Spectral Filter Selection Based on Human Color Vision for Spectral Reflectance Recovery
<p>Filter selection operation schematic chart.</p> "> Figure 2
<p>(<b>a</b>) Filter spectral sensitivity; (<b>b</b>) the spectral power distribution of CIE illuminant A.</p> "> Figure 3
<p>(<b>a</b>) the LMS cone response functions; (<b>b</b>) the filter transmission weighted by the <span class="html-italic">S</span> response curve; (<b>c</b>) the filter transmission weighted by the <span class="html-italic">M</span> response curve; and (<b>d</b>) the filter transmission weighted by the <span class="html-italic">L</span> response curve.</p> "> Figure 4
<p>(<b>a</b>) the relationship between CIE DE1976 color difference and the number of local optimal training samples in Munsell Matt chips; (<b>b</b>) the relationship between CIE DE1976 color difference and the number of Color Checker SG training samples; and (<b>c</b>) the relationship between CIE DE1976 color difference and the number of local optimal training samples in Vrhel spectral dataset.</p> "> Figure 5
<p>A box plot of each parameter index of Munsell Matt chips under CIE illuminant A.</p> "> Figure 6
<p>A box plot of each parameter index of Color Checker SG under CIE illuminant A.</p> "> Figure 7
<p>A box plot of each parameter index of the Vrhel spectral dataset under CIE illuminant A.</p> "> Figure 8
<p>Spectral reflectance recovery results from our proposed and existing methods with three randomly selected samples.</p> "> Figure 9
<p>A results comparison of spectral images of different methods using the CIE 1964 color matching function as the spectral sensitivity; (<b>a</b>) MaxOr; (<b>b</b>) LDMM; (<b>c</b>) MLI; and (<b>d</b>) Proposed.</p> "> Figure 10
<p>Results comparison of spectral images of different methods using the CIE 1964 color matching function as the spectral sensitivity (<b>a</b>) MaxOr; (<b>b</b>) LDMM; (<b>c</b>) MLI; and (<b>d</b>) Proposed.</p> "> Figure 11
<p>(<b>a</b>) IT8.7-3 CMYK target; (<b>b</b>) real spectral power distribution of the light source; (<b>c</b>) filters purchased in the laboratory.</p> "> Figure 12
<p>(<b>a</b>) Diagram of the shooting standard environment; (<b>b</b>) The real shooting environment.</p> "> Figure 13
<p>Color blocks 19 to 24 of the 24 color checker.</p> "> Figure 14
<p>Spectral reflectance curves of gray samples.</p> "> Figure 15
<p>A box plot of each parameter index of the IT8.7/3 dataset under real experimental conditions.</p> "> Figure 16
<p>Spectral reflectance recovery results from our proposed and existing methods with three randomly selected samples.</p> ">
Abstract
:1. Introduction
- The original sensitivity curve of the filter is weighted by the LMS cone response function. The area reduction rate of the filter before and after weighting is calculated, and the minimum area reduction rate is selected. The initial filters selected in this way are closest to the sensitivity function of the human visual system.
- The three initial filters are combined with the remaining filters one by one, and each combination is substituted into the spectral reconstruction model to obtain the recovery results of the whole imaging system. The respective optimal filter sets under L-weighting, M-weighting, and S-weighting are selected according to the customized minimum recovery error, and then the optimal filter set is selected from the three optimal filter sets by comparing the error set scores.
2. Materials and Methods
3. The Proposed Method
3.1. Weighted Area Selection
3.2. Exhaustive Combination
3.3. Multispectral Recovery
3.4. Custom Error Score Ranking
4. Experiment
4.1. Simulation Experiment
4.2. Real Experiment
4.2.1. Experimental Environment
4.2.2. Linear Calibration of Camera Response Values Correction
4.2.3. Experimental Result
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Appl. Phys. A 2012, 106, 309–323. [Google Scholar] [CrossRef]
- Maali Amiri, M.; Garcia-Nieto, S.; Morillas, S.; Fairchild, M.D. Spectral Reflectance Recovery Using Fuzzy Logic System Training: Color Science Application. Sensors 2020, 20, 4726. [Google Scholar] [CrossRef] [PubMed]
- Raju, V.B.; Sazonov, E. Detection of Oil-Containing Dressing on Salad Leaves Using Multispectral Imaging. IEEE Access 2020, 8, 86196–86206. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Hwang, M.; Kim, M.; Jin Jo, S.; Je, M.; Jang, J.E.; Lee, D.H.; Hwang, J.Y. Smartphone-based multispectral imaging and machine-learning based analysis for discrimination between seborrheic dermatitis and psoriasis on the scalp. Biomed. Opt. Express 2019, 10, 879–891. [Google Scholar] [CrossRef]
- Shen, F.; Deng, H.; Yu, L.; Cai, F. Open-source mobile multispectral imaging system and its applications in biological sample sensing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 280, 121504. [Google Scholar] [CrossRef]
- Wang, T.; Shen, F.; Deng, H.; Cai, F.; Chen, S. Smartphone imaging spectrometer for egg/meat freshness monitoring. Anal. Methods 2022, 14, 508–517. [Google Scholar] [CrossRef]
- Niu, S.; Wu, G.; Xiong, Y. Spectral filter selection for spectral reflectance recovery. In Proceedings of the Second International Conference on Sensors and Information Technology (ICSI 2022), Nanjing, China, 25–27 March 2022. [Google Scholar]
- Huber-Lerner, M.; Hadar, O.; Rotman, S.R.; Huber-Shalem, R. Hyperspectral Band Selection for Anomaly Detection: The Role of Data Gaussianity. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 732–743. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, Y.; Lei, J.; Bi, Z.; Xu, F. Unsupervised Hyperspectral Band Selection by Dominant Set Extraction. IEEE Trans. Geosci. Remote Sens. 2016, 54, 227–239. [Google Scholar] [CrossRef]
- Jean, M.; Jean, T.; François, G.; Michel, P.; Nicolas, R.; Jacques, L.; Yann, F. Influence of band selection and target estimation error on the performance of the matched filter in hyperspectral imaging. Appl. Opt. 2011, 50, 4276–4285. [Google Scholar]
- Ma, J.P.; Zheng, Z.B.; Tong, Q.X.; Zheng, L.F. An application of genetic algorithms on band selection for hyperspectral image classification. In Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, China, 2–5 November 2003. [Google Scholar]
- Sharma, G.; Trussell, H. Optimal Filter Design for Multi-illuminant Color Correction. In Proceedings of the IS&T/OSA’s Optics and Imaging in the Information Age, Springfield, Virginia, 13 February 2001. [Google Scholar]
- Wolski, M.; Bouman, C.; Allebach, J.; Walowit, E. Optimization of sensor response functions for colorimetry of reflective and emissive objects. In Proceedings of the International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995. [Google Scholar]
- Vora, P.L.; Trussell, H.J. Mathematical methods for the design of color scanning filters. IEEE Trans. Image Process. 1997, 6, 312–320. [Google Scholar] [CrossRef]
- Ng, D.Y.; Allebach, J.P. A subspace matching color filter design methodology for a multispectral imaging system. IEEE Trans. Image Process. 2006, 15, 2631–2643. [Google Scholar] [PubMed]
- Arad, B.; Ben-Shahar, O. Filter Selection for Hyperspectral Estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 25 December 2017. [Google Scholar]
- Li, S. Filter Selection for Optimizing the Spectral Sensitivity of Broadband Multispectral Cameras Based on Maximum Linear Independence. Sensors 2018, 18, 1455. [Google Scholar] [CrossRef]
- Brill, M.H. Acquisition and reproduction of color images: Colorimetric and multispectral approaches. Color Res. Appl. 2002, 27, 304–306. [Google Scholar] [CrossRef]
- Li, S. Several Problems Research of Multispectral Imaging. Ph.D. Thesis, Beijing Institute of Technology, Beijing, China, 2007. [Google Scholar]
- Schettini, R.; Novati, G.; Pellegri, P. Training set and filters selection for the efficient use of multispectral acquisition systems. In Proceedings of the Conference on Color in Graphics, Aachen, Germany, 5–8 April 2004. [Google Scholar]
- Raimondo, P.P.N.G.S. Training Set Selection for Multispectral Imaging Systems Characterization. J. Imaging Sci. Technol. 2004, 48, 203–210. [Google Scholar]
- Li, S.; Liao, N.F.; Sun, Y.N. Optimal sensitivity of multispectral camera based on PCA. Opto-Electron. Eng. 2006, 33, 127–132. [Google Scholar]
- Liang, J.; Xiao, K.; Pointer, M.R.; Wan, X.; Li, C. Spectra estimation from raw camera responses based on adaptive local-weighted linear regression. Opt. Express 2019, 27, 5165–5180. [Google Scholar] [CrossRef]
- Babaei, V.; Amirshahi, S.H.; Agahian, F. Using weighted pseudo-inverse method for recovery of reflectance spectra and analyzing the dataset in terms of normality. Color Res. Appl. 2011, 36, 295–305. [Google Scholar] [CrossRef]
- Tzeng, D.Y.; Berns, R.S. A review of principal component analysis and its applications to color technology. Color Res. Appl. 2005, 30, 84–98. [Google Scholar] [CrossRef]
- Wu, G. Reflectance spectra recovery from a single RGB image by adaptive compressive sensing. Laser Phys. Lett. 2019, 16, 085208. [Google Scholar] [CrossRef]
- Wu, G.; Xiong, Y.; Li, X. Spectral sparse recovery form a single RGB image. Laser Phys. Lett. 2021, 18, 095201. [Google Scholar] [CrossRef]
- Nishidate, I.; Maeda, T.; Niizeki, K.; Aizu, Y. Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method. Sensors 2013, 13, 7902–7915. [Google Scholar] [CrossRef] [PubMed]
- Stigell, P.; Miyata, K.; Hauta-Kasari, M. Wiener estimation method in estimating of spectral reflectance from RGB images. Pattern Recognit. Image Anal. 2007, 17, 233–242. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, G.; Li, X.; Wang, X. Optimized clustering method for spectral reflectance recovery. Front Psychol. 2022, 13, 1051286. [Google Scholar] [CrossRef]
- Wang, L.; Sole, A.; Hardeberg, J.Y. Densely Residual Network with Dual Attention for Hyperspectral Reconstruction from RGB Images. Remote Sens. 2022, 14, 3128. [Google Scholar] [CrossRef]
- Xiong, Y.; Wu, G.; Li, X.; Niu, S.; Han, X. Spectral reflectance recovery using convolutional neural network. In Proceedings of the International Conference on Optoelectronic Materials and Devices (ICOMD 2021), Guangzhou, China, 10–12 December 2021; pp. 63–67. [Google Scholar]
- Arad, B.; Timofte, R.; Yahel, R.; Morag, N.; Bernat, A.; Cai, Y.; Lin, J.; Lin, Z.; Wang, H.; Zhang, Y. Ntire 2022 spectral recovery challenge and data set. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 863–881. [Google Scholar]
- Xiong, Y.; Wu, G.; Li, X. Optimized Method Based on Subspace Merging for Spectral Reflectance Recovery. Sensors 2023, 23, 3056. [Google Scholar] [CrossRef]
- University of Eastern Finland, Spectral Color Research Group. Available online: http://www.uef.fi/web/spectral/-spectral-database (accessed on 24 November 2022).
- Wu, G.; Liu, Z.; Fang, E.; Yu, H. Recovery of spectral color information using weighted principal component analysis. Optik 2015, 126, 1249–1253. [Google Scholar] [CrossRef]
- Vrhel, M.J.; Gershon, R.; Iwan, L.S. Measurement and analysis of object reflectance spectra. Color Res. Appl. 1994, 19, 4–9. [Google Scholar] [CrossRef]
- Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum. IEEE Trans. Image Process. 2010, 19, 2241–2253. [Google Scholar] [CrossRef]
- Chen, Y. Object Surface Color Spectrum Recovery Based on Digital Camera. Master’s Thesis, Zhejiang University, Hangzhou, China, 2008. [Google Scholar]
- Li, B. Research on Multi-Spectral Image Acquisition Method Based on Three-Color Camera. Master’s Thesis, Qufu Normal University, Qufu, China, 2012. [Google Scholar]
Munsell Matt Chips | |||||||||
---|---|---|---|---|---|---|---|---|---|
Illuminant | Channel | Method | CIE DE1976 | CIE DE2000 | RMSE | GFC | |||
Max | Mean | Max | Mean | Max | Mean | Mean | |||
CIE Illuminant A | 3 Channel | LDMM | 57.0162 | 5.1927 | 38.6427 | 3.8584 | 0.2281 | 0.0233 | 0.9932 |
MLI | 24.529 | 2.6168 | 14.0742 | 1.7299 | 0.1768 | 0.0153 | 0.9961 | ||
MaxOr | 57.0578 | 5.6398 | 38.6547 | 4.2504 | 0.2275 | 0.0254 | 0.9917 | ||
Our | 11.1701 | 1.3651 | 7.6661 | 0.9903 | 0.1135 | 0.0136 | 0.9975 | ||
4 Channel | LDMM | 33.0217 | 4.4186 | 27.2045 | 3.0929 | 0.1221 | 0.0156 | 0.997 | |
MLI | 19.9484 | 1.4252 | 10.4861 | 0.9279 | 0.1262 | 0.0086 | 0.9987 | ||
MaxOr | 13.2427 | 1.5711 | 8.0956 | 1.0936 | 0.1222 | 0.0114 | 0.9982 | ||
Our | 7.1393 | 0.5538 | 5.1553 | 0.39 | 0.1029 | 0.0084 | 0.9988 | ||
5 Channel | LDMM | 13.5099 | 1.5452 | 7.3899 | 1.0844 | 0.0753 | 0.0082 | 0.9993 | |
MLI | 20.2998 | 0.9775 | 10.7919 | 0.6506 | 0.0845 | 0.0054 | 0.9994 | ||
MaxOr | 13.1093 | 1.4526 | 7.4256 | 1.0421 | 0.1314 | 0.0107 | 0.9984 | ||
Our | 8.7672 | 0.5783 | 6.2174 | 0.4345 | 0.0456 | 0.0057 | 0.9996 | ||
6 Channel | LDMM | 4.3994 | 0.5009 | 2.7248 | 0.3787 | 0.0737 | 0.0046 | 0.9996 | |
MLI | 19.6554 | 0.6257 | 10.4579 | 0.4594 | 0.0809 | 0.0045 | 0.9995 | ||
MaxOr | 11.0995 | 0.7065 | 7.1919 | 0.523 | 0.1222 | 0.0064 | 0.9992 | ||
Our | 3.461 | 0.2259 | 2.3218 | 0.1543 | 0.0238 | 0.0039 | 0.9998 | ||
7 Channel | LDMM | 1.7886 | 0.4236 | 1.3172 | 0.3571 | 0.0292 | 0.0037 | 0.9998 | |
MLI | 19.7661 | 0.7179 | 22.5273 | 0.5512 | 0.0397 | 0.0039 | 0.9997 | ||
MaxOr | 6.6673 | 0.6496 | 4.4312 | 0.4812 | 0.0393 | 0.0041 | 0.9997 | ||
Our | 1.3168 | 0.207 | 1.1546 | 0.1566 | 0.0235 | 0.0031 | 0.9999 |
Color Checker SG | |||||||||
---|---|---|---|---|---|---|---|---|---|
Illuminant | Channel | Method | CIE DE1976 | CIE DE2000 | RMSE | GFC | |||
Max | Mean | Max | Mean | Max | Mean | Mean | |||
CIE Illuminant A | 3 Channel | LDMM | 55.5548 | 10.0086 | 33.767 | 7.2119 | 0.2251 | 0.0451 | 0.9811 |
MLI | 39.7361 | 7.2702 | 19.551 | 4.3265 | 0.1211 | 0.031 | 0.9924 | ||
MaxOr | 63.8962 | 8.7004 | 39.3476 | 5.8597 | 0.2407 | 0.0425 | 0.9811 | ||
Our | 18.088 | 2.4002 | 8.4941 | 1.4732 | 0.118 | 0.0267 | 0.9929 | ||
4 Channel | LDMM | 36.1135 | 7.1297 | 20.2838 | 5.405 | 0.0955 | 0.0286 | 0.994 | |
MLI | 34.7927 | 4.8944 | 11.4471 | 2.7745 | 0.0992 | 0.0222 | 0.9957 | ||
MaxOr | 17.6933 | 2.7797 | 8.8284 | 1.826 | 0.1149 | 0.0258 | 0.9942 | ||
Our | 5.9632 | 1.0257 | 3.6337 | 0.6766 | 0.0931 | 0.0201 | 0.9962 | ||
5 Channel | LDMM | 11.7749 | 2.9412 | 9.3622 | 2.1346 | 0.072 | 0.0188 | 0.9978 | |
MLI | 17.6457 | 3.722 | 7.6177 | 2.3171 | 0.1382 | 0.0198 | 0.9967 | ||
MaxOr | 18.8567 | 3.4702 | 12.3189 | 2.5038 | 0.1591 | 0.0264 | 0.9931 | ||
Our | 4.3094 | 0.9334 | 2.5814 | 0.6017 | 0.049 | 0.015 | 0.9986 | ||
6 Channel | LDMM | 4.9499 | 1.1014 | 2.9187 | 0.8902 | 0.0463 | 0.0131 | 0.9987 | |
MLI | 19.3011 | 1.9112 | 8.4144 | 1.3322 | 0.1577 | 0.0136 | 0.9974 | ||
MaxOr | 6.8946 | 1.4448 | 4.477 | 1.0773 | 0.0768 | 0.0151 | 0.9974 | ||
Our | 2.3641 | 0.4807 | 1.2719 | 0.3264 | 0.0443 | 0.0129 | 0.9989 | ||
7 Channel | LDMM | 2.943 | 0.5482 | 1.1898 | 0.3772 | 0.0339 | 0.0096 | 0.9994 | |
MLI | 9.7884 | 1.3752 | 5.7661 | 0.9455 | 0.0429 | 0.0084 | 0.9992 | ||
MaxOr | 11.8516 | 1.3307 | 4.8524 | 1.0435 | 0.0408 | 0.0103 | 0.9992 | ||
Our | 2.5998 | 0.3604 | 0.9242 | 0.2355 | 0.0256 | 0.0071 | 0.9995 |
Vrhel Spectral Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|
Illuminant | Channel | Method | CIE DE1976 | CIE DE2000 | RMSE | GFC | |||
Max | Mean | Max | Mean | Max | Mean | Mean | |||
CIE Illuminant A | 3 Channel | LDMM | 55.2149 | 13.4954 | 35.9918 | 9.631 | 0.209 | 0.0576 | 0.9659 |
MLI | 33.342 | 9.4129 | 17.5367 | 5.031 | 0.1967 | 0.0351 | 0.9841 | ||
MaxOr | 56.4556 | 11.6292 | 36.4524 | 8.2406 | 0.1992 | 0.0521 | 0.9709 | ||
Our | 18.3209 | 2.6738 | 8.7486 | 1.6532 | 0.1818 | 0.0319 | 0.9862 | ||
4 Channel | LDMM | 70.5002 | 10.0769 | 28.8346 | 7.1759 | 0.2316 | 0.0362 | 0.9853 | |
MLI | 29.8968 | 6.5727 | 13.2888 | 3.2126 | 0.1687 | 0.0286 | 0.9804 | ||
MaxOr | 25.6143 | 3.7521 | 15.2366 | 2.4752 | 0.1792 | 0.0328 | 0.987 | ||
Our | 18.2029 | 1.4805 | 8.213 | 0.91 | 0.167 | 0.0276 | 0.9894 | ||
5 Channel | LDMM | 27.6785 | 5.5163 | 14.3806 | 4.0168 | 0.1203 | 0.0254 | 0.9921 | |
MLI | 32.3953 | 5.2023 | 13.698 | 2.6936 | 0.1529 | 0.0252 | 0.9904 | ||
MaxOr | 23.524 | 4.2321 | 14.2079 | 2.9 | 0.2085 | 0.0398 | 0.9763 | ||
Our | 11.4684 | 1.5269 | 6.2996 | 0.9421 | 0.1173 | 0.0177 | 0.9955 | ||
6 Channel | LDMM | 8.7184 | 1.3675 | 5.8822 | 0.9994 | 0.1062 | 0.0193 | 0.9945 | |
MLI | 16.9549 | 2.8241 | 10.3674 | 1.7117 | 0.1538 | 0.0204 | 0.9917 | ||
MaxOr | 21.1351 | 2.3253 | 12.4645 | 1.4938 | 0.1706 | 0.0226 | 0.9893 | ||
Our | 7.9256 | 0.8298 | 3.2125 | 0.4499 | 0.102 | 0.0149 | 0.995 | ||
7 Channel | LDMM | 7.2469 | 0.7687 | 2.6931 | 0.4839 | 0.0871 | 0.016 | 0.9957 | |
MLI | 39.0504 | 2.1657 | 18.9024 | 1.4431 | 0.1144 | 0.0122 | 0.9917 | ||
MaxOr | 10.8561 | 1.6483 | 7.202 | 1.1442 | 0.0884 | 0.0125 | 0.9945 | ||
Our | 6.981 | 0.6664 | 1.6818 | 0.3561 | 0.0821 | 0.0113 | 0.9964 |
NO. | T | t | P | p |
---|---|---|---|---|
1 | 1.80 | 1 | 97.73 | 1 |
2 | 1.19 | 0.67 | 75.13 | 0.77 |
3 | 0.73 | 0.41 | 54.09 | 0.55 |
4 | 0.39 | 0.22 | 33.42 | 0.34 |
5 | 0.19 | 0.10 | 21.22 | 0.22 |
6 | 0.07 | 0.04 | 6.69 | 0.07 |
IT8.7/3 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Illuminant | Channel | Method | CIE DE1976 | CIE DE2000 | RMSE | GFC | |||
Max | Mean | Max | Mean | Max | Mean | Mean | |||
Real Illuminant | 3 Channel | LDMM | 55.1072 | 12.1706 | 36.3163 | 9.0247 | 0.2433 | 0.0462 | 0.9833 |
MLI | 72.3144 | 12.0688 | 33.6507 | 7.2681 | 0.1371 | 0.0375 | 0.9852 | ||
MaxOr | 36.8347 | 7.7783 | 25.5001 | 5.67 | 0.2001 | 0.0339 | 0.9921 | ||
Our | 14.5346 | 3.5781 | 9.8733 | 2.5609 | 0.1365 | 0.0237 | 0.9985 | ||
4 Channel | LDMM | 60.3669 | 8.6533 | 40.3494 | 6.4562 | 0.1732 | 0.0332 | 0.9896 | |
MLI | 51.0632 | 10.5935 | 31.5347 | 6.2469 | 0.1404 | 0.0328 | 0.9883 | ||
MaxOr | 15.4071 | 3.4042 | 10.873 | 2.3232 | 0.1393 | 0.0229 | 0.9989 | ||
Our | 11.7962 | 2.9112 | 7.1387 | 2.0037 | 0.1382 | 0.0199 | 0.9992 | ||
5 Channel | LDMM | 15.352 | 3.2919 | 10.559 | 2.3487 | 0.1731 | 0.0216 | 0.9981 | |
MLI | 42.5753 | 5.4712 | 14.8481 | 3.36 | 0.1357 | 0.0227 | 0.9974 | ||
MaxOr | 15.3741 | 3.3431 | 10.711 | 2.3564 | 0.1658 | 0.0218 | 0.9979 | ||
Our | 12.9502 | 3.2026 | 10.081 | 2.3046 | 0.1305 | 0.0215 | 0.9988 | ||
6 Channel | LDMM | 11.5558 | 2.6609 | 7.8024 | 1.8385 | 0.1456 | 0.0177 | 0.9991 | |
MLI | 10.8503 | 2.8403 | 8.5263 | 1.9531 | 0.1164 | 0.0187 | 0.9991 | ||
MaxOr | 13.0843 | 2.7746 | 6.2731 | 1.8932 | 0.1239 | 0.0184 | 0.9992 | ||
Our | 10.4058 | 2.6028 | 7.6026 | 1.7872 | 0.1104 | 0.0163 | 0.9993 | ||
7 Channel | LDMM | 11.175 | 2.8872 | 8.0676 | 1.8862 | 0.1416 | 0.0174 | 0.9991 | |
MLI | 11.7824 | 2.7372 | 7.3687 | 1.888 | 0.1133 | 0.0179 | 0.9992 | ||
MaxOr | 11.9103 | 2.6994 | 7.061 | 1.8502 | 0.1423 | 0.0173 | 0.999 | ||
Our | 10.91 | 2.6887 | 6.4923 | 1.8391 | 0.1107 | 0.0162 | 0.9992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Wu, G.; Li, X. Spectral Filter Selection Based on Human Color Vision for Spectral Reflectance Recovery. Sensors 2023, 23, 5225. https://doi.org/10.3390/s23115225
Niu S, Wu G, Li X. Spectral Filter Selection Based on Human Color Vision for Spectral Reflectance Recovery. Sensors. 2023; 23(11):5225. https://doi.org/10.3390/s23115225
Chicago/Turabian StyleNiu, Shijun, Guangyuan Wu, and Xiaozhou Li. 2023. "Spectral Filter Selection Based on Human Color Vision for Spectral Reflectance Recovery" Sensors 23, no. 11: 5225. https://doi.org/10.3390/s23115225
APA StyleNiu, S., Wu, G., & Li, X. (2023). Spectral Filter Selection Based on Human Color Vision for Spectral Reflectance Recovery. Sensors, 23(11), 5225. https://doi.org/10.3390/s23115225