Principles and Applications of Seismic Monitoring Based on Submarine Optical Cable
<p>Principles of the (<b>a</b>) Mach–Zehnder interferometer, (<b>b</b>) Michelson interferometer, (<b>c</b>) Fabry–Perot interferometer.</p> "> Figure 2
<p>Principle of the FBG sensor.</p> "> Figure 3
<p>Principle of the polarimeter. (<b>a</b>) the SOP before perturbation, (<b>b</b>) the SOP under perturbation.</p> "> Figure 4
<p>Principle of coherent detection-based DAS (with dashed lines) and direct detection-based DAS (without dashed lines).</p> "> Figure 5
<p>Seismic applications based on the optical interferometer. (<b>a</b>) Structure of the USLI system, (<b>b</b>) results of earthquake detection, reprinted with permission from [<a href="#B15-sensors-23-05600" class="html-bibr">15</a>], (<b>c</b>) structure of the USLI observation arrays, (<b>d</b>) results of the earthquake location, reprinted with permission from [<a href="#B18-sensors-23-05600" class="html-bibr">18</a>].</p> "> Figure 6
<p>Comparison of detection between optical seismometer and electrical seismometer, reprinted with permission from [<a href="#B37-sensors-23-05600" class="html-bibr">37</a>].</p> "> Figure 7
<p>Seismic applications based on optical polarization. (<b>a</b>) Experimental submarine cable [<a href="#B16-sensors-23-05600" class="html-bibr">16</a>]; (<b>b</b>) detection of seismic waves, reprinted with permission from [<a href="#B16-sensors-23-05600" class="html-bibr">16</a>]; (<b>c</b>) earthquake source location between two submarine cables, reprinted with permission from [<a href="#B23-sensors-23-05600" class="html-bibr">23</a>].</p> "> Figure 8
<p>Seismic applications based on coherent detection DAS. (<b>a</b>) Seismic observation of DAS, (i) mapped submarine fault locations, (ii) an unmapped fault zone, (iii) wavefront delay in mapped fault zone, (<b>b</b>) unmapped submarine fault locations, reprinted with permission from [<a href="#B17-sensors-23-05600" class="html-bibr">17</a>], (<b>c</b>) autocorrelation image from microseism noise, (i) autocorrelation image from oceanic microseism noise, (ii) the separated scattered scholte waves from autocorrelation profile, (<b>d</b>) integrated two-dimension vs. image, reprinted with permission from [<a href="#B45-sensors-23-05600" class="html-bibr">45</a>].</p> "> Figure 9
<p>Seismic applications based on direct detection DAS. (<b>a</b>) Seismic wave detection, (i) PSD of DAS recordings (ii) PSD of broadband seismometer recordings, (iii) comparison between earthquake signals detected by HDAS and the nearby broadband seismometer, reprinted with permission from [<a href="#B49-sensors-23-05600" class="html-bibr">49</a>], (<b>b</b>) hydroacoustic T waves detection, reprinted with permission from [<a href="#B50-sensors-23-05600" class="html-bibr">50</a>].</p> ">
Abstract
:1. Introduction
2. Fiber-Optic Sensing Techniques for Seismic Monitoring
2.1. Principle of the Optical Interferometer-Based Seismic Monitoring
2.2. Principle of the FBG-Based Seismic Monitoring
2.3. Principle of the Optical Polarimeter-Based Seismic Monitoring
2.4. Principle of the DAS-Based Seismic Monitoring
3. Applications of Seismic Monitoring Based on Submarine Cable
3.1. Seismic Monitoring Based on Optical Interferometer
3.2. Seismic Monitoring Based on FBG
3.3. Seismic Monitoring Based on Optical Polarimeter
3.4. Seismic Monitoring Based on DAS
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clare, M.A.; Vardy, M.E.; Cartigny, M.J.B.; Talling, P.J.; Himsworth, M.D.; Dix, J.K.; Harris, J.M.; Whitehouse, R.J.S.; Belal, M. Direct monitoring of active geohazards: Emerging geophysical tools for deep-water assessments. Near Surf. Geophys. 2017, 15, 427–444. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; Peng, Z.; Ben-Zion, Y.; Vernon, F. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophys. J. Int. 2005, 162, 867–881. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.W. Distributed acoustic sensing turns fiber-optic cables into sensitive seismic antennas. Seismol. Res. Lett. 2019, 91, 1–15. [Google Scholar] [CrossRef]
- Howe, B.M.; Arbic, B.K.; Aucan, J.; Barnes., C.R.; Bayliff, N.; Becker, N.; Butler, R.; Doyle, L.; Elipot, S.; Johnson, G.C.; et al. SMART Cables for Observing the Global Ocean: Science and Implementation. Front. Mar. Sci. 2019, 6, 424. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, E.K.; Petitt, R.A.; Zhu, Y.J. Power systems for the coastal and global scale nodes of the ocean observatories initiative. In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–9. [Google Scholar]
- Xu, H.P.; Zhang, Y.W.; Xu, C.W.; Li, J.R.; Liu, D.; Qin, R.F.; Luo, S.Q.; Fan, D.Q. Coastal seafloor observatory at Xiaoqushan in the East China Sea. Chin. Sci. Bull. 2011, 56, 2839–2845. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, T.; Matsuzawa, T.; Otha, K.; Uchida, N.; Nishimura, T.; Ide, S. The slow earthquake spectrum in the Japan trench illuminated by the S-net seafloor observatories. Science 2019, 365, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Dewey, R.; Round, A.; Macoun, P.; Vervtnck, J.; Tunnicliffe, V. The VENUS cabled observatory: Engineering meets science on the seafloor. In Proceedings of the OCEANS 2007, Vancouver, BC, Canada, 29 September–4 October 2007; pp. 1–7. [Google Scholar]
- Araki, E.; Yokobiki, T.; Kawaguchi, K.; Kaneda, Y. Background seismic noise level in DONET seafloor cabled observation network. In Proceedings of the 2013 IEEE International Underwater Technology Symposium (UT), Tokyo, Japan, 5–8 March 2013; pp. 1–4. [Google Scholar]
- Favali, P.; Beranzoli, L.; Materia, P.; Picard, J.B.; Best, M.R.; Rolin, J.F.; Cannat, M.; Waldmann, C.; Gillooly, M.; Hall, O.J.; et al. EMSO European research infrastructure: Towards an integrated strategy for the observation of the seafloor and the water column. In Proceedings of the OCEANS 2015-Genova, Genova, Italy, 18–21 May 2015; pp. 1–2. [Google Scholar]
- Yilmaz, M.; Migliacio, P.; Bernard, E. Broadband vibrating quartz pressure sensors for tsunameter and other oceanographic applications. In Proceedings of the Oceans’ 04 MTS/IEEE Techno-Ocean’04 (IEEE Cat. No. 04CH37600), Kobe, Japan, 9–12 November 2004; pp. 1–7. [Google Scholar]
- Submarine Cable Frequently Asked Questions. Available online: https://www2.telegeography.com/submarine-cable-faqs-frequently-asked-questions (accessed on 5 February 2023).
- What’s Shaking? Earthquake Detection with Submarine Cables. Available online: https://cloud.google.com/blog/products/infrastructure/using-subsea-cables-to-detect-earthquakes (accessed on 17 July 2020).
- Howe, B.M.; Angove, M.; Aucan, J.; Barnes, C.R.; Barros, J.S.; Bayliff, N.; Becker, N.; Carrilho, F.; Fouch, M.J.; Fry, B.; et al. SMART Subsea Cables for Observing the Earth and Ocean, Mitigating Environmental Hazards, and Supporting the Blue Economy. Front. Earth Sci. 2022, 9, 1465. [Google Scholar] [CrossRef]
- Marra, G.; Clivati, C.; Luckett, R.; Tampellini, A.; Kronjager, J.; Wright, L.; Mura, A.; Levi, F.; Robinson, S.; Xuereb, A.; et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 2018, 361, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.W.; Cantono, M.; Kamalov, V.; Mecozzi, A.; Muller, R.; Yin, S.; Castellanos, J. Optical polarization–based seismic and water wave sensing on transoceanic cables. Science 2021, 371, 931–936. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 2019, 366, 1103–1107. [Google Scholar] [CrossRef]
- Marra, G.; Fairweather, D.M.; Kamalov, V.; Gaynor, P.; Cantono, M.; Mulholland, S.; Baptie, B.; Castellanos, J.C.; Vagenas, G.; Gaudron, J.-O.; et al. Optical interferometry-based array of seafloor environmental sensors using a transoceanic submarine cable. Science 2022, 376, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Kamenev, O.T.; Kulchin, Y.N.; Petrov, Y.S.; Khiznyak, R.V.; Romashko, R.V. Fiber-optic seismometer on the basis of Mach-Zehnder interferometer. Sens. Actual. A-Phys. 2016, 244, 133–137. [Google Scholar] [CrossRef]
- Countant, O.; Mengin, M.D.; Coarer, E.L. Fabry–Perot optical fiber strainmeter with an embeddable, low-power interrogation system. Optica 2015, 2, 400–404. [Google Scholar] [CrossRef]
- Rao, Y.J. Study on fiber-optic low-coherence interferometric and fiber Bragg grating sensors. Photonics Sens. 2011, 1, 382–400. [Google Scholar] [CrossRef] [Green Version]
- Mecozzi, A.; Cantono, M.; Castellanos, J.C.; Kamalov, V.; Muller, R.; Zhan, Z.W. Polarization sensing using submarine optical cables. Optica 2021, 8, 788–795. [Google Scholar] [CrossRef]
- Castellanos, J.C.; Zhan, Z.W.; Kamalov, V.; Cantono, M.; Yin, S.; Mecozzi, A.; Bhattacharya, S.; Allem, R.M. Optical polarization-based sensing and localization of submarine earthquakes. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; pp. 1–3. [Google Scholar]
- Lu, Y.L.; Zhu, T.; Chen, L.; Bao, X.Y. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Light. Technol. 2010, 28, 3243–3249. [Google Scholar]
- Pastor-Grealls, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt. Express 2016, 24, 13121–13133. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Ruiz, M.R.; Costa, L.; Martins, H.F. Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology. Sensors 2019, 19, 4368. [Google Scholar] [CrossRef] [Green Version]
- Shindo, Y.; Yoshikawa, T.; Mikada, H. A large scale seismic sensing array on the seafloor with fiber optic accelerometers. IEEE Sens. J. 2002, 2, 1767–1770. [Google Scholar]
- Zumberge, M.A.; Hatfield, W.; Wyatt, F.K. Measuring Seafloor Strain With an Optical Fiber Interferometer. Earth Space Sci. 2018, 5, 371–379. [Google Scholar] [CrossRef]
- Tian, S.F.; Yang, J.; Yuan, Y.G.; Zhang, Y.B.; Zhu, H.B.; An, R.; Yu, Z.J.; Wang, Y.C.; Qin, Y.W. Research on the influence of ultralow frequency band 1/f noise in ultralong fiber interferometers. Acta Opt. Sin. 2021, 41, 1306007. [Google Scholar]
- Li, H.C.; Zhang, W.T.; Huang, W.Z.; Du, Y.L. Design of low frequency fiber optic Fabry-Perot seismometer based on transfer function analysis. Chin. Opt. Lett. 2021, 19, 051201. [Google Scholar] [CrossRef]
- Clivati, C.; Tampellini, A.; Mura, A.; Levi, F.; Marra, G.; Galea, P.; Xuereb, A.; Calonico, D. Optical frequency transfer over submarine fiber links. Optica 2018, 5, 893–901. [Google Scholar] [CrossRef]
- Janneh, M.; Bruno, F.A.; Guardato, S.; Donnarumma, G.P.; Iannaccone, G.; Gruce, G.; Werzinger, S.; Gunda, A.; Rijnveld, N.; Cutolo, A.; et al. Field demonstration of an optical fiber hydrophone for seismic monitoring at Campi-Flegrei caldera. Opt. Laser Technol. 2023, 158, 108920. [Google Scholar] [CrossRef]
- Fujihashi, K.; Aoki, T.; Okutsu, M.; Arai, K.; Komori, T.; Fujita, H.; Kurosawa, Y.; Fujinawa, Y.; Sasaki, K. Development of seafloor seismic and tsunami observation system. In Proceedings of the 2007 Symposium of Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 17–20 April 2007; pp. 349–355. [Google Scholar]
- Langhammer, J.; Nakstad, H.; Eriksrud, M.; Berg, A.; Ronnekleiv, E.; Waagaard, O.H.; Thompson, M. Fibre optic reservoir monitoring: Field trial and results. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2008; pp. 1–11. [Google Scholar]
- Zhang, W.T.; Wang, Z.G.; Huang, W.Z.; Liu, W.Y.; Li, L.; Li, F. Fiber laser sensors for micro seismic monitoring. Measurement 2016, 79, 203–210. [Google Scholar] [CrossRef]
- Zhang, W.T.; Li, H.C.; Huang, W.Z.; Li, Z.B.; Li, L.; Liu, R.F. Research progress of optical fiber seismograph. J. Appl. Sci. 2021, 39, 821–842. [Google Scholar]
- Zhang, W.T.; Huang, W.Z.; Li, F. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering. Opto-Electron. Eng. 2018, 45, 170615. [Google Scholar]
- Liu, Q.W.; Tokunaga, T.; He, Z.Y. Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique. Opt. Lett. 2012, 37, 434–436. [Google Scholar] [CrossRef]
- Chen, J.G.; Liu, Q.W.; Fan, X.Y.; He, Z.Y. Ultrahigh resolution optical fiber strain sensor using dual Pound–Drever–Hall feedback loops. Opt. Lett. 2016, 41, 1066–1069. [Google Scholar] [CrossRef]
- Cantono, M.; Kamalov, V.; Vusirikala, V.; Salsi, M.; Newland, M.; Zhan, Z.W. Sub-hertz spectral analysis of polarization of light in a transcontinental submarine cable. In Proceedings of the 2020 European Conference on Optical Communications (ECOC), Brussels, Belgium, 6–10 December 2020; pp. 1–3. [Google Scholar]
- Farhadiroushan, F.; Parker, T.; Shatalin, S. Method and Apparatus for Optical Sensing. Patent WO2010136810A2[P/OL], 27 May 2009. [Google Scholar]
- Pan, Z.Q.; Liang, K.Z.; Ye, Q.; Cai, H.W.; Qu, R.H.; Fang, Z.J. Phase-sensitive OTDR system based on digital coherent detection. In Proceedings of the 2011 Asia Communications and Photonics Conference and Exhibition (ACP), Shanghai, China, 13–16 November 2011; pp. 1–6. [Google Scholar]
- Healey, P. Fading in heterodyne OTDR. Electron. Lett. 1984, 20, 30–32. [Google Scholar] [CrossRef]
- Camatel, S.; Ferrero, V. Narrow linewidth CW laser phase noise characterization methods for coherent transmission system applications. J. Light. Technol. 2008, 26, 3048–3055. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Chi, B.X.; Lindsey, N.J.; Dawe, T.C.; Ajo-Franklin, J.B. Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization. Sci. Rep. 2021, 11, 5613. [Google Scholar] [CrossRef]
- Spica, Z.J.; Nishida, K.; Akuhara, T.; Petrelis, F.; Shinohara, M.; Yamada, T. Marine sediment characterized by ocean-bottom fiber-optic seismology. Geophys. Res. Lett. 2020, 47, e2020GL088360. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, M.R.; Martins, H.F.; Costa, L.; Martin-Lopez, S.; Gonalez-Herraez, M. Steady-sensitivity distributed acoustic sensors. J. Light. Technol. 2018, 36, 5690–5696. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, M.R.; Pastor-Grealls, J.; Martins, H.F.; Garcia-Ruiz, A.; Martin-Lopez, S.; Gonza-Herraez, M. Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors. J. Light. Technol. 2018, 36, 979–985. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernandez-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.W.; Gonzalez-Herraez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugalde, A.; Becerril, C.; Villasenor, A.; Ranero, C.R.; Fernandez-Ruiz, M.R.; Martin-Lopez, S.; Gonzalez-Herraez, M.; Martins, H.F. Noise levels and signals observed on submarine fibers in the canary islands using DAS. Seismol. Res. Lett. 2022, 93, 351–363. [Google Scholar] [CrossRef]
- Sladen, A.; Rivet, D.; Ampuero, J.P.; De Barros, L.; Hello, Y.; Calbris, G.; Lamare, P. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 2019, 10, 5777. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Zhu, K.; Han, J.; Sui, Q.; Li, Z.H. Photonic integrated sensing and communication system harnessing submarine fiber optic cables for coastal event monitoring. IEEE Commun. Mag. 2022, 60, 110–116. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, W.; Wang, J.F.; Hu, X.Y.; Chen, M.; Zhang, Y.C. Recent progress in fiber-optic hydrophones. Photonic Sens. 2021, 11, 109–122. [Google Scholar] [CrossRef]
- Lu, B.; Wu, B.Y.; Gu, J.F.; Yang, J.Q.; Gao, K.; Wang, Z.Y.; Ye, L.; Ye, Q.; Qu, R.H.; Chen, X.B.; et al. Distributed optical fiber hydrophone based on Phi-OTDR and its field test. Opt. Express 2021, 29, 3147–3162. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Araki, E.; Kimura, T.; Fujie, G.; Shiraishi, K.; Tonegawa, T.; Obana, K.; Arai, R.; Kaiho, Y.; Nakamura, Y.; et al. Detection of hydroacoustic signals on a fiber-optic submarine cable. Sci. Rep. 2021, 11, 2797. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Ruiz, M.R.; Martins, H.F.; Williams, E.F.; Becerril, C.; Magalhaes, R.; Costa, L.; Martin-Lopez, S.; Jia, Z.S.; Zhan, Z.W.; Gonzalez-Herraez, M. Seismic Monitoring with Distributed acoustic sensing from the near-surface to the deep oceans. J. Light. Technol. 2022, 40, 1453–1463. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R. Fiber-optic seismology. Annu. Rev. Earth Planet Sci. 2021, 49, 309–336. [Google Scholar] [CrossRef]
- Clivati, C.; Mura, A.; Levi, F.; Calonico, D.; Marra, G.; Kronjager, J.; Wright, L.; Robinson, S.; Luckett, R.; Baptie, B.; et al. Earthquakes detection with optical fibers. In Proceedings of the 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Orlando, FL, USA, 14–18 April 2019; pp. 1–2. [Google Scholar]
- Liu, Q.W.; Tokunaga, T.; He, Z.Y. Realization of Nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers. Opt. Express 2011, 19, 20214–20223. [Google Scholar] [CrossRef]
- Jia, Z.S.; Campos, L.A.; Xu, M.; Zhang, H.P.; Gonzalez-Herraez, M.; Martins, H.F.; Zhan, Z.W. Experimental coexistence investigation of distributed acoustic sensing and coherent communication systems. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Mecozzi, A.; Cantono, M.; Castellanos, J.C.; Kamalov, V.; Zhan, Z.W. Polarization sensing with transmission fibers in undersea cables. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; pp. 1–3. [Google Scholar]
- Cantono, M.; Castellanos, J.C.; Batthacharya, S.; Yin, S.; Zhan, Z.W.; Mecozzi, A.; Kamalov, V. Optical network sensing: Opportunities and challenges. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; pp. 1–3. [Google Scholar]
Optical Principle | Sensing Length | Noise Floor | Frequency Response | Practical Application |
---|---|---|---|---|
Interferometer | NA [27] | 30 ng/√Hz (10 Hz) | 0.3–200 Hz | Yes |
200 m [28] | 36 nε (RMS variation) | 0.004–1.6 Hz | Yes | |
NA [30] | 6.74 ng/√Hz (1–50 Hz) | 0.16–50 Hz | No | |
96 km [15] | 1 rad/√Hz (1 Hz) | 0.01–20 Hz | Yes | |
5860 km [18] | 1 MHz/√Hz (1 Hz) | 0.01–5 Hz | Yes | |
125.7 m [32] | 100 μPa/√Hz (Average value) | 1–80 Hz | Yes | |
Polarimeter | 10500 km [16] | 0.03/√Hz (1 Hz) | 0.01–10 Hz | Yes |
FBG | 100 km [33] | 0.8 pm/gal | 5–50 Hz | Yes |
100 km [34] | NA | 3–250 Hz | Yes | |
400 m [35] | 0.05 pm/gal | 10–200 Hz | No | |
DAS | 20 km [17] | 1 nε/√Hz (1 Hz) | 0.001–10 Hz | Yes |
20 km [45] | 1 nε/√Hz (1 Hz) | 0.5–10 Hz | Yes | |
42 km [49] | 10 nε/√Hz (1 Hz) | 0.01–10 Hz | Yes | |
60 km [50] | 100 pε/√Hz (1 Hz) | 0.05–24 Hz | Yes | |
41.5 km [51] | 2 nε/√Hz (1 Hz) | 0.2–20 Hz | Yes | |
50 km [55] | 3 nε/√Hz (1 Hz) | 0.01–100 Hz | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Xu, P.; Yu, Z.; Wen, K.; Yang, J.; Wang, Y.; Qin, Y. Principles and Applications of Seismic Monitoring Based on Submarine Optical Cable. Sensors 2023, 23, 5600. https://doi.org/10.3390/s23125600
Yu J, Xu P, Yu Z, Wen K, Yang J, Wang Y, Qin Y. Principles and Applications of Seismic Monitoring Based on Submarine Optical Cable. Sensors. 2023; 23(12):5600. https://doi.org/10.3390/s23125600
Chicago/Turabian StyleYu, Junzhe, Pengbai Xu, Zhangjun Yu, Kunhua Wen, Jun Yang, Yuncai Wang, and Yuwen Qin. 2023. "Principles and Applications of Seismic Monitoring Based on Submarine Optical Cable" Sensors 23, no. 12: 5600. https://doi.org/10.3390/s23125600