Leak Detection and Localization in Multi-Grid Space Using Improved Gaussian Plume Model
<p>A sketch map of traditional Gaussian plume model.</p> "> Figure 2
<p>The isoconcentration line of the concentration surface on the gridded measurement plane.</p> "> Figure 3
<p>Function curve of Equation (4).</p> "> Figure 4
<p>Photo of the leak detection and localization experiment in a simulated multi-grid space.</p> "> Figure 5
<p>A sketch map of the structure of the multi-grid space.</p> "> Figure 6
<p>The variation in gas concentration with time at different distances R when the strength of the leakage source is 3 × 10<sup>−5</sup> mg/s, 2 × 10<sup>−5</sup> mg/s and 1 × 10<sup>−5</sup> mg/s, respectively: (<b>a</b>) Q = 3 × 10<sup>−5</sup> mg/s; (<b>b</b>) Q = 2 × 10<sup>−5</sup> mg/s; (<b>c</b>) Q = 1 × 10<sup>−5</sup> mg/s.</p> "> Figure 7
<p>Fitting results of three experiments using Equation (4): (<b>a</b>) Q = 3 × 10<sup>−5</sup> mg/s; (<b>b</b>) Q = 2 × 10<sup>−5</sup> mg/s; (<b>c</b>) Q = 1 × 10<sup>−5</sup> mg/s.</p> "> Figure 8
<p>Concentration distributions of the three experiments and fitting results using Equation (3): (<b>a</b>) Q = 3 × 10<sup>−5</sup> mg/s; (<b>b</b>) Q = 2 × 10<sup>−5</sup> mg/s; (<b>c</b>) Q = 1 × 10<sup>−5</sup> mg/s.</p> "> Figure 9
<p>The composition of the leak detection and localization system.</p> ">
Abstract
:1. Introduction
2. Principle
2.1. Traditional Gaussian Plume Model
2.2. Improved Gaussian Plume Model
- (1)
- The leak source is located at the ground level, thus H = 0.
- (2)
- The diffusion space of z < 0 is exactly the same as the diffusion space of z > 0; that is, the diffusion area is symmetrical based on the leakage source, and the ground surface neither absorbs nor reflects; i.e., α = 0.
- (3)
- The environmental conditions are stable and the diffusion coefficient is isotropic; that is σy = σz = σ.
3. Experimental Settings
4. Results and Discussion
4.1. Variation of Gas Concentration at Different Distances
4.2. Model Validation
4.3. Positioning Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sekhavati, J.; Hashemabadi, S.H.; Soroush, M. Computational methods for pipeline leakage detection and localization: A review and comparative study. J. Loss Prev. Process Ind. 2022, 77, 104771. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Q. A Novel PPA Method for Fluid Pipeline Leak Detection Based on OPELM and Bidirectional LSTM. IEEE Access 2020, 8, 107185–107199. [Google Scholar] [CrossRef]
- Hu, X.; Han, Y.M.; Yu, B.; Geng, Z.Q.; Fan, J.Z. Novel leakage detection and water loss management of urban water supply network using multiscale neural networks. J. Clean. Prod. 2021, 278, 123611. [Google Scholar] [CrossRef]
- Du, F.; Li, C.; Wang, W. Development of Subsea Pipeline Buckling, Corrosion and Leakage Monitoring. J. Mar. Sci. Eng. 2023, 11, 188. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, T.; Li, Y.; Ruan, W.; Zhu, K. A new leak detection method for subsea pipelines. Ships Offshore Struct. 2017, 12, S144–S152. [Google Scholar] [CrossRef]
- Fan, H.R.; Tariq, S.; Zayed, T. Acoustic leak detection approaches for water pipelines. Autom. Constr. 2022, 138, 104226. [Google Scholar] [CrossRef]
- Ge, C.; Wang, G.; Hao, Y. Analysis of the smallest detectable leakage flow rate of negative pressure wave-based leak detection systems for liquid pipelines. Comput. Chem. Eng. 2008, 32, 1669–1680. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, G.; Jiang, J.; Diao, X.; Wang, Z.; Ni, L.; Dou, Z. Effect of rubber washers on leak location for assembled pressurized liquid pipeline based on negative pressure wave method. Process Saf. Environ. Prot. 2018, 119, 181–190. [Google Scholar] [CrossRef]
- Guo, X.; Yang, K.; Guo, Y. Leak detection in pipelines by exclusively frequency domain method. Sci. China Technol. Sci. 2012, 55, 743–752. [Google Scholar] [CrossRef]
- Ranginkaman, M.H.; Haghighi, A.; Samani, H.M.V. Application of the Frequency Response Method for Transient Flow Analysis of Looped Pipe Networks. Int. J. Civ. Eng. 2017, 15, 677–687. [Google Scholar] [CrossRef]
- Li, S.; Song, Y.; Zhou, G. Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 2018, 115, 39–44. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Hong, M. Gas Leak Location Detection Based on Data Fusion with Time Difference of Arrival and Energy Decay Using an Ultrasonic Sensor Array. Sensors 2018, 18, 2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Kleiner, Y. State of the art review of inspection technologies for condition assessment of water pipes. Measurement 2013, 46, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wornell, G.W.; Gaumond, C.F. Signal Processing with Fractals: A wavelet-based approach. J. Acoust. Soc. Am. 1996, 105, 18. [Google Scholar] [CrossRef]
- Blesa, J.; Puig, V.; Saludes, J.; Vento, J. Leak Detection, Isolation and Estimation in Pressurized Water Pipe Networks using LPV Models and Zonotopes. IFAC Proc. 2010, 43, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Inaudi, D.; Belli, R.; Walder, R. Detection and localization of micro-leakages using distributed fiber optic sensing. Proc. Int. Pipeline Conf. 2008, 48579, 599–605. [Google Scholar] [CrossRef]
- Tapanes, E. Fibre optic sensing solutions for real-time pipeline integrity monitoring. Aust. Pipeline Ind. Assoc. Natl. Conv. 2014, 3, 27–30. [Google Scholar]
- Lopez, R.M.; Spirin, V.V.; Shlyagin, M.G.; Miridonov, S.V.; Beltran, G.; Kuzin, E.A.; Lucero, A.M. Coherent optical frequency domain reflectometry for interrogation of bend-based fiber optic hydrocarbon sensors. Opt. Fiber Technol. 2004, 10, 79–90. [Google Scholar] [CrossRef]
- Rabe, P.; Browne, K.; Brink, J.; Coetzee, C.J. Glycol leak detection system. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Edinburgh, UK, 26 June–1 July 2016. [Google Scholar]
- Sanchez-Sosa, J.E.; Castillo-Mixcoatl, J.; Beltran-Perez, G.; Munoz-Aguirre, S. An Application of the Gaussian Plume Model to Localization of an Indoor Gas Source with a Mobile Robot. Sensors 2018, 18, 4375. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, Y.; Liang, H.; Xu, Z.; Bu, F.; Zhang, J.; Du, H.; Wang, Y.; Chen, S. Leakage Analysis and Hazardous Boundary Determination of Buried Gas Pipeline Considering Underground Adjacent Confined Space. Energies 2022, 15, 6859. [Google Scholar] [CrossRef]
- Oh, M.; Seo, M.W.; Lee, S.; Park, J. Applicability of grid-net detection system for landfill leachate and diesel fuel release in the subsurface. J. Contam. Hydrol. 2008, 96, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yao, X.F.; Wang, S.; Yuan, L.; Ke, Y.C.; Liu, Y.H. Simultaneous determination of gas leakage location and leakage rate based on local temperature gradient. Measurement 2019, 133, 233–240. [Google Scholar] [CrossRef]
- Liu, X.; Godbole, A.; Lu, C.; Michal, G.; Venton, P. Optimisation of dispersion parameters of Gaussian plume model for CO2 dispersion. Env. Sci. Pollut. Res. Int. 2015, 22, 18288–18299. [Google Scholar] [CrossRef]
- Witlox, H.; Harper, M.; Oke, A. Modelling of discharge and atmospheric dispersion for carbon dioxide releases. J. Loss Prev. Process Ind. 2009, 22, 795–802. [Google Scholar] [CrossRef]
- Xiong, L.; Godbole, A.; Cheng, L.; Michal, G.; Venton, P. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state. Appl. Energy 2014, 126, 56–68. [Google Scholar] [CrossRef] [Green Version]
- MA, D.; Fang, J.; Qian, Y. Simulation study on the leakage diffusion of liquid ammonia tank. J. Transp. Sci. Eng. 2017, 33, 66–70. [Google Scholar]
- Korsakissok, I.; Mallet, V. Comparative Study of Gaussian Dispersion Formulas within the Polyphemus Platform: Evaluation with Prairie Grass and Kincaid Experiments. J. Appl. Meteorol. Climatol. 2009, 48, 2459–2473. [Google Scholar] [CrossRef] [Green Version]
- Marques, L.; Nunes, U.; Almeida, A.T. Olfaction-based mobile robot navigation. Thin Solid Film. 2002, 418, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Murlis, J.; Elkinton, J.S.; Cardé, R.T. Odor Plumes and How Insects Use Them. Annu. Rev. Entomol. 1992, 37, 505–532. [Google Scholar] [CrossRef]
- Turner, D.B. Estimates of Atmospheric Dispersion. In Workbook of Atmospheric Dispersion Estimates; Report AP-26; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1970. [Google Scholar]
- De Nevers, N. Air Pollutant Concentration Models. In Air Pollution Control Engineering, 3rd ed.; Waveland Press Inc.: Long Grove, IL, USA, 2017; pp. 120–160. ISBN 1-4786-2905-3. [Google Scholar]
- Richter, C. State of the art atmospheric dispersion modelling: Should the Gaussian plume model still be used? Kerntechnik 2016, 81, 559–564. [Google Scholar] [CrossRef]
- Stockie, J.M. The Mathematics of Atmospheric Dispersion Modeling. SIAM Rev. 2011, 53, 349–372. [Google Scholar] [CrossRef] [Green Version]
Parameter | (a) | (b) | (c) |
---|---|---|---|
A | 1.8247 | 1.62924 | 1.45763 |
σ1 | 0.53463 | 0.52725 | 0.52712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Liu, G.; Mao, Z. Leak Detection and Localization in Multi-Grid Space Using Improved Gaussian Plume Model. Sensors 2023, 23, 6209. https://doi.org/10.3390/s23136209
Li D, Liu G, Mao Z. Leak Detection and Localization in Multi-Grid Space Using Improved Gaussian Plume Model. Sensors. 2023; 23(13):6209. https://doi.org/10.3390/s23136209
Chicago/Turabian StyleLi, Daquan, Gaigai Liu, and Zhaoyong Mao. 2023. "Leak Detection and Localization in Multi-Grid Space Using Improved Gaussian Plume Model" Sensors 23, no. 13: 6209. https://doi.org/10.3390/s23136209
APA StyleLi, D., Liu, G., & Mao, Z. (2023). Leak Detection and Localization in Multi-Grid Space Using Improved Gaussian Plume Model. Sensors, 23(13), 6209. https://doi.org/10.3390/s23136209