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Abstract: Speech emotion recognition (SER) is a challenging task in human–computer interaction
(HCI) systems. One of the key challenges in speech emotion recognition is to extract the emotional
features effectively from a speech utterance. Despite the promising results of recent studies, they
generally do not leverage advanced fusion algorithms for the generation of effective representations
of emotional features in speech utterances. To address this problem, we describe the fusion of spatial
and temporal feature representations of speech emotion by parallelizing convolutional neural net-
works (CNNs) and a Transformer encoder for SER. We stack two parallel CNNs for spatial feature
representation in parallel to a Transformer encoder for temporal feature representation, thereby simul-
taneously expanding the filter depth and reducing the feature map with an expressive hierarchical
feature representation at a lower computational cost. We use the RAVDESS dataset to recognize
eight different speech emotions. We augment and intensify the variations in the dataset to minimize
model overfitting. Additive White Gaussian Noise (AWGN) is used to augment the RAVDESS
dataset. With the spatial and sequential feature representations of CNNs and the Transformer, the
SER model achieves 82.31% accuracy for eight emotions on a hold-out dataset. In addition, the SER
system is evaluated with the IEMOCAP dataset and achieves 79.42% recognition accuracy for five
emotions. Experimental results on the RAVDESS and IEMOCAP datasets show the success of the pre-
sented SER system and demonstrate an absolute performance improvement over the state-of-the-art
(SOTA) models.

Keywords: speech emotion recognition; convolutional neural networks; convolutional Transformer
encoder; multi-head attention; spatial features; temporal features

1. Introduction

In the context of rapidly advancing Artificial Intelligence (AI), human–computer
interactions (HCI) are studied in depth. We are living in a world where Siri and Alexa are
physically closer. Understanding human emotions paves the way toward understanding
people’s needs. Speech emotion recognition (SER) systems [1] classify emotions in speech
utterances and are vital in advancing the HCI, healthcare, customer satisfaction, social
media analysis, stress monitoring, and intelligent systems. Moreover, SER systems are
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useful in online tutorials, language translation, intelligent driving, and therapy sessions. In
a few situations, humans can be substituted by computer-generated characters with the
ability to act naturally and communicate convincingly by expressing human-like emotions.
Machines need to interpret the emotions carried by speech utterances. Only with such
an ability can a completely expressive dialogue based on joint human–machine trust and
understanding be accomplished.

2. Problems and Motivations

SER is a challenging task due to various reasons. Firstly, (i) emotions are subjective
and their expression can vary significantly across individuals. Different people may exhibit
varying patterns of speech, tone, and vocal cues to convey the same emotion. (ii) The
availability of high-quality, diverse, and standardized datasets is crucial in training and
evaluating SER models. (iii) Emotions are often context-dependent, and the same speech
utterance can convey different emotions depending on the situational context. These
problems are considered the motivations of this study to obtain better SER results. To
address the first problem, the proposed model uses MFCCs as input regardless of the
patterns of speech and tones. The MFCCs’ spectrograms can serve as a solution to this
problem. Data augmentation can be utilized to address the data scarcity problem. We
augment the dataset by adding white noise to the speech signals such that the database size
is increased. To address the third problem, the model uses a Transformer encoder module
to obtain the context-dependent (temporal) features.

Speech emotion recognition systems have gained attention due to the extensive use of
deep learning. Prior to deep learning, SER systems were reliant on techniques such as hid-
den Markov models (HMM) [2], Gaussian mixture models (GMM) [3], and support vector
machines (SVM) [4], along with extensive preprocessing and accurate feature engineering.
Comprehensive reviews of SER systems are available in [5,6]. A benchmark comparison
is available in [7]. However, the development of deep learning tools and processes, and
solutions for SER, has also changed. There have been significant studies and research
proposing SER techniques to recognize and classify various emotions in speech [8–14]. In
addition to recent developments in deep learning, there has been a wave of studies on SER
using long short-term memory, recurrent neural networks, generative adversarial networks,
and autoencoders to solve the above problem [15–22].

In the recent past, deep learning has significantly contributed to natural language un-
derstanding (NLU). Deep belief network (DBN)-based SER in [23,24] showed a substantial
improvement over the baseline non-DL models [25]. Extreme learning machine (ELM)-
based SER in [26,27] used feature representations from the probability distributions at the
segment level, employing a single hidden layer neural network to classify speech emotions
at the utterance level. Deep hierarchical models, data augmentation, and regularization-
based DNNs for SER are proposed in [28], whereas deep CNNs using spectrograms are
proposed in [29]. DNNs are trained for SER with the acoustic features extracted from
the short intervals of speech using a probabilistic CTC loss function in [30]. Bidirectional
LSTM-based SER in [31] is trained on feature sequences and achieves better accuracy than
DNN-ELM [26]. Deep CNN+LSTM-based SER in [32] achieves even better results. The
hybrid deep CNN + LSTM improves the SER accuracy but raises the overall computational
complexity. Auditory–visual modality (AVM)-based SER in [33] captures emotional content
from different speaking styles. The Tensor Fusion Network (TFN)-based SER in [34] learns
intra- and inter-modality dynamics. Convolutional deep belief network-based SER in [35]
learns multimodal feature representations linked to expressions. The single plain CNN
model is weak in classifying the speaker’s emotional state with the required accuracy level
because it loses some basic sequential information during the convolutional operation.
Therefore, two parallel CNN models can solve the limitation concerning the loss of impor-
tant information in speech. The study in [36] shows two parallel CNN models and utilizes
them for SER accordingly.
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With dominance, pleasure, and excitement, one can nearly define all emotions; how-
ever, the implementation of such a deterministic system using DL is very challenging and
complex. Therefore, in DL, statistical models and the clustering of samples are used to
qualitatively classify emotions such as sadness, happiness, and anger. For the classification
and clustering of emotions, features must be extracted from speech, usually relying on
different types of prosody, voice quality, and spectral features [37]. The prosody features
usually include the fundamental frequency (F0), intensity, and speaking rate, but they
cannot confidently discriminate between angry and happy emotions. The features asso-
ciated with voice quality are usually the most successful in determining the emotions of
the same speaker. However, these features vary from speaker to speaker, making them
difficult to use in speaker-independent settings [38]. On the other hand, spectral features are
widely used to determine emotions from speech. These features can confidently distinguish
anger from happiness. However, the magnitudes and shifts of the formant frequencies for
identical emotions change across different vowels, which increases the complexity of the
speech emotion recognition system [39]. For all the feature types, there are several standard
representations of features. Prosody features are typically represented by F0 and measure
the speaking rates [40], whereas spectral features are defined by cepstrum-based feature
representations. Mel-frequency cepstral coefficients (MFCC) or linear prediction cepstral
coefficients (LPCC) are commonly used spectral features along with formants, and other
information can also be used [41]. Finally, the voice quality features usually include the
normalized amplitude quotient, shimmer, and jitter [42].

Feature extraction is a crucial step in many machine learning tasks, including speech
recognition, computer vision, and natural language processing. The goal of feature extrac-
tion is to transform raw data into a representation that captures the most salient information
for the task at hand. In speech recognition, features are typically extracted from the acous-
tic signal using techniques such as mel-frequency cepstral coefficients (MFCCs), which
have been widely used in the literature due to their effectiveness in capturing the spectral
envelope of a signal. Other popular techniques include perceptual linear predictive (PLP)
features, gamma tone features, and filterbank energies. In computer vision, features are
extracted from images using techniques such as SIFT, SURF, and HOG, which are effective
in capturing local visual patterns. In natural language processing, features are extracted
from text using techniques such as bag-of-words, n-grams, and word embeddings, which
capture the syntactic and semantic information in the text [43–48]. This study uses MFCCs
as input features for several reasons. First, (i) the MFCCs are used as a grayscale image
as a simultaneous input to the parallel CNNs and Transformer modules for spectral and
temporal feature extraction. (ii) MFCCs can capture the spectral envelopes of speech signals,
which is crucial in characterizing different emotional states. MFCCs are less sensitive to
variations in speaker characteristics, background noise, and channel distortions, making
them more robust for emotion recognition tasks. (iii) MFCCs are derived based on the hu-
man auditory system’s frequency resolution, which aligns well with how humans perceive
and differentiate sounds. By focusing on perceptually relevant information, MFCCs can
effectively capture the distinctive features related to emotions conveyed through speech.
(iv) MFCCs provide a compact representation of speech signals by summarizing the spec-
tral information into a smaller number of coefficients. This dimensionality reduction helps
to reduce the computational complexity and memory requirements of SER models while
still preserving the essential information needed for emotion classification. (v) By com-
puting MFCCs over short time frames and applying temporal analysis techniques such as
delta and delta–delta features, the dynamic changes in speech can be captured. Emotions
often manifest as temporal patterns in speech, and MFCCs enable the modeling of these
dynamics, enhancing the discriminative power of SER models.

We have studied and examined the recent speech processing literature and observed
that speech signals follow a hybrid structure, such as temporal features and spatial features,
where both feature representations contain essential cues for SER. The majority of the
existing SER systems lack parallel neural architectures to process speech signals and acquire
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information about high-level deep spatiotemporal features. As a result of this limitation, we
have proposed a fusion of spatial and temporal feature representations of speech emotions
by parallelizing CNNs and a Transformer encoder for SER, named CTENet. We have
stacked two parallel CNNs for the spatial feature representation, which is paired with
multi-head self-attention layers from the Transformer encoder for the temporal feature
representation to classify the speech emotions. By increasing the filter channel dimensions
and decreasing the feature maps of CNNs, better feature representations can be achieved at
a low computational cost. The Transformer encoder is utilized such that the SER model
can learn to anticipate the frequency distributions of various speech emotions. The MFCC
plot of a speech utterance is treated as a grayscale image where the width of the MFCC
is treated as a time scale and the height is treated as a frequency scale, respectively. The
pixel values in the MFCC plots are the speech signal intensities at the mel-frequency range
and time steps. Since the input data are sequential, the Transformer accurately establishes
the temporal relations between the pitch transitions in various emotions. We augment and
intensify the variations in the RAVDESS dataset with AWGN to minimize model overfitting.
With the CNN for the spatial feature representations and the Transformer for the sequential
encoding, the proposed CTENet for SER achieves 82.31% accuracy when classifying eight
speech emotions. The main contributions of this study are summarized below.

• Stacked parallel CNNs with multi-head self-attention layers are implemented. The
channel dimensions of filters and feature maps are reduced, allowing an expressive rep-
resentation of features at a lower computational cost. With multi-head self-attention,
the network learns to predict the frequency distributions of speech emotions in accor-
dance with the overall MFCC structure.

• With the classification and spatial feature representation of CNNs, the MFCCs are
used as grayscale images, where the widths and heights of the MFCC are the time
and frequency scales, respectively. The pixel values in the MFCC indicate the speech
signal intensities at the mel-frequency range and time steps.

• The dataset is augmented with AWGN. Creating new, real samples is a very difficult
task. Thus, white noise is added to the speech signals to mask the random effect of
noise existing in the training dataset. Moreover, this generates pseudo-new training
samples and counterbalances the noise impact inherent in the dataset.

The rest of this paper is organized as follows. The related SER literature is presented
in Section 2. An in-depth explanation of the proposed SER with parallel CNNs using skips
and a Transformer encoder is given in Section 3. The experiments and setups are explained
in Section 4. Section 5 gives the results and discussion. Finally, Section 6 concludes
this research.

3. Related SER Literature

Speech emotion recognition is an attractive research field and numerous novel tech-
niques have been proposed to learn optimal SER solutions. The SER method contains
two modules, namely feature representation and emotion classification. Optimal feature
representation and superior classification for a robust SER system are difficult tasks [9].
The MFCC feature-based SER in [49] classifies various emotions using the logistic model
tree (LMT) classifier. An ensemble model using 20 SVMs with a Gaussian kernel in [50]
is proposed for SER and achieves 75.79% accuracy. The 2D-CNN-based SER method
in [51] recognizes emotions by extracting deep discriminative cues from spectrograms.
Pre-trained CNN architectures—for example, AlexNet and VGG—are used to construct
the SER framework via transfer learning to classify emotions from spectrograms in [52]. A
trained CNN model in [53] is utilized for the extraction of features from spectrograms, and
speech emotions are classified using SVM. Moreover, 1D-CNN + FCN-based SER in [54] use
prosodic and spectral features from MFCCs to classify various speech emotions. The LSTM
and RNNs are used to classify the long-term sequences in the speech signals for SER [55].
The DNN-LSTM-based SER method in [56] uses a hybrid approach to learn spatiotemporal
cues from raw speech data.
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The CNN-BLSTM-based SER method in [57] learns the spatial features and temporal
cues of speech symbols and increases the accuracy of the existing model. The SER extracts
spatial features and feeds them to the BLSTM in order to learn temporal cues for the
recognition of the emotional state. A DNN in [26] is used to compute the probability
distributions for various emotions given all segments. The DNN identifies emotions from
utterance-level feature representations, and, with the given features, ELM is used to classify
speech emotions. The CNN in [58] successfully detects emotions with 66.1% accuracy
when compared to the feature-based SVM. Meanwhile, the 1D-CNN in [59] reports 96.60%
classification accuracy for negative emotions. The CNN-based SER in [60] learns deep
features and employs a plain rectangular filter with a new pooling scheme to achieve more
effective emotion discrimination. A novel attention-based SER is proposed utilizing a
long attention process to link mel-spectrogram and interspeech-09 features to generate
the attention weights for a CNN. A deep CNN-based SER is constructed in [61] for the
ImageNet LSVRC-2010 challenge. The AlexNet trained with 1.2 million images and fine-
tuned with samples from the EMO-DB is used to recognize angry, sad, and happy emotions.
An end-to-end context-aware SER system in [62] classifies speech emotions using CNNs
followed by LSTM.

The difference compared to other deep learning SER frameworks lies in not using
the preselected features before network training and introducing raw input to the SER
system. The ConvLSTM-based SER in [63] adopted convolutional LSTM layers for the
state transitions so as to extract spatial cues. Four LFLBs are used for the extraction of
the spatiotemporal cues in the hierarchical correlational form of speech signals utilizing a
residual learning strategy. The BLSTM + CNN stacking-based SER in [64] matches the input
formats and recognizes emotions by using logistic regression. BC-LSTM relies on context-
aware utterance-level representations of features. This model captures the contextual cues
from utterances using a BLSTM layer. The SVM-DBN-based SER in [65] improves emotion
recognition via diverse feature representation. Gender-dependent and -independent results
show 80.11% accuracy. The deep-stride CNN-based SER in [66] uses raw spectrograms and
learns discriminative features from speech spectrograms. After learning the features, the
Softmax classifier is employed to classify speech emotions.

Attention mechanism-based deep learning for SER is another notable approach that
has achieved vast success; a complete review can be found in [67]. In classical DL-based
SER, all features in a given utterance receive the same attention. Nevertheless, emotions
are not consistently distributed over all localities in the speech samples. In attention-based
DL, attention is paid by the classifier to the given specific localities of the samples using
attention weights assigned to a particular locality of data. The SER system based on multi-
layer perceptron (MLP) and a dilated CNN in [68] uses channel and spatial attention to
extract cues from input tensors. Bidirectional LSTM with the weighted-polling scheme
in [69] learns more illustrative feature representations concerning speech emotions. The
model focuses more on the main emotional aspects of an utterance, whereas it ignores other
aspects of the utterance. The self-attention and multitasking learning CNN-BLSTM in [70]
improves the SER accuracy by 7.7% in comparison with the multi-channel CNN [71] when
applied to the IEMOCAP dataset. With speech spectrograms as input, gender classification
has been considered as a secondary task. The LSTM in [18] for SER demonstrates reduced
computational complexity by replacing the LSTM forget gate with an attention gate, where
attention is applied on the time and feature dimensions. The attention LSTM-based time-
delay SER in [72] extracts high-level feature representations from raw speech waveforms to
classify emotions.

The deep RNN-based SER in [73] learns emotionally related acoustic features and
aggregates them temporally into a compact representation at the utterance level. Another
deep CNN [74] is proposed for SER. In addition, a feature pooling strategy over time is
proposed, using local attention to focus on specific localities of a speech utterance that are
emotionally prominent. A self-attention mechanism utilizes a CNN via sequential learning
to generate the attention weights. Another attention-based SER is proposed that uses a
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fully connected neural network (FCNN). Frame- and utterance-level features are used for
emotion classification by applying MLP and attention processes to classify emotions. A
multi-hop attention model for SER in [75] uses two BLSTM streams to extract the hidden
cues from speech utterances. The multi-hop attention model is applied for the generation
of final weights for the classification of emotions. Other important research related to SER
includes fake news and sentiment analysis, as emotions can also be found in fake news,
negative sentiments, and hate speech [76–81]. A short summary of the related literature is
given in Table 1. Accuracy holds significant importance in the speech emotion recognition
(SER) system, where the primary goal is to predict emotions in speech utterances with
a high level of precision. Consequently, researchers in the field strive to enhance this
particular aspect. By examining Table 1, which is extracted from the aforementioned
literature, it becomes evident that models have made advancements in terms of accuracy.
However, there is still substantial room for further improvement. Simultaneously, the depth
of the model (its computational complexity) remains a crucial consideration for real-time
applications. Hence, our objective is to propose an SER model that achieves both high
accuracy and a compact size. To accomplish this, we present a novel approach distinct from
the models presented in the table, where CNNs combined with RNNs are predominantly
employed for SER. Instead, we incorporate Transformer encoders to obtain robust features
for network training, as they exhibit strong capabilities in capturing temporal features.

Table 1. Summary of SER-related literature.

Ref # DNN Model Model Input Input Features Accuracy

[74] CNNAtt-Net Spectrograms Spatial Features 80.00%
[71] SVM-DBN MFCC Prosodic + Spectral 80.11%
[63] CNN-BLSTM Spectrograms Spatial + Temporal 77.02%
[56] Bagged SVM Spectrograms Spectral Features 75.79%
[66] Lightweight CNN Spectrograms Spectral Features 75.01%
[69] ConvLSTM Spectrograms Spectral Features 75.00%
[60] 1D-CNN-FCN MFCC Prosodic + Spectral 72.19%
[82] 1D-CNN MFCC + Chromagram + Spectrogram Spatial Features 71.61%
[78] TDNN-LSTM-Attn Raw Spectra Spectral Features 70.11%
[72] DS-CNN Raw Spectra Spatial Features 70.00%
[55] Voting LMT Spectrograms Spectral Features 67.14%
[73] RNN-Attn Raw Spectra Acoustic + Temporal 63.50%
[70] BLSTM-CNN MFCC Prosodic + Spectral 57.84%

4. CTENet SER System

This section demonstrates the proposed framework and its related modules for speech
signals with two parallel CNNs and a multi-head attention Transformer encoder to recog-
nize emotions in speech spectrograms, as described in Figure 1. The suggested SER model
comprises three branches, including two CNN modules with skip connections (CNN-Skip),
a multi-head attention Transformer encoder module (MTE), and a fully connected dense
network (FCDN), to recognize speech signal emotions.

Figure 1. Proposed SER framework: Two parallel CNNs with Transformer encoder for feature
extraction. The extracted features are fed to the dense layer with a log Softmax classifier for emotional
state prediction.
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4.1. Parallel CNN Framework

A CNN with 2D-Conv layers is a standard model that accepts input feature maps in
terms of batch size, channel, height, and width. The RAVDESS dataset used for training
contains 4320 MFCC spectrograms, including 1440 original and 2880 noise-augmented
spectrograms. The MFCC feature extraction for model training is depicted in Figure 2. The
shape of all MFCCs is (282 × 40), where 40 coefficients represent different ranges of mel
pitches with 282 timesteps for every coefficient. The MFCC spectrograms are supposed
to be grayscale images with 1 signal intensity channel. The dimensions of the tensor for
the MFCC input feature are batch = 4320, channel = 1, height = 40, and width = 282 prior
to splitting for training. The activation map is produced after applying the activation
function. The kernel size in parallel CNN layers is (3 × 3). The first layer contains a
single input channel constructing a filter of (1 × 3 × 3), with 16 output channels imposing
16 filters (1 × 3 × 3) with 9 weights per filter. The subsequent CNN layer contains 16 input
and 32 output channels, respectively, imposing 32 filters (16 × 3 × 3) with 144 weights.
The second CNN layer applies 32 individually weighted filters (16 × 3 × 3) to input of
(16 × 141 × 20), which is the (2 × 2) max-pooled output of the first CNN layer. This creates
an output feature map of (32× 5× 35) after (4× 4) max pooling with stride 4. The last CNN
layer contains 32 input channels with a (32 × 3 × 3) filter, and 64 output channels imposing
64 filters with 288 weights per filter. The last CNN layer creates the (64 × 1 × 8) output
feature map after (4 × 4) max pooling with stride 4. The simultaneously expanded filter
depth and feature map reduction provide an expressive hierarchical feature representation
at the lowest computational cost. The input channel dimension determines the sizes of
all 3D filters in the CNN layers, whereas the output channel dimension determines the
number of unique 3D filters in this CNN layer. Each filter is defined by a unique set of
weights, and each filter has its own bias term. An activation map of size (O × O × 1) is
generated by convolutions performed on an input of size (I × I × C) by a filter of size
(F× F), applied to an input containing C channels and (F× F× C) volume, as demonstrated
in Figure 2.

Figure 2. Feature extraction process from input speech signals to MFCC features.

The gradient becomes very small as the error approaches the prior layers in a very
deep architecture. Therefore, to preserve the gradient, skip connections are added to the
model as it has been observed that, in prior layers, the learned features correspond to
less information extracted from the input. Figure 3 presents the CNN architecture with
3 CNN layers where each block is max-pooled, as well as the skip connection (Figure 3).
The parallel CNNs have the same architectural structures as documented above.
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Figure 3. The architecture of a single CNN with skip connections. The proposed model is composed
of two parallel CNNs as illustrated in the given architecture.

4.2. Transformer Encoder

The Transformer encoder layer as proposed in [82] is used to anticipate the frequency
distributions of various emotions in accordance with the structure of the MFCCs for ev-
ery emotion. Previously, LSTM-RNNs were used to learn the spectrogram sequences for
each emotion and the network only learned to anticipate frequency distributions based
on subsequent time steps. Since the emotions cover the complete frequency distributions
and not one time step, the multi-head self-attention layers of the Transformer allow the
network to seek diversified former time steps while predicting the subsequent ones. The
input MFCC features mapped to the Transformer block are max-pooled to considerably
decrease the trainable parameters of the network. The context vectors of input sequences
are encoded by the Transformer architecture as a set of key (input)–value (input hidden
state) pairs (K, V) with dimensions equivalent to the input sequence length, where keys
and values comprise the hidden states of an encoder. The next term in the decoder’s output
sequence is a mapping from the K–V pairs with Q as (Q, K, V). The output predicted at the
previous time step is computed into a query Q. The weighted total of all values from the
(K, V) encoded representation of the inputs reflects the decoder’s outputs. The Trans-
former’s self-attention gives each hidden state alignment weights as a sequence-length-
scaled dot product of the query with all the keys, as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

n
)V (1)

For the sequence output at time step t, the scaled dot product is scaled by dimension n
of hidden states. There are various self-attention strategies that can be used. As per [82],
the scaled dot product self-attention (Q, K, V) is computed over a number of representation
subspaces with a weight matrix specific to each query, key, and value. Multi-head self-
attention can compute an output term that is weighted differently based on a subspace of
the input sequence in this manner. Concatenating and multiplying the output from each
attention head with a weight matrix reduces the dimensions of the encoded state to that of
a single attention head. Conv-1D, which operates on the encoded latent space regardless of
the number of attention heads, is used as the Transformer encoder in this study in place of
a single feedforward layer. A Softmax prediction is computed from the weighted sum of all
layers in the multi-head attention architecture (shown in Figure 4) and is given as

MultiHead(Q, K, V) = [head1; head2; . . . headm]WO (2)
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headi = Attention(QWQ
i , KWK

i , VWV
i ) (3)

where QWQ
i , KWK

i , and VWV
i , are learnable parameter matrices.

Figure 4. Scaled dot structure with multiple attention heads.

Four identical stacked blocks of the Transformer encoder are used to classify various
emotions; each block is composed of one multi-head self-attention layer with a fully
connected feedforward layer. A skip connection and a normalization layer are included
subsequent to the multi-head self-attention layer. After the feedforward layer, a skip
connection is created, followed by normalization. With those output by the multi-head
self-attention layer, the skip connection adds the original embeddings. The normalization
layer is similar to batch normalization; however, unlike batch normalization, adapted to
sequential inputs, the norm layer is also applied during testing. The combined embeddings
from the residual connection are subjected to the norm layer. Figure 5 depicts the design of
the Transformer encoder, replacing the single feedforward layer with the Conv-1D layer.

Figure 5. Transformer encoder architecture with input and output feature dimensions.
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5. Experimentation

This section experimentally examines the proposed CTENet model for SER and demon-
strates its efficiency. We conducted extensive experiments by using the standard REVDESS
dataset, an acted speech emotions dataset for SER. In addition, the IEMOCAP dataset
was used to examine the performance across different databases. The performance of
the proposed CTENet model has been evaluated with other state-of-the-art (SOTA) SER
models that are reported in the recent literature. We also conducted an ablation learning
study to confirm the multi-head attention performance in the CTENet model for SER. A
complete description of the speech emotion datasets, model training/testing/validation,
and emotion recognition output with discussion is given in the following sections.

5.1. Datasets

The Ryerson Audiovisual Dataset of Emotional Song and Speech (RAVDESS) [83] is
a new English-language scripted emotional corpus, proposed in 2018. The RAVDESS is
the most popular emotional corpus and is largely used to recognize emotions in songs and
speech signals. This corpus is composed of 8 emotions recorded by 24 professionals of both
genders (12 females and 12 males) to produce scripts with changed emotions. Recently, the
speech part of the RAVDESS corpus has been frequently utilized in comparative analysis,
demonstrating the model’s generalization to many emotions. The RAVDESS speech corpus
contains 1440 audio files, which are recorded at a sampling rate of 48 kHz. Since the
RAVDESS speech corpus is small and is prone to overfitting, it is used exclusively with
highly parameterized DNN models such as the CTENet model. Therefore, we augmented
the RAVDESS speech corpus. Producing new samples is a difficult task, so we added white
noise to the speech signals. The addition of white noise not only masked the effect of
random noise present in the training set but also created pseudo-new training samples,
which counterbalanced the impact of inherent noise in the speech corpus. Moreover, the
RAVDESS corpus is extremely clean and this augmentation also evaluated the predictions
of the CTENet model on noisy speech data. Note that noise addition was applied for
training data only. No noise was added to the testing data on which we made emotional
predictions. The spectrograms of the speech utterances from the RAVDESS corpus after
adding white noise are shown in Figure 6. The details of the RAVDESS corpus are illustrated
in Table 2. Interactive Emotional Dyadic Motion Capture (IEMOCAP) [84] is a speech
emotions corpus provided in the English language and recorded at the University of
Southern California (SAIL LAB). The corpus was recorded by 10 professional actors in five
separate sessions, where each session was recorded by one male and one female actor. The
corpus is composed of audio–visual files of 12 h each, where each recorded utterance has a
3.5 s length on average, comprising different emotions. This study considers five emotions,
namely happiness, sadness, anger, calm, and fear, from the IEMOCAP corpus. Table 3 gives
details of the speech emotions, audio file quantity, and contribution rate of each emotion.
The spectrograms of various speech emotions, including happiness, sadness, anger, and
neutrality, are plotted in Figure 7.

Figure 6. Spectrograms after adding white noise: 10 dB, 15 dB, and 25 dB.
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Figure 7. Spectrograms of various speech emotions.

Table 2. Details of the emotions, audio files, and percentage contributions of the RAVDESS database
for the CTENet model.

Emotion Audio Files Contribution

Happiness 192 13.33%
Sadness 192 13.33%
Anger 192 13.33%
Calm 192 13.33%
Fear 192 13.33%

Neutral 96 6.667%
Disgust 192 13.33%
Surprise 192 13.33%

Table 3. Details of the emotions, audio files, and percentage contributions of the IEMOCAP database
for the CTENet model.

Emotion Audio Files Contribution

Happiness 1636 24.33%
Sadness 1084 16.12%
Anger 1103 16.40%
Calm 1700 25.28%
Fear 1200 17.84%

5.2. Model Training, Architecture, and Features

The CTENet model for SER provides outscored results in terms of emotion recognition
using MFCC spectrograms. The proposed CTENet model was tested over two benchmark
speech emotion datasets (RAVDESS and IEMOCAP). The speech signals were transformed
into MFCC coefficients representing an utterance as a grayscale image, an appropriate
2D representation for CNN models. Adam was used to optimize the model, with a
cross-entropy loss function for 200 epochs. Utterance-level extensive experiments were
performed to observe the significance of the CTENet model. We followed a 80%–20%–20%
training/testing/validation ratio during the experiments. Various evaluation metrics were
used to examine the prediction performance of the models, such as accuracy, the F1 score,
precision, and recall. We trained the CTENet models on two datasets and examined them
from different aspects to demonstrate their advantages.

The CTENet model contains two parallel convolutional blocks. Each block contains a
Conv-2D layer followed by batch normalization, leaky ReLU, max pooling, and dropout
layers, respectively. The input and output channel dimensions in the first convolutional
layer are 1 and 16, whereas the stride and kernel sizes are set to (1 × 1) and (3 × 3),
respectively. The second convolutional layer is the same as the first, but with a different
output dimension (32) and max-pooling kernel size (4 × 4). The third convolutional layer is
similar to the second but with a different output dimension (64). A 32-dimension minibatch
size and 0.20 dropout rate are used in the CTENet model. The second convolutional
layer follows an identical architecture. In both parallel CNN blocks, the feature maps
are batch-normalized before applying the leaky ReLU activation. The input feature map
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is zero-padded 1 to every convolutional layer to obtain the same tensor shape. At the
end of the first convolutional layer in each parallel CNN block, the output feature map is
max-pooled with a kernel of size (2 × 2) with stride 2, which takes MFCC pixels producing
a (20 × 141) output feature map. The non-overlapping max-pooling kernel reduces the
output dimension to the input dimension/kernel size. The output channel’s dimension
is then expanded to 16, creating an output (16 × 20 × 141) feature map. In the next two
convolutional layers of each CNN, the block has a max-pooling kernel size (4 × 4) with
stride 4. The feature maps at the end of the second and third convolutional layers are
(32 × 5 × 35) and (64 × 1 × 8), respectively. The output convolutional embedding length
for both parallel CNNs is (1 × 512). Complete details are provided in Table 4.

Table 4. CNN model architecture with input/output dimensions, filter size, and stride.

Layer Input Dim Padding Output Dim Filter Size Output Dim Maxpool, Stride Output Dim

1 (1 × 282 × 40) 1 (1 × 284 × 42) (1 × 3 × 3) (16 × 40 × 282) (2 × 2), 2 (16 × 20 × 141)
2 (16 × 20 × 141) 1 (16 × 22 × 143) (16 × 3 × 3) (32 × 20 × 141) (4 × 4), 4 (32 × 5 × 35)
3 (32 × 5 × 35) 1 (32 × 7 × 37) (32 × 3 × 3) (64 × 5 × 35) (4 × 4), 4 (64 × 1 × 8)

Flatten (64 × 1 × 8); final convolutional embedding length (1 × 512).

The input MFCC coefficient maps to the Transformer encoder are max-pooled (1 × 4)
with stride 4 to obtain a (1 × 40 × 70) output feature map. Therefore, the input to the
Transformer embedding is (40 × 70). The final Transformer embedding length is (1 × 40).
The fully connected dense layer concatenates the final embedding length from the convolu-
tional and Transformer blocks as (512 + 512 + 40) and is used as input to the dense layer
with 1064 nodes. The output from the final layer is a linear k-dimension array, which is
applied to the log Softmax layer to recognize emotions. The output for RAVDESS is an
8-d array, whereas, for IEMOCAP, it is a 5-d array. The final output R is fed to the fully
connected dense layer, followed by the log Softmax layer to calculate the probabilities of
emotion class C, given as

X = R + ReLU(RWR) + bR (4)

P = so f tmax(ZWZ) + bZ (5)

while bZ ∈ RC, WR ∈ Rd2×d2 , WZ ∈ Rd2×C, and bR ∈ Rd2 are trainable parameters, whereas
X ∈ Rd2×N , and X ∈ RC×N . The most likely predicted emotion class can be selected as

ẑ(k) = argmax(P(k)) (6)

where (P(k)) ∈ RC and ẑ(k) ∈ R1 are the probabilities of each emotion class. In the training,
the cross-entropy loss function is used, given as

Loss = −
M

∑
i

yk
i,Clog2(yk

i,C) (7)

while M indicates the number of classes (happy, angry, sad, etc.)

5.3. Baseline Models

For the comparison, we selected the following SOTA baseline models to extensively
evaluate the performance of the CTENet model. Att-Net [68] is a robust SOTA lightweight
self-attention model for SER, where a dilated CNN uses channel and spatial attention for
the extraction of cues from the input tensors. The SVM ensemble model with a Gaussian
kernel [50] is a standard benchmark used for SER comparison. The 1D-CNN [74] archi-
tecture is used, which extracts MFCC features and uses the trained 1D-CNN for emotion
identification. The context-aware representations are used for emotion recognition. Deep-
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Net [60] learns deep features and employs a plain rectangular filter with a new pooling
scheme to achieve more effective emotion discrimination. The other SOTA models include
GResNets [85]; SER using 1D-Dilated CNN, which is based on the multi-learning trick
(MLT) [86]; and the CNN-BLSTM-based SER method from [57].

6. Results and Discussion

In this section, the results of the CTENet model in terms of various measures are first
presented. Then, we compare the CTENet model with other SOTA models for SER using
the RAVDESS and IEMOCAP corpora.

We examined the emotion recognition performance of the suggested CTENet model
and utilized various measures to evaluate the model, such as recognition accuracy, precision,
F1 scores, and recall. The confusion matrix plots of the model visualized the model
performance in terms of actual and predicted labels for each emotion class. In addition,
we conducted an ablation study for different emotions and achieved results with different
models. The results of CTENet for the RAVDESS and IEMOCAP datasets are illustrated in
Table 5 with regard to recognition rates for each emotion class. We present the recognition
accuracy of CTENet for each speech emotion from the RAVDESS and IEMOCAP datasets
(W.Acc indicates weighted accuracy, whereas UW. Acc denotes unweighted accuracy). In
addition, the confusion matrices visualize the testing sets in Figure 8. For RAVDESS (8-way),
the simulation results in Table 5 show that CTENet obtains improved recognition accuracy
in individual speech emotion recognition tasks at most times, exclusively for the happy,
calm, surprised, and angry emotions. Meanwhile, we find that CTENet confuses the calm
and angry emotions with the neutral and disgust emotions in a few cases (as demonstrated
in Figure 8a). Consequently, the CTENet model requires us to learn more about anger
and disgust. The lowest recognition accuracy is obtained for the neutral emotion, since
the neutral emotion is under-represented in the RAVDESS dataset (6.67% of the dataset).
For the IEMOCAP (5-way) dataset, improvements in recognition performance can be seen
for most emotion classes, as shown in Table 5. Specifically, anger and fear outscore other
speech emotions, including happiness, sadness, and calm. This can be attributed to the
better ability of the CTENet model to classify features that are important for emotional
discrimination. Meanwhile, we find that a few emotions are confused with others in some
cases (as shown in Figure 8b).

Table 5. Speech emotion recognition in terms of accuracy (in %) for the RAVDESS and IEMOCAP corpora.

Datasets Speech Emotions

Happy Sad Angry Calm Fearful Neutral Disgust Surprised W.Acc UW.Acc

RAVDESS 90.1 73.2 82.2 98.1 72.3 40.2 82.1 87.1 79.3 78.2

IEMOCAP 76.6 73.8 86.6 76.1 84.2 - - - 80.3 79.5

Tables 6 and 7 describe the experimental results of CTENet model prediction in terms
of overall model precision and the F1-score for the RAVDESS and IEMOCAP datasets. The
experimental results show that CTENet obtains improved F1 accuracy and precision in
the individual speech emotion recognition tasks for most instances, exclusively for the
happy and calm emotions, for both the RAVDESS (8-way) and IEMOCAP (5-way) datasets.
We confirmed the robustness of CTENet over the two standard datasets, and it achieved
78.75% precision for RAVDESS and 74.80% precision for IEMOCAP. Furthermore, CTENet
achieved 84.38% F1 for RAVDESS and 82.20% F1 for IEMOCAP, respectively. The CTENet
accuracy for the two datasets was 82.31% and 79.42%, respectively. Figure 9 visualizes the
complete performance of CTENet for both datasets in terms of precision, accuracy, and F1
scores, respectively.
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Figure 8. Confusion metrics. (a) IEMOCAP dataset, (b) RAVDESS dataset.

Table 6. CTENet model prediction performance (in %) using RAVDESS dataset.

Happy Sad Angry Calm Fearful Neutral Disgust Surprised

Prc F1 Prc F1 Prc F1 Prc F1 Prc F1 Prc F1 Prc F1 Prc F1

92 91 49 74 89 87 93 94 82 79 45 75 90 87 90 88

Model Accuracy: 82.31%

Table 7. CTENet model prediction performance (in %) using IEMOCAP dataset.

Happy Sad Angry Calm Fearful

Prc F1 Prc F1 Prc F1 Prc F1 Prc F1

78 81 77 80 71 86 77 82 71 82

Model Accuracy: 79.42%

Figure 9. CTENet percentage performance: accuracy (Acc), precision (Prc), and F1 score using
RAVDESS and IEMOCAP datasets.

To show the importance of the multi-head attention Transformer (MHAT) encoder in
CTENet, we present Table 8, which demonstrates the accuracy, precision, and F1 scores
for speech emotions achieved with CTENet without MHAT and with the MHAT encoder,
respectively. The experimental outcomes indicate the significance of MHAT inclusion
in CTENet, where the recognition results are enhanced considerably. On average, the
accuracy, precision, and F1 scores are improved by 7.29%, 5.13%, and 3.26%, respectively,
with MHAT. The accuracy is improved from 70.32% with the RAVDESS dataset to 78.0%,
and from 70.32% to 79.0% with the IEMOCAP dataset. In addition, the F1 score is improved
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from 80.40% with the RAVDESS dataset to 84.37%, whereas it changes from 79.65% to
82.20% with the IEMOCAP dataset.

Table 8. CTENet prediction performance (in %) with and without multi-head attention Transformer.

Model Input Database Neural Architecture Accuracy Precision F1 Score

MFCC Spectrum RAVDESS CTENet without MHAT 72.10 73.34 80.40
IEMOCAP 70.32 69.95 79.65

MFCC Spectrum RAVDESS CTENet with MHAT 78.00 78.75 84.37
IEMOCAP 79.00 74.80 82.20

The proposed CTENet model demonstrated improved generalization during the
experiments and evaluations for both datasets, and it obtained better emotion recognition
accuracy with a low computational cost. In brief, we can assume that the proposed CTENet
model for SER is accurate and computationally less complex. Consequently, it is able
to examine human behaviors and emotions. Moreover, with the lightweight framework,
this model is appropriate for real-time applications since it requires less training time.
Table 9 gives the training time and model size (in Mb). We compared the training time and
model size with those of other SER frameworks, including DS-CNN [51], CB-SER [57], and
AttNet [68], for comparison. The experiments proved that the CTENet model is lightweight
(compact model size of 4.54 Mb), generalizable, and computationally less expensive, and it
requires less processing time to recognize emotions, which indicates the appropriateness of
the model for real-world applications. The processing time is significantly minimized as
the simultaneously expanded filter depth and feature map reduction provide an expressive
hierarchical feature representation at the minimum computational cost. The total trainable
parameters are 222,248 for the CTENet model.

Table 9. CTENet model’s computational size and processing time.

Models RAVDESS IEMOCAP Model Size

DSCNN [51] 2400 s 2640 s 34.5 MB
CB-SER [57] 6250 s 10,452 s 125 MB
AttNet [68] 1900 s 2100 s 14.4 MB

CTENet 1600 s 1900 s 4.54 MB

Comparison with Existing Models

To confirm the effectiveness of the presented method, we compared CTENet with
SOTA baseline benchmarks on the RAVDESS (8-way) and IEMOCAP (5-way) datasets.
The SOTA baseline benchmarks included Att-Net, ensemble SVMs, 1D-CNN, BC-LSTM,
ConvLSTM, and DeepNet. This section first compares CTENet with the SOTA baseline
benchmarks in terms of the overall performance using accuracy, precision, and F1. After this,
we compare the recognition accuracy, precision, and F1 for individual emotions. Table 10
shows a comparison of CTENet with the SOTA baseline benchmarks on the RAVDESS and
IEMOCAP datasets. The experimental results show the effectiveness of CTENet. For the
RAVDESS dataset, CTENet achieves 82.31% accuracy, which indicates an improvement of
2.31% over Att-Net, 2.81% over DS-CNN, and improvements other SOTA models given
in Table 10. In addition, for the IEMOCAP dataset, the CTENet achieves 79.42% accuracy,
indicating an absolute improvement of 6.92% over Deep-BLSTM, 2.42% over DeepNet,
and improvements over other SOTA models with reasonable margins. CTENet surpasses
BE-SVM, GResNets, and Deep-BLSTM and improves the precision by 7.75%, 16.43%, and
5.75% on an absolute scale for the RAVDESS dataset. For the IEMOCAP dataset, CTENet
outperforms the SOTA models, except for DS-CNN, which improves the precision by 12%.
In terms of the F1 score, CTENet consistently achieves the highest percentage improvements.
The overall F1 for CTENet is 82.20%, which is 6.0%, 10.0%, and 5.0% higher than that of



Sensors 2023, 23, 6212 16 of 20

DeepNet, Deep-BLSTM, and MLT-DNet for the IEMOCAP dataset. On the other hand,
for the RAVDESS dataset, the CTENet achieves an 84.37% F1 score, which is 7.37% higher
than that of Deep-BLSTM and 21.26% higher than GResNets. Figure 10 shows the detailed
performance of CTENet over the SOTA models [87].

Table 10. Comparison of CTENet with benchmarks.

RAVDESS Dataset IEMOCAP Dataset

Ref# Benchmarks Input Features Accuracy Precision F1 Score Accuracy Precision F1 Score

[56] BE-SVM Spectral Features 75.69 74.00 73.34 - - -
[85] GResNets Spectral Features 64.48 65.32 63.11 - - -
[86] MLT-DNet Spatial Features - - - 73.01 74.00 73.00
[57] Deep-BLSTM Spatial + Temporal 77.02 76.00 77.00 72.50 73.00 72.00
[74] 1D-CNN Spectral Features 71.61 - - 64.30 - -
[66] DS-CNN Spatial Features 79.50 81.00 84.00 78.75 86.00 82.00
[60] DeepNet Spatial + Temporal - - - 77.00 76.00 76.00
[68] Att-Net Spatial Features 80.00 81.00 80.00 78.00 78.00 78.00

Our CTENet Spatial + Temporal 82.31 81.75 84.37 79.42 74.80 82.20

Figure 10. CTENet performance over SOTA for RAVDESS and IEMOCAP datasets.

7. Conclusions and Recommendations

In this paper, we describe the combination of spatial and temporal feature representa-
tions of speech emotions by parallelizing CNNs and a Transformer encoder for SER. We
extract the spatial and temporal features with parallel CNNs and the Transformer encoder
from the MFCC spectrum. In the CTENet model, MFCCs are used as grayscale images,
where the width is the time scale and height is the frequency scale. The experimental
results on two popular benchmark datasets, RAVDESS and IEMOCAP, validate the useful-
ness of the CTENet model for SER. Our model achieves better experimental results over
state-of-the-art models for speech emotion recognition, with overall accuracy of 82.31%
and 79.80% for the benchmark datasets. Furthermore, the experimental results for different
speech emotion classes show the effectiveness of the spatial and temporal feature fusion.
The experimental results show the importance of MHAT inclusion in CTENet, where the
emotion recognition results are improved significantly. The experimental results also prove
that CTENet is compact (4.54 Mb) and computationally less costly, and requires less pro-
cessing time to recognize different emotions, indicating the appropriateness of CTENet for
real-world applications. With few entries in the datasets, the model sometimes overfits;
however, we can fine-tune the model to avoid overfitting, such as by applying dropout
regularization. It is also recommended to increase the database entries for better results
and optimized model parameters.

The present study provides acceptable accuracy; however, a further improvement in
accuracy can be achieved if the model architecture is further refined, e.g., a more effective
feature extractor can be adopted. Different feature sets can be combined for more robust
training features. Further, besides temporal and spatial features, we aim to add modalities
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to further increase the recognition accuracy using modality cues. In addition, we will apply
recently introduced models to achieve state-of-the-art SER results.
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