [CrossRef]
- Beverte, I.; Gaidukovs, S.; Andersons, J.; Skruls, V. The Impact of Atmospheric Parameters on the Dielectric Permittivity Values of SikaBlock-M150 and Other Rigid Polyurethane Foams Measured with a Capacitive One-Side Access Sensor. Sensors 2022, 22, 7859. [Google Scholar] [CrossRef] [PubMed]
- Bubukin, I.T.; Rakut, I.V.; Agafonov, M.I.; Yablokov, A.A.; Pankratov, A.L.; Gorbunova, T.Y.; Gorbunov, R.V. Comparative Analysis of the Propagation Conditions of Millimeter Radio Waves at Radio Astronomy Polygons in Russia and Uzbekistan. Astron. Rep. 2021, 65, 598–614. [Google Scholar] [CrossRef]
- Bubnov, G.M.; Abashin, E.B.; Balega, Y.Y.; Bolshakov, O.S.; Dryagin, S.Y.; Dubrovich, V.K.; Marukhno, A.S.; Nosov, V.I.; Vdovin, V.F.; Zinchenko, I.I. Searching for New Sites for THz Observations in Eurasia. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 64–70. [Google Scholar] [CrossRef]
- Hallac, A.; Georghiou, G.E.; Metaxas, A.C. Three-dimensional characterization of short-gap streamers in air at atmospheric pressure. IEEE Trans. Plasma Sci. 2005, 33, 268–269. [Google Scholar] [CrossRef]
- Hui, J.; Guan, Z.; Wang, L.; Li., Q. Variation of the Dynamics of Positive Streamer with Pressure and Humidity in Air. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 382–389. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Bazelyan, E.M.; Novitskii, D.A. Influence of moisture on the properties of long streamers in air. Tech. Phys. Lett. 1998, 24, 367–368. [Google Scholar] [CrossRef]
- Chen, X.; He, W.; Du, X.; Yuan, X.; Lan, L.; Wen, X.; Wan, B. Electron swarm parameters and Townsend coefficients of atmospheric corona discharge plasmas by considering humidity. Phys. Plasmas 2018, 25, 063525. [Google Scholar] [CrossRef]
- Ruiz-Vargas, G.; Yousfi, M.; Urquijo, J. Electron transport coefficients in the mixtures of H2O with N2, O2, CO2 and dry air for the optimization of non-thermal atmospheric pressure plasmas. J. Phys. D Appl. Phys. 2010, 43, 455201. [Google Scholar] [CrossRef]
- Gushchin, M.E.; Korobkov, S.V.; Zudin, I.Y.; Nikolenko, A.S.; Mikryukov, P.A.; Syssoev, V.S.; Sukharevsky, D.I.; Orlov, A.I.; Naumova, M.Y.; Kuznetsov, Y.A.; et al. Nanosecond electromagnetic pulses generated by electric discharges: Observation with clouds of charged water droplets and implications for lightning. Geophys. Res. Lett. 2021, 48, e2020GL092108. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Bazelyan, E.M.; Ponomarev, A.A.; Starikovsky, A.Y. Kinetics of charged species in non-equilibrium plasma in water vapor- and hydrocarbon-containing gaseous mixtures. J. Phys. D Appl. Phys. 2022, 55, 383002. [Google Scholar] [CrossRef]
- Galka, A.G.; Yanin, D.V.; Kostrov, A.V.; Priver, S.E.; Malyshev, M.S. Wide-range measurements of plasma density using a hairpin resonance microwave probe. J. Appl. Phys. 2019, 125, 124501. [Google Scholar] [CrossRef]
- Strikovskiy, A.V.; Evtushenko, A.A.; Gushchin, M.E.; Korobkov, S.V.; Kostrov, A.V. Pulsed high-voltage discharge in air with a pressure gradient. Plasma Phys. Rep. 2017, 43, 1031–1038. [Google Scholar] [CrossRef]
- Yanin, D.V.; Galka, A.G.; Kostrov, A.V.; Priver, S.E.; Smirnov, A.I. A resonant microwave sensor based on the half-wave coaxial line for gas pressure measurements. Appl. Phys. 2017, 1, 74–80. (In Russian) [Google Scholar]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Fraden, J. The Handbook of Modern Sensors: Physics, Design and Application, 3rd ed.; Springer: New York, NY, USA, 2003; pp. 393–399. [Google Scholar]
- Carullo, A.; Ferrero, A.; Parvis, M. Microwave system for relative humidity measurement. In Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, Venice, Italy, 24–26 May 1999; pp. 124–129. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.everythingrf.com/products/microwave-rf-mixers/mini-circuits/539-12-ade-20 (accessed on 15 January 2023).
- Available online: https://vostokpribor.ru/dv-05100 (accessed on 15 January 2023).
- Surin, L.A.; Potapov, A.; Muller, H.S.P.; Schlemmer, S. A new millimeter-wave observation of the weakly bound CO–N2 complex. J. Mol. Spectrosc. 2015, 307, 54–58. [Google Scholar] [CrossRef]
- Lykina, A.A.; Anfertev, V.A.; Domracheva, E.G.; Chernyaeva, M.B.; Kononova, Y.A.; Toporova, Y.; Korolev, D.V.; Smolyanskaya, O.A.; Vaks, V.L. Terahertz high-resolution spectroscopy of thermal decomposition gas products of diabetic and non-diabetic blood plasma and kidney tissue pellets. J. Biomed. Opt. 2021, 26, 043008. [Google Scholar] [CrossRef]
- Cooper, K.B.; Monje, R.R.; Millan, L.; Lebsock, M.; Tanelli, S.; Siles, J.V.; Lee, C.; Brown, A. Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz. IEEE Geosci. Remote Sens. Lett. 2018, 15, 163–167. [Google Scholar] [CrossRef]
- Vlasov, S.N.; Koposova, E.V.; Kornishin, S.Y.; Parshin, V.V.; Perminov, D.A.; Serov, E.A. Wideband Windows for Millimeter- and Submillimeter-Wave Vacuum Devices. Radiophys. Quantum Electron. 2020, 63, 106–113. [Google Scholar] [CrossRef]
- Tretyakov, M.Y.; Parshin, V.V.; Koshelev, M.A.; Shanin, V.N.; Myasnikova, S.E.; Krupnov, A.F. Studies of 183 GHz water line: Broadening and shifting by air, N2 and O2 and integral intensity measurements. J. Mol. Spectrosc. 2003, 218, 239–245. [Google Scholar] [CrossRef]
- Gushchin, M.; Palitsin, A.; Strikovskiy, A.; Zudin, I.; Korobkov, S.; Loskutov, K.; Gromov, A.; Goykhman, M.; Rodin, Y.; Korchagin, V.; et al. Gigantic Coaxial Line for Experimental Studies of the Interaction of Nanosecond Electromagnetic Pulses with an Ionized Gas Medium. Appl. Sci. 2022, 12, 59. [Google Scholar] [CrossRef]
- Zudin, I.Y.; Gushchin, M.E.; Vershinin, I.M.; Korobkov, S.V.; Mikryukov, P.A.; Strikovskiy, A.V.; Nikolenko, A.S.; Belov, A.S.; Syssoev, V.S.; Orlov, A.I.; et al. Amplitude-temporal and spectral characteristics of pulsed UHF-SHF radiation of a highvoltage streamer discharge in air under the atmospheric pressure. Energies 2022, 15, 9425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galka, A.G.; Kostrov, A.V.; Priver, S.E.; Strikovskiy, A.V.; Parshin, V.V.; Serov, E.A.; Nikolenko, A.S.; Korobkov, S.V.; Gushchin, M.E. Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure. Sensors 2023, 23, 1498. https://doi.org/10.3390/s23031498
Galka AG, Kostrov AV, Priver SE, Strikovskiy AV, Parshin VV, Serov EA, Nikolenko AS, Korobkov SV, Gushchin ME. Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure. Sensors. 2023; 23(3):1498. https://doi.org/10.3390/s23031498
Chicago/Turabian StyleGalka, Alexander Georgievich, Alexander Vladimirovich Kostrov, Stanislav Eduardovich Priver, Askold Vitalievich Strikovskiy, Vladimir Vladimirovich Parshin, Evgeny Alexandrovich Serov, Andrey Sergeevich Nikolenko, Sergey Vladimirovich Korobkov, and Mikhail Evgenievich Gushchin. 2023. "Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure" Sensors 23, no. 3: 1498. https://doi.org/10.3390/s23031498
APA StyleGalka, A. G., Kostrov, A. V., Priver, S. E., Strikovskiy, A. V., Parshin, V. V., Serov, E. A., Nikolenko, A. S., Korobkov, S. V., & Gushchin, M. E. (2023). Microwave Cavity Sensor for Measurements of Air Humidity under Reduced Pressure. Sensors, 23(3), 1498. https://doi.org/10.3390/s23031498